1
|
Hartman CJ, Mohamed AO, Shukla GS, Pero SC, Sun YJ, Rodríguez-Jimenez RS, Genovese NF, Kohler NM, Hemphill TR, Huang YH, Krag DN, Ackerman ME. Cancer therapy via neoepitope-specific monoclonal antibody cocktails. Cancer Immunol Immunother 2025; 74:231. [PMID: 40448719 DOI: 10.1007/s00262-025-04075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/30/2025] [Indexed: 06/02/2025]
Abstract
Cellular heterogeneity presents a significant challenge to cancer treatment. Antibody therapies targeting individual tumor-associated antigens can be extremely effective but are not suited for all patients and often fail against tumors with heterogeneous expression as tumor cells with low or no antigen expression escape targeting and develop resistance. Simultaneously targeting multiple tumor-specific proteins with multiple antibodies has the potential to overcome this barrier and improve efficacy, but relatively few widely expressed cancer-specific antigens are known. In contrast, neoepitopes, which arise from mutations unique to tumor cells, are considerably more abundant. However, since neoepitopes are not commonly shared between individuals, a patient-customized approach is necessary and motivates efforts to develop an efficient means to identify suitable target mutations and isolate neoepitope-specific monoclonal antibodies. Here, focusing on the latter goal, we use directed evolution in yeast and phage display systems to engineer antibodies from nonimmune, human antibody fragment libraries that are specific for neoepitopes previously reported in the B16F10 melanoma model. We demonstrate proof-of-concept for a pipeline that supports rapid isolation and functional enhancement of multiple neoepitope peptide-targeted monoclonal antibodies and demonstrate their robust binding to B16F10 cells and potent effector functions in vitro. These antibodies were combined and evaluated in vivo for anticancer activity in tumor-bearing mice, where they suppressed B16F10 tumor growth and prolonged survival. These findings emphasize the potential for clinical application of patient-customized antibody cocktails in the treatment of the many cancers poorly addressed by current therapies.
Collapse
Affiliation(s)
- Colin J Hartman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Asmaa O Mohamed
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Girja S Shukla
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Stephanie C Pero
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Yu-Jing Sun
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | | | - Nico M Kohler
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - David N Krag
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
- University of Vermont Medical Center, Burlington, VT, USA
- Moonshot Antibodies, Inc, Shelburne, VT, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA.
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
2
|
Tecedor L, Chen YH, Leib DE, Ranum PT, Keiser MS, Lewandowski BC, Carrell EM, Lysenko E, Huerta-Ocampo I, Arora S, Cheng C, Liu X, Davidson BL. An AAV variant selected through NHP screens robustly transduces the brain and drives secreted protein expression in NHPs and mice. Sci Transl Med 2025; 17:eadr2531. [PMID: 40367194 DOI: 10.1126/scitranslmed.adr2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/08/2024] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
Recent work has shown that prolonged expression of recombinant proteins after adeno-associated virus (AAV)-mediated delivery of gene therapy to long-lived, ventricle-lining ependymal cells can profoundly affect disease phenotypes in animal models of neurodegenerative diseases. Here, we performed in vivo screens of millions of peptide-modified capsid variants of AAV1, AAV2, and AAV9 parental serotypes in adult nonhuman primates (NHPs) to identify capsids with potent transduction of key brain tissues, including ependyma, after intracerebroventricular injection. Through these screens, we identified an AAV capsid, AAV-Ep+, with markedly increased potency in transducing ependymal cells and cerebral neurons in NHPs. AAV-Ep+'s potency was conserved in three species of NHP, two mouse strains, and human neurons derived from induced pluripotent stem cells. To apply AAV-Ep+ to the treatment of ceroid lipofuscinosis type 2 disease, a lysosomal storage disorder caused by loss-of-function mutations in tripeptidyl-peptidase 1 (TPP1), we used the capsid to package the human TPP1 transgene (AAV-Ep+.hTPP1) and delivered the construct by intracerebroventricular injection into mice lacking TPP1 activity. AAV-Ep+ provided robust and therapeutically relevant TPP1 protein concentrations in these mice, significantly improving tremor and life span. In NHPs, high cerebrospinal fluid (CSF) TPP1 concentrations were achieved after intracerebroventricular delivery of AAV-Ep+.hTPP1 at a total dose of 1 × 1012 viral genomes, which was more than 30× lower than previously reported doses in NHPs. These results suggest that AAV-Ep+ may be a potent vector for gene therapy applications where CSF protein expression is required.
Collapse
Affiliation(s)
- Luis Tecedor
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yong Hong Chen
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David E Leib
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Latus Bio, Philadelphia, PA 19104, USA
| | - Paul T Ranum
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Latus Bio, Philadelphia, PA 19104, USA
| | - Megan S Keiser
- Department of Neurological Surgery, NeuroTech Institute, Ohio State University, Columbus, OH 43210 USA
| | - Brian C Lewandowski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elli M Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elena Lysenko
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Icnelia Huerta-Ocampo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sakshi Arora
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Congsheng Cheng
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xueyuan Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Rosenn EH, Korlansky M, Benyaminpour S, Munarova V, Fox E, Shah D, Durham A, Less N, Pasinetti GM. Antibody immunotherapies for personalized opioid addiction treatment. J Pharmacol Exp Ther 2025; 392:103522. [PMID: 40112764 DOI: 10.1016/j.jpet.2025.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Approved therapies for managing opioid addiction involve intensive treatment regimens which remain both costly and ineffective. As pharmaceutical interventions have achieved variable success treating substance use disorders (SUD), alternative therapeutics must be considered. Antidrug antibodies induced by vaccination or introduced as monoclonal antibody formulations can neutralize or destroy opioids in circulation before they reach their central nervous system targets or act as enzymes to deactivate opioid receptors, preventing the physiologic and psychoactive effects of the substance. A lack of "reward" for those suffering from SUD has been shown to result in cessation of use and promote long-term abstinence. Decreased antibody production costs and the advent of novel gene therapies that stimulate in vivo production of monoclonal antibodies have renewed interest in this strategy. Furthermore, advances in understanding of SUD immunopathogenesis have revealed distinct mechanisms of neuroimmune dysregulation underlying the disorder. Beyond assisting with cessation of drug use, antibody therapies could treat or reverse pathophysiologic hallmarks that contribute to addiction and which could be the cause of chronic cognitive defects resulting from drug use. In this review, we synthesize key current literature regarding the efficacy of immunotherapies in managing opioid addiction and SUD. We will explore the neuropharmacology underlying these treatments by relating evidence from studies on the use of antibody therapeutics to counteract various drug behaviors and by drawing parallels to the similar immunopathology observed in neurodegenerative disorders. Finally, we will discuss the implications of novel immunization technologies and the application of computational methods in developing personalized addiction treatments. SIGNIFICANCE STATEMENT: Significant new evidence contributing to our understanding of substance use disorders has recently emerged leading to a paradigm shift concerning the role of immunology in the neuropathogenesis of opioid use disorder. Concurrently, immunotherapeutic technologies such as antibody therapeutics have advanced the capabilities regarding applications that take advantage of these key principles. This article reviews key antibody-based treatments being studied and highlights directions for further research that may contribute to the management of opioid use disorder.
Collapse
Affiliation(s)
- Eric H Rosenn
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | | | | | - Violet Munarova
- College of Osteopathic Medicine, Touro University, New York, New York
| | - Eryn Fox
- Department of Allergy and Immunology, Montefiore Medical Center-Albert Einstein College of Medicine, Bronx, New York, New York
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicole Less
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York.
| |
Collapse
|
4
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2025; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
5
|
Natale D, Holt M. Retro-Orbital Delivery of AAVs for CNS Wide Astrocyte Targeting. Methods Mol Biol 2025; 2896:13-31. [PMID: 40111594 DOI: 10.1007/978-1-0716-4366-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Viral vector-mediated astrocyte targeting in live mice is a popular and valuable method to investigate astrocyte function in the context of intact neural circuits and complex brain physiology. Targeted genetic manipulation and functional investigation of this cell population can be accomplished by utilizing cell type-specific promoters to drive adeno-associated virus (AAV)-mediated transgene expression specifically in astrocytes. Here, we provide a comprehensive protocol for non-invasive retro-orbital (RO) administration of blood-brain barrier (BBB)-crossing AAVs in neonatal and adult mice, such as AAV-PHP.B, AAV-PHP.eB, and AAV.CAP-B22, which results in central nervous system (CNS)-wide transduction. Key procedures outlined include the preparation of AAV solutions for injection, a modified two-handed injection technique for precise and consistent RO injections, and a training strategy to practice mock RO injections using non-toxic dyes. This protocol serves as a valuable resource for researchers interested in exploring the roles of astrocytes in brain functions and neurological disorders.
Collapse
Affiliation(s)
- Domenico Natale
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Leuven, Belgium.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Matthew Holt
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
6
|
Culkins C, Adomanis R, Phan N, Robinson B, Slaton E, Lothrop E, Chen Y, Kimmel BR. Unlocking the Gates: Therapeutic Agents for Noninvasive Drug Delivery Across the Blood-Brain Barrier. Mol Pharm 2024; 21:5430-5454. [PMID: 39324552 DOI: 10.1021/acs.molpharmaceut.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The blood-brain barrier (BBB) is a highly selective network of various cell types that acts as a filter between the blood and the brain parenchyma. Because of this, the BBB remains a major obstacle for drug delivery to the central nervous system (CNS). In recent years, there has been a focus on developing various modifiable platforms, such as monoclonal antibodies (mAbs), nanobodies (Nbs), peptides, and nanoparticles, as both therapeutic agents and carriers for targeted drug delivery to treat brain cancers and diseases. Methods for bypassing the BBB can be invasive or noninvasive. Invasive techniques, such as transient disruption of the BBB using low pulse electrical fields and intracerebroventricular infusion, lack specificity and have numerous safety concerns. In this review, we will focus on noninvasive transport mechanisms that offer high levels of biocompatibility, personalization, specificity and are regarded as generally safer than their invasive counterparts. Modifiable platforms can be designed to noninvasively traverse the BBB through one or more of the following pathways: passive diffusion through a physio-pathologically disrupted BBB, adsorptive-mediated transcytosis, receptor-mediated transcytosis, shuttle-mediated transcytosis, and somatic gene transfer. Through understanding the noninvasive pathways, new applications, including Chimeric Antigen Receptors T-cell (CAR-T) therapy, and approaches for drug delivery across the BBB are emerging.
Collapse
Affiliation(s)
- Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Roman Adomanis
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan Slaton
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Alexander E, Leong KW. Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years. J Nanobiotechnology 2024; 22:661. [PMID: 39455963 PMCID: PMC11515141 DOI: 10.1186/s12951-024-02900-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics. This potential was realized in 2018 with the approval of caplacizumab, the world's first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility. This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
8
|
Baum ML, Bartley CM. Human-derived monoclonal autoantibodies as interrogators of cellular proteotypes in the brain. Trends Neurosci 2024; 47:753-765. [PMID: 39242246 PMCID: PMC11656492 DOI: 10.1016/j.tins.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
A major aim of neuroscience is to identify and model the functional properties of neural cells whose dysfunction underlie neuropsychiatric illness. In this article, we propose that human-derived monoclonal autoantibodies (HD-mAbs) are well positioned to selectively target and manipulate neural subpopulations as defined by their protein expression; that is, cellular proteotypes. Recent technical advances allow for efficient cloning of autoantibodies from neuropsychiatric patients. These HD-mAbs can be introduced into animal models to gain biological and pathobiological insights about neural proteotypes of interest. Protein engineering can be used to modify, enhance, silence, or confer new functional properties to native HD-mAbs, thereby enhancing their versatility. Finally, we discuss the challenges and limitations confronting HD-mAbs as experimental research tools for neuroscience.
Collapse
Affiliation(s)
- Matthew L Baum
- Brigham and Women's Hospital, Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Department of Psychiatry, Boston, MA, USA
| | - Christopher M Bartley
- Translational Immunopsychiatry Unit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Hendrix E, Vande Vyver M, Holt M, Smolders I. Regulatory T cells as a possible new target in epilepsy? Epilepsia 2024; 65:2227-2237. [PMID: 38888867 DOI: 10.1111/epi.18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Epilepsy is a complex chronic brain disorder with diverse clinical features that can be caused by various triggering events, such as infections, head trauma, or stroke. During epileptogenesis, various abnormalities are observed, such as altered cellular homeostasis, imbalance of neurotransmitters, tissue changes, and the release of inflammatory mediators, which in combination lead to spontaneous recurrent seizures. Regulatory T cells (Tregs), a subtype of CD4+Foxp3+ T cells, best known for their key function in immune suppression, also seem to play a role in attenuating neurodegeneration and suppressing pathological inflammation in several brain disease states. Considering that epilepsy is also highly associated with neuronal damage and neuroinflammation, modulation of Tregs may be an interesting way to modify the disease course of epilepsy and needs further investigation. In this review, we will describe the currently available information on Tregs in epilepsy.
Collapse
Affiliation(s)
- Evelien Hendrix
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maxime Vande Vyver
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center of Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthew Holt
- Instituto de Investigação e Inovação Em Saúde, Porto, Portugal
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Glenn JD, Negash H, Henry W, Qian R, Liu Y, Danos O, Bruder JT, Karumuthil-Melethil S. The presence of CpGs in AAV gene therapy vectors induces a plasmacytoid dendritic cell-like population very early after administration. Cell Immunol 2024; 399-400:104823. [PMID: 38520831 DOI: 10.1016/j.cellimm.2024.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
AAV-mediated gene transfer is a promising platform still plagued by potential host-derived, antagonistic immune responses to therapeutic components. CpG-mediated TLR9 stimulation activates innate immune cells and leads to cognate T cell activation and suppression of transgene expression. Here, we demonstrate that CpG depletion increased expression of an antibody transgene product by 2-3-fold as early as 24 h post-vector administration in mice. No significant differences were noted in anti-transgene product/ anti-AAV capsid antibody production or cytotoxic gene induction. Instead, CpG depletion significantly reduced the presence of a pDC-like myeloid cell population, which was able to directly bind the antibody transgene product via Fc-FcγR interactions. Thus, we extend the mechanisms of TLR9-mediated antagonism of transgene expression in AAV gene therapy to include the actions of a previously unreported pDC-like cell population.
Collapse
Affiliation(s)
- Justin D Glenn
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA.
| | - Henos Negash
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - William Henry
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - Randolph Qian
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - Ye Liu
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - Olivier Danos
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | - Joseph T Bruder
- REGENXBIO Inc., 9804 Medical Center Drive, Rockville, MD 20850, USA
| | | |
Collapse
|
11
|
Kolesnik VV, Nurtdinov RF, Oloruntimehin ES, Karabelsky AV, Malogolovkin AS. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin Transl Med 2024; 14:e1607. [PMID: 38488469 PMCID: PMC10941601 DOI: 10.1002/ctm2.1607] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.
Collapse
Affiliation(s)
- Valeria V. Kolesnik
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ruslan F. Nurtdinov
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | - Ezekiel Sola Oloruntimehin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
| | | | - Alexander S. Malogolovkin
- Martsinovsky Institute of Medical ParasitologyTropical and Vector‐Borne Diseases, Sechenov UniversityMoscowRussia
- Center for Translational MedicineSirius University of Science and TechnologySochiRussia
| |
Collapse
|
12
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Kunz S, Durandy M, Seguin L, Feral CC. NANOBODY ® Molecule, a Giga Medical Tool in Nanodimensions. Int J Mol Sci 2023; 24:13229. [PMID: 37686035 PMCID: PMC10487883 DOI: 10.3390/ijms241713229] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Although antibodies remain the most widely used tool for biomedical research, antibody technology is not flawless. Innovative alternatives, such as Nanobody® molecules, were developed to address the shortcomings of conventional antibodies. Nanobody® molecules are antigen-binding variable-domain fragments derived from the heavy-chain-only antibodies of camelids (VHH) and combine the advantageous properties of small molecules and monoclonal antibodies. Nanobody® molecules present a small size (~15 kDa, 4 nm long and 2.5 nm wide), high solubility, stability, specificity, and affinity, ease of cloning, and thermal and chemical resistance. Recombinant production in microorganisms is cost-effective, and VHH are also building blocks for multidomain constructs. These unique features led to numerous applications in fundamental research, diagnostics, and therapy. Nanobody® molecules are employed as biomarker probes and, when fused to radioisotopes or fluorophores, represent ideal non-invasive in vivo imaging agents. They can be used as neutralizing agents, receptor-ligand antagonists, or in targeted vehicle-based drug therapy. As early as 2018, the first Nanobody®, Cablivi (caplacizumab), a single-domain antibody (sdAb) drug developed by French pharmaceutical giant Sanofi for the treatment of adult patients with acquired thrombocytopenic purpura (aTTP), was launched. Nanobody® compounds are ideal tools for further development in clinics for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Sarah Kunz
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
- Department of Oncology, Sanofi Research Center, 94400 Vitry-sur-Seine, France
| | - Manon Durandy
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| | - Laetitia Seguin
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| | - Chloe C. Feral
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| |
Collapse
|