1
|
Zhang H, Zhang X, Chai Y, Wang Y, Zhang J, Chen X. Astrocyte-mediated inflammatory responses in traumatic brain injury: mechanisms and potential interventions. Front Immunol 2025; 16:1584577. [PMID: 40406119 PMCID: PMC12094960 DOI: 10.3389/fimmu.2025.1584577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Astrocytes play a pivotal role in the inflammatory response triggered by traumatic brain injury (TBI). They are not only involved in the initial inflammatory response following injury but also significantly contribute to Astrocyte activation and inflammasome release are key processes in the pathophysiology of TBI, significantly affecting the progression of secondary injury and long-term outcomes. This comprehensive review explores the complex triggering mechanisms of astrocyte activation following TBI, the intricate pathways controlling the release of inflammasomes from activated astrocytes, and the subsequent neuroinflammatory cascade and its multifaceted roles after injury. The exploration of these processes not only deepens our understanding of the neuroinflammatory cascade but also highlights the potential of astrocytes as critical therapeutic targets for TBI interventions. We then evaluate cutting-edge research aimed at targeted therapeutic approaches to modulate pro-inflammatory astrocytes and discuss emerging pharmacological interventions and their efficacy in preclinical models. Given that there has yet to be a relevant review elucidating the specific intracellular mechanisms targeting astrocyte release of inflammatory substances, this review aims to provide a nuanced understanding of astrocyte-mediated neuroinflammation in TBI and elucidate promising avenues for therapeutic interventions that could fundamentally change TBI management and improve patient outcomes. The development of secondary brain injury and long-term neurological sequelae. By releasing a variety of cytokines and chemokines, astrocytes regulate neuroinflammation, thereby influencing the survival and function of surrounding cells. In recent years, researchers have concentrated their efforts on elucidating the signaling crosstalk between astrocytes and other cells under various conditions, while exploring potential therapeutic interventions targeting these cells. This paper highlights the specific mechanisms by which astrocytes produce inflammatory mediators during the acute phase post-TBI, including their roles in inflammatory signaling, blood-brain barrier integrity, and neuronal protection. Additionally, we discuss current preclinical and clinical intervention strategies targeting astrocytes and their potential to mitigate neurological damage and enhance recovery following TBI. Finally, we explore the feasibility of pharmacologically assessing astrocyte activity post-TBI as a biomarker for predicting acute-phase neuroinflammatory changes.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Yuhua Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
2
|
Zhou Q, Fang Q, Zhang C, Liu W, Sun Y. BDNF-GABA signaling in astrocytes: enhancing neural repair after SCI through MSC therapies. Spinal Cord 2025; 63:263-269. [PMID: 40229538 DOI: 10.1038/s41393-025-01077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
STUDY DESIGN An integrated bioinformatics data study. OBJECTIVE This study, through bioinformatics analysis, aims to map the landscape of astrocytes, explore key signaling pathways, and uncover molecular mechanisms that support SCI recovery facilitated by MSCs and iPSCs. SETTING Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. METHODS We performed a bioinformatics analysis of single-cell transcriptomes (scRNA-seq), spatial transcriptomics, and bulk RNA-seq data sourced from Gene Expression Omnibus (GEO) datasets. The data processing involved R packages like "Seurat," "DESeq2," and "WGCNA." For pathway enrichment, we used Gene Set Enrichment Analysis (GSEA) and the Enrichr web server. RESULTS Single-cell and spatial transcriptomic analysis revealed notable changes in the astrocyte landscape after SCI, highlighting a significant disruption in astrocyte populations within the injured region. Findings suggest that BDNF regulation of GABA neurotransmission and GABA receptor signaling in astrocytes plays a key role in promoting neuronal regeneration. Additionally, hUC-MSCs were found to enhance neural repair by activating BDNF-regulated GABA signaling of astrocytes. A promising alternative involves iPS-derived MSCs, which have shown potential to boost neural regeneration through BDNF, GABA, and GABA receptor signaling pathways of astrocytes. CONCLUSIONS In summary, SCI disrupts astrocyte populations, impacting their ability to support neural repair. BDNF-regulated GABA signaling in astrocytes is essential for neuron regeneration. Both hUC-MSCs and iPS-derived MSCs show promise in enhancing neural recovery by activating these pathways, offering potential new therapeutic options for SCI.
Collapse
Affiliation(s)
- Qingsheng Zhou
- Department of Spine Surgery, Yantaishan Hospital, Binzhou Medical University, 10087 Science and Technology Avenue, Yantai, Shandong, 264003, P. R. China
| | - Qiongxuan Fang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Chunming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, P. R. China
| | - Wei Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, P. R. China
| | - Yifeng Sun
- Orthopaedic and Sports Medicine Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing,102218, P. R. China.
| |
Collapse
|
3
|
Campos J, Palha AT, Fernandes LS, Cibrão JR, Pinho TS, Serra SC, Silva NA, Michael-Titus AT, Salgado AJ. Modeling Spinal Cord Injury in a Dish with Hyperosmotic Stress: Population-Specific Effects and the Modulatory Role of Mesenchymal Stromal Cell Secretome. Int J Mol Sci 2025; 26:3298. [PMID: 40244122 PMCID: PMC11989751 DOI: 10.3390/ijms26073298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Innovations in spinal cord injury (SCI) models are crucial for developing effective therapies. This study introduces a novel in vitro SCI model using cultures of primary mixed spinal cord cells from rat pups, featuring key spinal cord cell types. This model offers distinct advantages in terms of feasibility, reproducibility, and cost-effectiveness, requiring only basic cell culture equipment. Following hyperosmotic stress via sorbitol treatment, the model recapitulated SCI pathophysiological hallmarks, with a 65% reduction in cell viability and gradual cell death over 48 h, making it ideal for evaluating neuroprotective agents. Notably, the human adipose tissue stem cell (hASC) secretome provided significant protection: it preserved metabolic viability, reduced β amyloid precursor protein (β-APP) expression in surviving neurons, and modulated the shift in the astrocytic morphotype. A transcriptomic profile of the effect of the hASC secretome treatment showed significant functional enrichments related to cell proliferation and cycle progression pathways. In addition to supporting the use of the hASC secretome as a therapy for SCI, this study is the first to use sorbitol as a hyperosmolar stressor to recapitulate key aspects of SCI pathophysiology. Thereby, this model can be used as a promising platform for evaluating therapeutic agents targeting neuroprotection and neuroregeneration, offering outputs related to cell death, neuronal stress, and protection, as well as induction of glial reactivity.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Ana T. Palha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Luís S. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Tiffany S. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (J.C.); (A.T.P.); (L.S.F.); (J.R.C.); (T.S.P.); (S.C.S.); (N.A.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimaraes, Portugal
| |
Collapse
|
4
|
Sámano C, Mazzone GL. The role of astrocytes response triggered by hyperglycaemia during spinal cord injury. Arch Physiol Biochem 2024; 130:724-741. [PMID: 37798949 DOI: 10.1080/13813455.2023.2264538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE This manuscript aimed to provide a comprehensive overview of the physiological, molecular, and cellular mechanisms triggered by reactive astrocytes (RA) in the context of spinal cord injury (SCI), with a particular focus on cases involving hyperglycaemia. METHODS The compilation of articles related to astrocyte responses in neuropathological conditions, with a specific emphasis on those related to SCI and hyperglycaemia, was conducted by searching through databases including Science Direct, Web of Science, and PubMed. RESULTS AND CONCLUSIONS This article explores the dual role of astrocytes in both neurophysiological and neurodegenerative conditions within the central nervous system (CNS). In the aftermath of SCI and hyperglycaemia, astrocytes undergo a transformation into RA, adopting a distinct phenotype. While there are currently no approved therapies for SCI, various therapeutic strategies have been proposed to alleviate the detrimental effects of RAs following SCI and hyperglycemia. These strategies show promising potential in the treatment of SCI and its likely comorbidities.
Collapse
Affiliation(s)
- C Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa (UAM-C), Ciudad de México, México
| | - G L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina
- Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
5
|
Nourbakhsh A, Takawira C, Barras E, Hampton C, Carossino M, Nguyen K, Gaschen L, Lopez MJ. A novel reconstruction model for thoracic spinal cord injury in swine. PLoS One 2024; 19:e0308637. [PMID: 39325721 PMCID: PMC11426471 DOI: 10.1371/journal.pone.0308637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/25/2024] [Indexed: 09/28/2024] Open
Abstract
Spinal cord (SC) reconstruction (process to reestablish the severed neural continuity at the injury site) may provide better recovery from blunt SC injury (SCI). A miniature swine model of blunt SC compression was used to test the hypothesis that reconstruction of the SC with sural nerve in combination with surgical decompression and stabilization improves functional, macro- and microstructural recovery compared to decompression and stabilization alone. Following blunt T9-T11 SC compression injury, five adult Yucatan gilts randomly received laminectomy and polyethylene glycol (as fusogen) with (n = 3) or without (n = 2) sural nerve graft SC reconstruction. Fusogens are a heterogeneous collection of chemicals that fuse the axon membrane and are currently used to augment epineural coaptation during peripheral nerve graft reconstruction. Outcome measures of recovery included weekly sensory and motor assessments, various measurements obtained from computed tomography (CT) myelograms up to 12 weeks after injury Measurements from postmortem magnetic resonance imaging (MRI) and results from spinal cord histology performed 12 weeks after injury were also reported. Vertebral canal (VC), SC and dural sac (DS) dimensions and areas were quantified on 2-D CT images adjacent to the injury. Effort to stand and response to physical manipulation improved 7 and 9 weeks and 9 and 10 weeks, respectively, after injury in the reconstruction group. Myelogram measures indicated greater T13-T14 VC, smaller SC, and smaller DS dimensions in the reconstruction cohort, and increased DS area increased DS/VC area ratio, and higher contrast migration over time. Spinal cord continuity was evident in 2 gilts in the reconstruction cohort with CT and MRI imaging. At the SCI, microstructural alterations included axonal loss and glial scarring. Better functional outcomes were observed in subjects treated with sural nerve SC reconstruction. Study results support the use of this adult swine model of blunt SCI. Long-term studies with different nerve grafts or fusogens are required to expand upon these findings.
Collapse
Affiliation(s)
- Ali Nourbakhsh
- OrthoAtlanta, Stockbridge, Georgia, United States of America
| | - Catherine Takawira
- Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Elise Barras
- University of Florida, Gainesville, Florida, United States of America
| | - Chiara Hampton
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Mariano Carossino
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Khoivu Nguyen
- Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Lorrie Gaschen
- Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - Mandi J Lopez
- Department of Veterinary Clinical Science, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
6
|
Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration. Int J Mol Sci 2024; 25:5863. [PMID: 38892052 PMCID: PMC11172915 DOI: 10.3390/ijms25115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Burcak Yavuz
- Vocational School of Health Services, Altinbas University, 34147 Istanbul, Turkey;
| | - Esra Cansever Mutlu
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Besim Ben-Nissan
- Translational Biomaterials and Medicine Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| | - Artemis Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
7
|
Schreiner TG, Schreiner OD, Ciobanu RC. Spinal Cord Injury Management Based on Microglia-Targeting Therapies. J Clin Med 2024; 13:2773. [PMID: 38792314 PMCID: PMC11122315 DOI: 10.3390/jcm13102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Spinal cord injury is a complicated medical condition both from the clinician's point of view in terms of management and from the patient's perspective in terms of unsatisfactory recovery. Depending on the severity, this disorder can be devastating despite the rapid and appropriate use of modern imaging techniques and convenient surgical spinal cord decompression and stabilization. In this context, there is a mandatory need for novel adjunctive therapeutic approaches to classical treatments to improve rehabilitation chances and clinical outcomes. This review offers a new and original perspective on therapies targeting the microglia, one of the most relevant immune cells implicated in spinal cord disorders. The first part of the manuscript reviews the anatomical and pathophysiological importance of the blood-spinal cord barrier components, including the role of microglia in post-acute neuroinflammation. Subsequently, the authors present the emerging therapies based on microglia modulation, such as cytokines modulators, stem cell, microRNA, and nanoparticle-based treatments that could positively impact spinal cord injury management. Finally, future perspectives and challenges are also highlighted based on the ongoing clinical trials related to medications targeting microglia.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Department of Medical Specialties III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- First Neurology Clinic, “Prof. Dr. N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania;
| | - Oliver Daniel Schreiner
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania;
- Medical Oncology Department, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania;
| |
Collapse
|
8
|
Reyes C, Mokalled MH. Astrocyte-Neuron Interactions in Spinal Cord Injury. ADVANCES IN NEUROBIOLOGY 2024; 39:213-231. [PMID: 39190077 PMCID: PMC11684398 DOI: 10.1007/978-3-031-64839-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Spinal cord injuries cause irreversible loss of sensory and motor functions. In mammals, intrinsic and extrinsic inhibitions of neuronal regeneration obstruct neural repair after spinal cord injury. Although astrocytes have been involved in a growing list of vital homeostatic functions in the nervous system, their roles after injury have fascinated and puzzled scientists for decades. Astrocytes undergo long-lasting morphological and functional changes after injury, referred to as reactive astrogliosis. Although reactive astrogliosis is required to contain spinal cord lesions and restore the blood-spinal cord barrier, reactive astrocytes have detrimental effects that inhibit neuronal repair and remyelination. Intriguingly, elevated regenerative capacity is preserved in some non-mammalian vertebrates, where astrocyte-like glial cells display exclusively pro-regenerative effects after injury. A detailed molecular and phenotypic catalog of the continuum of astrocyte reactivity states is an essential first step toward the development of glial cell manipulations for spinal cord repair.
Collapse
Affiliation(s)
- Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Shumilov K, Xiao S, Ni A, Celorrio M, Friess SH. Recombinant Erythropoietin Induces Oligodendrocyte Progenitor Cell Proliferation After Traumatic Brain Injury and Delayed Hypoxemia. Neurotherapeutics 2023; 20:1859-1874. [PMID: 37768487 PMCID: PMC10684442 DOI: 10.1007/s13311-023-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) can result in axonal loss and demyelination, leading to persistent damage in the white matter. Demyelinated axons are vulnerable to pathologies related to an abnormal myelin structure that expose neurons to further damage. Oligodendrocyte progenitor cells (OPCs) mediate remyelination after recruitment to the injury site. Often this process is inefficient due to inadequate OPC proliferation. To date, no effective treatments are currently available to stimulate OPC proliferation in TBI. Recombinant human erythropoietin (rhEPO) is a pleiotropic neuroprotective cytokine, and its receptor is present in all stages of oligodendroglial lineage cell differentiation. Therefore, we hypothesized that rhEPO administration would enhance remyelination after TBI through the modulation of OPC response. Utilizing a murine model of controlled cortical impact and a primary OPC culture in vitro model, we characterized the impact of rhEPO on remyelination and proliferation of oligodendrocyte lineage cells. Myelin black gold II staining of the peri-contusional corpus callosum revealed an increase in myelinated area in association with an increase in BrdU-positive oligodendrocytes in injured mice treated with rhEPO. Furthermore, morphological analysis of OPCs showed a decrease in process length in rhEPO-treated animals. RhEPO treatment increased OPC proliferation after in vitro CSPG exposure. Erythropoietin receptor (EPOr) gene knockdown using siRNA prevented rhEPO-induced OPC proliferation, demonstrating that the rhEPO effect on OPC response is EPOr activation dependent. Together, our findings demonstrate that rhEPO administration may promote myelination by increasing oligodendrocyte lineage cell proliferation after TBI.
Collapse
Affiliation(s)
- Kirill Shumilov
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA
| | - Sophia Xiao
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA
| | - Allen Ni
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA
| | - Marta Celorrio
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA
| | - Stuart H Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA.
| |
Collapse
|
10
|
Xu Y, Zhu ZH, Xu X, Sun HT, Zheng HM, Zhang JL, Wang HH, Fang JW, Liu YZ, Huang LL, Song ZW, Liu JB. Neuron-Derived Exosomes Promote the Recovery of Spinal Cord Injury by Modulating Nerve Cells in the Cellular Microenvironment of the Lesion Area. Mol Neurobiol 2023:10.1007/s12035-023-03341-8. [PMID: 37106222 DOI: 10.1007/s12035-023-03341-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
During spinal cord injury (SCI), the homeostasis of the cellular microenvironment in the injured area is seriously disrupted, which makes it extremely difficult for injured neurons with regenerative ability to repair, emphasizing the importance of restoring the cellular microenvironment at the injury site. Neurons interact closely with other nerve cells in the central nervous system (CNS) and regulate these cells. However, the specific mechanisms by which neurons modulate the cellular microenvironment remain unclear. Exosomes were isolated from the primary neurons, and their effects on astrocytes, microglia, oligodendrocyte progenitor cells (OPCs), neurons, and neural stem cells were investigated by quantifying the expression of related proteins and mRNA. A mouse SCI model was established, and neuron-derived exosomes were injected into the mice by the caudal vein to observe the recovery of motor function in mice and the changes in the nerve cells in the lesion area. Neuron-derived exosomes could reverse the activation of microglia and astrocytes and promote the maturation of OPCs in vivo and in vitro. In addition, neuron-derived exosomes promoted neurite outgrowth of neurons and the differentiation of neural stem cells into neurons. Moreover, our experiments showed that neuron-derived exosomes enhanced motor function recovery and nerve regeneration in mice with SCI. Our findings highlight that neuron-derived exosomes could promote the repair of the injured spinal cord by regulating the cellular microenvironment of neurons and could be a promising treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yi Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zheng-Huan Zhu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hai-Tao Sun
- Department of Spinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hong-Ming Zheng
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jin-Long Zhang
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hong-Hai Wang
- Department of Orthopedics, The NO.2 People's Hospital of Fuyang, Fuyang, China
| | - Jia-Wei Fang
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ya-Zheng Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lin-Ling Huang
- National Engineer Laboratory for Modern Silk, College of Textile and Clothing Engineer, Soochow University, Suzhou, China
| | - Zhi-Wen Song
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Jin-Bo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
11
|
García E, Sánchez-Noriega S, González-Pacheco G, González-Vázquez AN, Ibarra A, Rodríguez-Barrera R. Recent advances in the combination of cellular therapy with stem cells and nanoparticles after a spinal cord injury. Front Neurol 2023; 14:1127878. [PMID: 37181563 PMCID: PMC10169723 DOI: 10.3389/fneur.2023.1127878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 05/16/2023] Open
Abstract
Background Currently, combined therapies could help to reduce long-term sequelae of spinal cord injury (SCI); stem cell therapy at the site of injury in combination with other therapies has shown very promising results that can be transferred to the clinical field. Nanoparticles (NPs) are versatile technologies with applications to medical research for treatments of SCI since they could deliver therapeutic molecules to the target tissue and may help to reduce the side effects of non-targeted therapies. This article's purpose is to analyze and concisely describe the diverse cellular therapies in combination with NPs and their regenerative effect after SCI. Methods We reviewed the literature related to combinatory therapy for motor impairment following SCI that has been published by Web of Science, Scopus, EBSCO host, and PubMed databases. The research covers the databases from 2001 to December 2022. Result Animal models of SCI have shown that the combination of NPs plus stem cells has a positive impact on neuroprotection and neuroregeneration. Further research is required to better understand the effects and benefits of SCI on a clinical level; therefore, it is necessary to find and select the most effective molecules that are capable of exacerbating the neurorestorative effects of the different stem cells and then try them out on patients after SCI. On the other hand, we consider that synthetic polymers such as poly [lactic-co-glycolic acid] (PLGA) could be a candidate for the design of the first therapeutic strategy that combines NPs with stem cells in patients with SCI. The reasons for the selection are that PLGA has shown important advantages over other NPs, such as being biodegradable, having low toxicity levels, and high biocompatibility; In addition, researchers could control the release time and the biodegradation kinetics, and most importantly, it could be used as NMs on other clinical pathologies (12 studies on www.clinicaltrials.gov) and has been approved by the Federal Food, Drug, and Cosmetic Act (FDA). Conclusion The use of cellular therapy and NPs may be a worthwhile alternative for SCI therapy; however, it is expected that the data obtained from interventions after SCI reflect an important variability of molecules combined with NPs. Therefore, it is necessary to properly define the limits of this research to be able to continue to work on the same line. Consequently, the selection of a specific therapeutic molecule and type of NPs plus stem cells are crucial to evaluate its application in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan de Degollado, CP, Mexico
| |
Collapse
|
12
|
Tilley DM, Vallejo R, Vetri F, Platt DC, Cedeño DL. Regulation of Expression of Extracellular Matrix Proteins by Differential Target Multiplexed Spinal Cord Stimulation (SCS) and Traditional Low-Rate SCS in a Rat Nerve Injury Model. BIOLOGY 2023; 12:biology12040537. [PMID: 37106738 PMCID: PMC10135794 DOI: 10.3390/biology12040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
There is limited research on the association between the extracellular matrix (ECM) and chronic neuropathic pain. The objective of this study was twofold. Firstly, we aimed to assess changes in expression levels and the phosphorylation of ECM-related proteins due to the spared nerve injury (SNI) model of neuropathic pain. Secondly, two modalities of spinal cord stimulation (SCS) were compared for their ability to reverse the changes induced by the pain model back toward normal, non-injury levels. We identified 186 proteins as ECM-related and as having significant changes in protein expression among at least one of the four experimental groups. Of the two SCS treatments, the differential target multiplexed programming (DTMP) approach reversed expression levels of 83% of proteins affected by the pain model back to levels seen in uninjured animals, whereas a low-rate (LR-SCS) approach reversed 67%. There were 93 ECM-related proteins identified in the phosphoproteomic dataset, having a combined 883 phosphorylated isoforms. DTMP back-regulated 76% of phosphoproteins affected by the pain model back toward levels found in uninjured animals, whereas LR-SCS back-regulated 58%. This study expands our knowledge of ECM-related proteins responding to a neuropathic pain model as well as providing a better perspective on the mechanism of action of SCS therapy.
Collapse
Affiliation(s)
- Dana M. Tilley
- Research and Development, SGX Medical, Bloomington, IL 61704, USA
| | - Ricardo Vallejo
- Research and Development, SGX Medical, Bloomington, IL 61704, USA
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL 61701, USA
| | - Francesco Vetri
- Pain Management, National Spine and Pain Centers, Bloomington, IL 61704, USA
| | - David C. Platt
- Research and Development, SGX Medical, Bloomington, IL 61704, USA
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL 61701, USA
| | - David L. Cedeño
- Research and Development, SGX Medical, Bloomington, IL 61704, USA
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL 61701, USA
| |
Collapse
|
13
|
Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023; 12:cells12060853. [PMID: 36980193 PMCID: PMC10046908 DOI: 10.3390/cells12060853] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.
Collapse
|
14
|
Willman J, Willman M, Reddy R, Fusco A, Sriram S, Mehkri Y, Charles J, Goeckeritz J, Lucke‐Wold B. Gut microbiome and neurosurgery: Implications for treatment. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2. [PMID: 36268259 PMCID: PMC9577538 DOI: 10.1002/ctd2.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
AbstractIntroductionThe aim of this review is to summarize the current understanding of the gut‐brain axis (GBA), its impact on neurosurgery, and its implications for future treatment.BackgroundAn abundance of research has established the existence of a collection of pathways between the gut microbiome and the central nervous system (CNS), commonly known as the GBA. Complicating this relationship, the gut microbiome bacterial diversity appears to change with age, antibiotic exposure and a number of external and internal factors.MethodsIn this paper, we present the current understanding of the key protective and deleterious roles the gut microbiome plays in the pathogenesis of several common neurosurgical concerns.ResultsSpecifically, we examine how spinal cord injury, traumatic brain injury and stroke may cause gut microbial dysbiosis. Furthermore, this link appears to be bidirectional as gut dysbiosis contributes to secondary CNS injury in each of these ailment settings. This toxic cycle may be broken, and the future secondary damage rescued by timely, therapeutic, gut microbiome modification. In addition, a robust gut microbiome appears to improve outcomes in brain tumour treatment. There are several primary routes by which microbiome dysbiosis may be ameliorated, including faecal microbiota transplant, oral probiotics, bacteriophages, genetic modification of gut microbiota and vagus nerve stimulation.ConclusionThe GBA represents an important component of patient care in the field of neurosurgery. Future research may illuminate ideal methods of therapeutic microbiome modulation in distinct pathogenic settings.
Collapse
Affiliation(s)
- Jonathan Willman
- College of Medicine University of Florida Gainesville Florida USA
| | - Matthew Willman
- College of Medicine University of Florida Gainesville Florida USA
| | - Ramya Reddy
- College of Medicine University of Florida Gainesville Florida USA
| | - Anna Fusco
- College of Medicine University of Florida Gainesville Florida USA
| | - Sai Sriram
- College of Medicine University of Florida Gainesville Florida USA
| | - Yusuf Mehkri
- College of Medicine University of Florida Gainesville Florida USA
| | - Jude Charles
- Department of Neurosurgery Jackson Memorial Hospital Miami Florida USA
| | - Joel Goeckeritz
- College of Medicine University of Florida Gainesville Florida USA
| | - Brandon Lucke‐Wold
- Department of Neurosurgery University of Florida Gainesville Florida USA
| |
Collapse
|