1
|
Léonet J, Vicente J, De Masi-Jacquier M, Deplano V. Aortic thrombi microstructure through contrast-enhanced X-ray microtomography. Sci Rep 2025; 15:11808. [PMID: 40189631 PMCID: PMC11973190 DOI: 10.1038/s41598-025-95724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The intraluminal thrombus (ILT) is a heterogeneous porous medium made up of three layers (luminal, medial, abluminal), found in most abdominal aortic aneurysms (AAA). Few morphological studies exist, and its role in disease progression remains controversial. Histological investigations suggest a harmful effect, leading to aortic wall hypoxia and potential rupture. However, 2D morphological studies cannot provide precise answers due to the complexity of ILT porosity. This study aims to provide reliable quantitative 3D morphological data using contrast-enhanced X-ray micro-computed tomography (micro-CT). We propose a validation pipeline for micro-CT image segmentation using virtual tomography. Our results show a decrease in porosity from the luminal to the abluminal layer, with similar pore diameters but more interconnected pores in the luminal region. The size of interconnected pores around 15-20 [Formula: see text] suggests cell passage is facilitated through the ILT's porous network. Finally, pore anisotropy was observed across the ILT thickness. This work suggests further studies on ILT permeability to validate its involvement in wall hypoxia.
Collapse
Affiliation(s)
- Joris Léonet
- CNRS, Centrale Méditerranée, IRPHE UMR 7342, Aix-Marseille Univ, Marseille, France
| | - Jérôme Vicente
- CNRS, IUSTI UMR 7343, Aix-Marseille Univ, Marseille, France
| | - Mariangela De Masi-Jacquier
- CNRS, Centrale Méditerranée, IRPHE UMR 7342, Aix-Marseille Univ, Marseille, France
- Department of Vascular Surgery, AP-HM, Timone Hospital, Timone Aortic Center, Marseille, France
| | - Valérie Deplano
- CNRS, Centrale Méditerranée, IRPHE UMR 7342, Aix-Marseille Univ, Marseille, France.
| |
Collapse
|
2
|
Karimian-Jazi K, Vollherbst DF, Schwarz D, Fischer M, Schregel K, Bauer G, Kocharyan A, Sturm V, Neuberger U, Jesser J, Herweh C, Ulfert C, Hilgenfeld T, Seker F, Preisner F, Schmitt N, Charlet T, Hamelmann S, Sahm F, Heiland S, Wick W, Ringleb PA, Schirmer L, Bendszus M, Möhlenbruch MA, Breckwoldt MO. MR microscopy to assess clot composition following mechanical thrombectomy predicts recanalization and clinical outcome. J Neurointerv Surg 2024; 16:830-837. [PMID: 37527928 DOI: 10.1136/jnis-2023-020594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Mechanical thrombectomy (MT) is the standard of care for patients with a stroke and large vessel occlusion. Clot composition is not routinely assessed in clinical practice as no specific diagnostic value is attributed to it, and MT is performed in a standardized 'non-personalized' approach. Whether different clot compositions are associated with intrinsic likelihoods of recanalization success or treatment outcome is unknown. METHODS We performed a prospective, non-randomized, single-center study and analyzed the clot composition in 60 consecutive patients with ischemic stroke undergoing MT. Clots were assessed by ex vivo multiparametric MRI at 9.4 T (MR microscopy), cone beam CT, and histopathology. Clot imaging was correlated with preinterventional CT and clinical data. RESULTS MR microscopy showed red blood cell (RBC)-rich (21.7%), platelet-rich (white,38.3%) or mixed clots (40.0%) as distinct morphological entities, and MR microscopy had high accuracy of 95.4% to differentiate clots. Clot composition could be further stratified on preinterventional non-contrast head CT by quantification of the hyperdense artery sign. During MT, white clots required more passes to achieve final recanalization and were not amenable to contact aspiration compared with mixed and RBC-rich clots (maneuvers: 4.7 vs 3.1 and 1.2 passes, P<0.05 and P<0.001, respectively), whereas RBC-rich clots showed higher probability of first pass recanalization (76.9%) compared with white clots (17.4%). White clots were associated with poorer clinical outcome at discharge and 90 days after MT. CONCLUSION Our study introduces MR microscopy to show that the hyperdense artery sign or MR relaxometry could guide interventional strategy. This could enable a personalized treatment approach to improve outcome of patients undergoing MT.
Collapse
Affiliation(s)
| | - Dominik F Vollherbst
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Katharina Schregel
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gregor Bauer
- Neurology Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Kocharyan
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Volker Sturm
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulf Neuberger
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica Jesser
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Herweh
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Ulfert
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Hilgenfeld
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fatih Seker
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Preisner
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Niclas Schmitt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Charlet
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Hamelmann
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter A Ringleb
- Neurology Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Santo BA, Jenkins TD, Ciecierska SSK, Baig AA, Levy EI, Siddiqui AH, Tutino VM. MicroCT and Histological Analysis of Clot Composition in Acute Ischemic Stroke : A Comparative Study of MT-Retrieved Clots and Clot Analogs. Clin Neuroradiol 2024; 34:431-439. [PMID: 38294532 DOI: 10.1007/s00062-023-01380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Assessing clot composition on prethrombectomy computed tomography (CT) imaging may help in stroke treatment planning. In this study we seek to use microCT imaging of fabricated blood clots to understand the relationship between CT radiographic signals and the biological makeup. METHODS Clots (n = 10) retrieved by mechanical thrombectomy (MT) were collected, and 6 clot analogs of varying RBC composition were made. We performed paired microCT and histological image analysis of all 16 clots using a ScanCo microCT 100 (4.9 µm resolution) and standard H&E staining (imaged at 40×). From these data types, first order statistic (FOS) radiomics were computed from microCT, and percent composition of RBCs (%RBC) was computed from histology. Polynomial and linear regression (LR) were used to build statistical models based on retrieved thrombus microCT and %RBC that were evaluated for their ability to predict the %RBC of clot analogs from mean HU. Correlation analyses of microCT FOS with composition were completed for both retrieved clots and analogs. RESULTS The LR model fits relating MT-retrieved clot %RBC with mean (R2 = 0.625, p = 0.006) and standard deviation (R2 = 0.564, p < 0.05) in HUs on microCT were significant. Similarly, LR models relating analog histological %RBC to analog protocol %RBC (R2 = 0.915, p = 0.003) and mean HUs on microCT (R2 = 0.872, p = 0.007) were also significant. When the LR model built using MT-retrieved clots was used to predict analog %RBC from mean HUs, significant correlation was observed between predictions and actual histological %RBC (R2 = 0.852, p = 0.009). For retrieved clots, significant correlations were observed for energy and total energy with %RBC and %FP (|R| > 0.7, q < 0.01). Analogs further demonstrated significant correlation between FOS energy, total energy, variance and %WBC (|R| > 0.9, q < 0.01). CONCLUSION MicroCT can be used to build models that predict AIS clot composition from routine CT parameters and help us to better understand radiomic signatures associated with clot composition and first pass outcomes. In future work, such observations can be used to better infer clot composition and inform thrombectomy prognostics from pretreatment CTs.
Collapse
Affiliation(s)
- Briana A Santo
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, 14203, Buffalo, NY, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA
| | - TaJania D Jenkins
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, 14203, Buffalo, NY, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Shiau-Sing K Ciecierska
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, 14203, Buffalo, NY, USA
| | - Ammad A Baig
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, 14203, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Elad I Levy
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, 14203, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, 14203, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, 14203, Buffalo, NY, USA.
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA.
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Santo BA, Janbeh Sarayi SMM, McCall AD, Monteiro A, Donnelly B, Siddiqui AH, Tutino VM. Multimodal CT imaging of ischemic stroke thrombi identifies scale-invariant radiomic features that reflect clot biology. J Neurointerv Surg 2023; 15:1257-1263. [PMID: 36787955 PMCID: PMC10659055 DOI: 10.1136/jnis-2022-019967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Biological interpretability of ischemic stroke clot imaging remains challenging. OBJECTIVE To carry out paired CT/micro-CT imaging of ischemic stroke clots retrieved by thrombectomy with the aim of identifying interpretable image features that are correlated among pretreatment image modalities and post-treatment histopathology. METHODS We performed multimodal CT imaging and histology for 10 stroke clots retrieved by mechanical thrombectomy. Clots were manually segmented from co-registered, pretreatment CT angiography (CTA) and non-contrast CT (NCCT). For the same cases, retrieved clots were iodine-stained, and imaged with a ScanCo micro-CT 100 (4.9 µm resolution). Afterwards, clots were subjected to histological processing (hematoxylin and eosin staining) and whole slide scanned (40X). Clot radiomic features (RFs) (n=93 per modality, 279 total) were extracted using PyRadiomics and histological composition was computed using Orbit Image Analysis. Correlation analysis was used to test associations between micro-CT and CTA (or NCCT) RFs as well as between RFs and histological composition. Statistical significance was considered at R≥0.65 and q<0.05. RESULTS From paired RF correlation analysis, we identified 23 scale-invariant RFs with significant correlation between micro-CT and CTA (18), and micro-CT and NCCT (5). Correlation of unpaired RFs identified 377 positively and 36 negatively correlated RFs between micro-CT and CTA, and 168 positively and 41 negatively correlated RFs between micro-CT and NCCT. Scale-invariant RFs computed from CTA and NCCT demonstrated significant correlation with red blood cell and fibrin-platelet components, while micro-CT RFs were found to be correlated with white blood cell percent composition. CONCLUSION Multimodal CT, radiomic, and histological analysis of stroke clots can help to bridge the gap between pretreatment imaging and clot pathobiology.
Collapse
Affiliation(s)
- Briana A Santo
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
| | | | - Andrew D McCall
- Optical Imaging and Analysis Facility, University at Buffalo, Buffalo, NY, USA
| | - Andre Monteiro
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Brianna Donnelly
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| | - Vincent M Tutino
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
5
|
Dumitriu LaGrange D, Reymond P, Brina O, Zboray R, Neels A, Wanke I, Lövblad KO. Spatial heterogeneity of occlusive thrombus in acute ischemic stroke: A systematic review. J Neuroradiol 2023; 50:352-360. [PMID: 36649796 DOI: 10.1016/j.neurad.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Following the advent of mechanical thrombectomy, occlusive clots in ischemic stroke have been amply characterized using conventional histopathology. Many studies have investigated the compositional variability of thrombi and the consequences of thrombus composition on treatment response. More recent evidence has emerged about the spatial heterogeneity of the clot or the preferential distribution of its components and compact nature. Here we review this emerging body of evidence, discuss its potential clinical implications, and propose the development of adequate characterization techniques.
Collapse
Affiliation(s)
- Daniela Dumitriu LaGrange
- Neurodiagnostic and Neurointerventional Division, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Philippe Reymond
- Neurodiagnostic and Neurointerventional Division, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivier Brina
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Antonia Neels
- Center for X-Ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| | - Isabel Wanke
- Division of Neuroradiology, Klinik Hirslanden, Zurich, Switzerland; Swiss Neuroradiology Institute, Zurich, Switzerland; Division of Neuroradiology, University of Essen, Essen, Germany
| | - Karl-Olof Lövblad
- Division of Diagnostic and Interventional Neuroradiology, HUG Geneva University Hospitals, Geneva, Switzerland; Neurodiagnostic and Neurointerventional Division, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|