1
|
Boopathy S, Luce BE, Lugo CM, Hakim P, McDonald J, Kim HL, Ponce J, Ueberheide BM, Chao LH. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. J Biol Chem 2024; 300:107740. [PMID: 39222684 PMCID: PMC11459905 DOI: 10.1016/j.jbc.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier family 25 member (SLC25A46) interacts with both the outer and inner membrane dynamin family GTPases mitofusin 1/2 and optic atrophy 1 (Opa1). While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with mitofusin 1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass spectrometry and AlphaFold 2 modeling to identify interfaces mediating an SLC25A46 interaction with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of an Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
Collapse
Affiliation(s)
- Sivakumar Boopathy
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston Massachusetts, USA
| | - Bridget E Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Camila Makhlouta Lugo
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Julie McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Ha Lin Kim
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA
| | - Jackeline Ponce
- Proteomics Resource Center, Division of Advanced Research Technologies, New York University Langone Health Center, New York New York, USA
| | - Beatrix M Ueberheide
- Proteomics Resource Center, Division of Advanced Research Technologies, New York University Langone Health Center, New York New York, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone Health Center, New York New York, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston Massachusetts, USA.
| |
Collapse
|
2
|
Boopathy S, Luce BE, Lugo CM, Hakim P, McDonald J, Kim HL, Ponce J, Ueberheide BM, Chao LH. Identification of SLC25A46 interaction interfaces with mitochondrial membrane fusogens Opa1 and Mfn2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.29.573615. [PMID: 38234813 PMCID: PMC10793391 DOI: 10.1101/2023.12.29.573615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Mitochondrial fusion requires the sequential merger of four bilayers to two. The outer-membrane solute carrier protein SLC25A46 interacts with both the outer and inner-membrane dynamin family GTPases Mfn1/2 and Opa1. While SLC25A46 levels are known to affect mitochondrial morphology, how SLC25A46 interacts with Mfn1/2 and Opa1 to regulate membrane fusion is not understood. In this study, we use crosslinking mass-spectrometry and AlphaFold 2 modeling to identify interfaces mediating a SLC25A46 interactions with Opa1 and Mfn2. We reveal that the bundle signaling element of Opa1 interacts with SLC25A46, and present evidence of a Mfn2 interaction involving the SLC25A46 cytosolic face. We validate these newly identified interaction interfaces and show that they play a role in mitochondrial network maintenance.
Collapse
|
3
|
Fu Y, Aganezov S, Mahmoud M, Beaulaurier J, Juul S, Treangen TJ, Sedlazeck FJ. MethPhaser: methylation-based long-read haplotype phasing of human genomes. Nat Commun 2024; 15:5327. [PMID: 38909018 PMCID: PMC11193733 DOI: 10.1038/s41467-024-49588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
The assignment of variants across haplotypes, phasing, is crucial for predicting the consequences, interaction, and inheritance of mutations and is a key step in improving our understanding of phenotype and disease. However, phasing is limited by read length and stretches of homozygosity along the genome. To overcome this limitation, we designed MethPhaser, a method that utilizes methylation signals from Oxford Nanopore Technologies to extend Single Nucleotide Variation (SNV)-based phasing. We demonstrate that haplotype-specific methylations extensively exist in Human genomes and the advent of long-read technologies enabled direct report of methylation signals. For ONT R9 and R10 cell line data, we increase the phase length N50 by 78%-151% at a phasing accuracy of 83.4-98.7% To assess the impact of tissue purity and random methylation signals due to inactivation, we also applied MethPhaser on blood samples from 4 patients, still showing improvements over SNV-only phasing. MethPhaser further improves phasing across HLA and multiple other medically relevant genes, improving our understanding of how mutations interact across multiple phenotypes. The concept of MethPhaser can also be extended to non-human diploid genomes. MethPhaser is available at https://github.com/treangenlab/methphaser .
Collapse
Affiliation(s)
- Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Sissel Juul
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Fritz J Sedlazeck
- Department of Computer Science, Rice University, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
4
|
Schuettpelz J, Janer A, Antonicka H, Shoubridge EA. The role of the mitochondrial outer membrane protein SLC25A46 in mitochondrial fission and fusion. Life Sci Alliance 2023; 6:e202301914. [PMID: 36977595 PMCID: PMC10052876 DOI: 10.26508/lsa.202301914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mutations in SLC25A46 underlie a wide spectrum of neurodegenerative diseases associated with alterations in mitochondrial morphology. We established an SLC25A46 knock-out cell line in human fibroblasts and studied the pathogenicity of three variants (p.T142I, p.R257Q, and p.E335D). Mitochondria were fragmented in the knock-out cell line and hyperfused in all pathogenic variants. The loss of SLC25A46 led to abnormalities in the mitochondrial cristae ultrastructure that were not rescued by the expression of the variants. SLC25A46 was present in discrete puncta at mitochondrial branch points and tips of mitochondrial tubules, co-localizing with DRP1 and OPA1. Virtually, all fission/fusion events were demarcated by a SLC25A46 focus. SLC25A46 co-immunoprecipitated with the fusion machinery, and loss of function altered the oligomerization state of OPA1 and MFN2. Proximity interaction mapping identified components of the ER membrane, lipid transfer proteins, and mitochondrial outer membrane proteins, indicating that it is present at interorganellar contact sites. SLC25A46 loss of function led to altered mitochondrial lipid composition, suggesting that it may facilitate interorganellar lipid flux or play a role in membrane remodeling associated with mitochondrial fusion and fission.
Collapse
Affiliation(s)
- Jana Schuettpelz
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexandre Janer
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Hana Antonicka
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|