2
|
Hanin A, Zhang L, Huttner AJ, Plu I, Mathon B, Bielle F, Navarro V, Hirsch LJ, Hafler DA. Single-Cell Transcriptomic Analyses of Brain Parenchyma in Patients With New-Onset Refractory Status Epilepticus (NORSE). NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200259. [PMID: 38810181 PMCID: PMC11139018 DOI: 10.1212/nxi.0000000000200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/25/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND OBJECTIVES New-onset refractory status epilepticus (NORSE) occurs in previously healthy children or adults, often followed by refractory epilepsy and poor outcomes. The mechanisms that transform a normal brain into an epileptic one capable of seizing for prolonged periods despite treatment remain unclear. Nonetheless, several pieces of evidence suggest that immune dysregulation could contribute to hyperexcitability and modulate NORSE sequelae. METHODS We used single-nucleus RNA sequencing to delineate the composition and phenotypic states of the CNS of 4 patients with NORSE, to better understand the relationship between hyperexcitability and immune disturbances. We compared them with 4 patients with chronic temporal lobe epilepsy (TLE) and 2 controls with no known neurologic disorder. RESULTS Patients with NORSE and TLE exhibited a significantly higher proportion of excitatory neurons compared with controls, with no discernible difference in inhibitory GABAergic neurons. When examining the ratio between excitatory neurons and GABAergic neurons for each patient individually, we observed a higher ratio in patients with acute NORSE or TLE compared with controls. Furthermore, a negative correlation was found between the ratio of excitatory to GABAergic neurons and the proportion of GABAergic neurons. The ratio between excitatory neurons and GABAergic neurons correlated with the proportion of resident or infiltrating macrophages, suggesting the influence of microglial reactivity on neuronal excitability. Both patients with NORSE and TLE exhibited increased expression of genes associated with microglia activation, phagocytic activity, and NLRP3 inflammasome activation. However, patients with NORSE had decreased expression of genes related to the downregulation of the inflammatory response, potentially explaining the severity of their presentation. Microglial activation in patients with NORSE also correlated with astrocyte reactivity, possibly leading to higher degrees of demyelination. DISCUSSION Our study sheds light on the complex cellular dynamics in NORSE, revealing the potential roles of microglia, infiltrating macrophages, and astrocytes in hyperexcitability and demyelination, offering potential avenues for future research targeting the identified pathways.
Collapse
Affiliation(s)
- Aurélie Hanin
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Le Zhang
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anita J Huttner
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Isabelle Plu
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Bertrand Mathon
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Franck Bielle
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Vincent Navarro
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lawrence J Hirsch
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - David A Hafler
- From the Departments of Neurology and Immunobiology (A.H., L.Z., D.A.H.); Comprehensive Epilepsy Center (A.H., L.J.H.), Department of Neurology, Yale University School of Medicine, New Haven, CT; Sorbonne Université (A.H., I.P., B.M., V.N.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP; AP-HP (A.H., V.N.), Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Pathology (A.J.H.), Yale University School of Medicine, New Haven, CT; AP-HP (I.P., F.B.), Department of Neuropathology, DMU Neurosciences; AP-HP (B.M.), Department of Neurosurgery, Hôpital de la Pitié-Salpêtrière; and Center of Reference for Rare Epilepsies (V.N.), EpiCare, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
4
|
Taube J, Witt JA, Grote A, Delev D, Enkirch J, Hattingen E, Becker AJ, Elger CE, Helmstaedter C. Preoperative and postoperative memory in epilepsy patients with 'gliosis only' versus hippocampal sclerosis: a matched case-control study. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329224. [PMID: 36008114 DOI: 10.1136/jnnp-2022-329224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Gliosis only (GO) and hippocampal sclerosis (HS) are distinct histopathological entities in mesial temporal lobe epilepsy. This study explores whether this distinction also exists on a functional level when evaluating pre- and postoperative memory. METHODS Using a retrospective matched case-control study design, we analysed verbal and visual memory performance in 49 patients with GO and 49 patients with HS before and one year after elective surgery. RESULTS Clinical differences were evident with a later age at seizure onset (18±12 vs 12±9 years) and fewer postoperative seizure-free patients in the GO group (63% vs 82%). Preoperatively, group and individual-level data demonstrated that memory impairments were less frequent, less severe and relatively non-specific in patients with GO compared with HS. Postoperatively, verbal memory declined in both groups, particularly after left-sided resections, with more significant losses in patients with GO. Factoring in floor effects, GO was also associated with more significant visual memory loss, particularly after left resections. CONCLUSIONS Compared with HS, GO is characterised by (1) a later onset of epilepsy, (2) less pronounced and more non-specific memory impairments before surgery, (3) a less successful surgical outcome and (4) a more significant memory decline after surgery. Overall, our results regarding cognition provide further evidence that GO and HS are distinct clinical entities. Functional integrity of the hippocampus appears higher in GO, as indicated by a better preoperative memory performance and worse memory outcome after surgery. The different risk-benefit ratios should be considered during presurgical patient counselling.
Collapse
Affiliation(s)
- Julia Taube
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | | - Alexander Grote
- Department of Neurosurgery, University of Marburg, Marburg, Germany
| | - Daniel Delev
- Clinic for Neurosurgery, University Medical Center Aachen, Aachen, Germany
| | - Jonas Enkirch
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Albert J Becker
- Institute of Neuropathology, Section for Translational Epilepsy Research, University of Bonn, Medical Faculty, Bonn, Germany
| | | | | |
Collapse
|