1
|
Gong S, Wang P, Liao B, Zhao L, Wu N. Hyperbaric oxygen promotes both the proliferation and chemosensitization of glioblastoma cells by inhibiting HIF1α/HIF2α-ABCG2. Front Mol Neurosci 2025; 18:1584407. [PMID: 40370575 PMCID: PMC12075184 DOI: 10.3389/fnmol.2025.1584407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Hyperbaric oxygen enhances glioma chemosensitivity, but the mechanism remains unclear. Hypoxia is common in gliomas, and as the main effector molecules of hypoxia, HIF1α and HIF2α promote the malignant progression by inhibiting cell apoptosis and maintaining stemness. ABCG2 is a marker protein of tumor stem cells and drug efflux transporter protein. This study aims to reveal the detailed mechanism of hyperbaric oxygen promote both proliferation and chemosensitization. Methods Under hyperbaric oxygen and hypoxic conditions, we investigated the differences in cell cycle, proliferation, apoptosis, LDH release, and the expression of proteins and mRNA. We also conducted studies on transcriptional regulation and performed in vivo experiments. Results It revealed that under hypoxic conditions, HIF1α, HIF2α, and ABCG2 are highly expressed, and both HIF1α and HIF2α promote ABCG2 expression. After hyperbaric oxygen treatment, the expression of HIF1α, HIF2α, and ABCG2 decreased, both cell proliferation and chemosensitivity increased. After knocking out HIF1α and HIF2α, cell proliferation and chemosensitivity increased, but the expression of stem cell marker proteins decreased. ChIP-qPCR revealed that HIF1α and HIF2α target the ABCG2 promoter. Gain-and loss-of-function experiments suggested that ABCG2 can promote the expression of stem cell marker proteins, inhibit cell apoptosis, and promote tumor progression. Conclusion This study confirmed that hyperbaric oxygen can inhibit ABCG2 expression through HIF1α and HIF2α, thereby promoting the proliferation and chemosensitization of gliomas.
Collapse
Affiliation(s)
| | | | | | | | - Nan Wu
- Department of Neurosurgery, Chongqing Research Center for Glioma Precision Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Klement RJ. Cancer as a global health crisis with deep evolutionary roots. GLOBAL TRANSITIONS 2024; 6:45-65. [DOI: 10.1016/j.glt.2024.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Alpuim Costa D, Gonçalves-Nobre JG, Sampaio-Alves M, Guerra N, Arana Ribeiro J, Espiney Amaro C. Hyperbaric oxygen therapy as a complementary treatment in neuroblastoma - a narrative review. Front Oncol 2023; 13:1254322. [PMID: 37823059 PMCID: PMC10562625 DOI: 10.3389/fonc.2023.1254322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Neuroblastoma is the most frequently diagnosed cancer during the first year of life. This neoplasm originates from neural crest cells derived from the sympathetic nervous system, adrenal medulla, or paraspinal ganglia. The clinical presentation can vary from an asymptomatic mass to symptoms resulting from local invasion and/or spread of distant disease spread. The natural history of neuroblastoma is highly variable, ranging from relatively indolent biological behavior to a high-risk clinical phenotype with a dismal prognosis. Age, stage, and biological features are important prognostic risk stratification and treatment assignment prognostic factors. The multimodal therapy approach includes myeloablative chemotherapy, radiotherapy, immunotherapy, and aggressive surgical resection. Hyperbaric oxygen therapy (HBOT) has been proposed as a complementary measure to overcome tumor hypoxia, which is considered one of the hallmarks of this cancer treatment resistance. This article aims to review the relevant literature on the neuroblastoma pathophysiology, clinical presentation, and different biological and genetic profiles, and to discuss its management, focusing on HBOT.
Collapse
Affiliation(s)
- Diogo Alpuim Costa
- Hematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Portuguese Navy, Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais Dr. José de Almeida, Alcabideche, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas da Universidade NOVA de Lisboa, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J. Guilherme Gonçalves-Nobre
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Hospital Garcia de Orta (HGO), E.P.E., Almada, Portugal
- Instituto de Saúde Ambiental (ISAMB), Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- Instituto de Medicina Preventiva & Saúde Pública (IMP&SP), Faculty of Medicine, University of Lisbon, Lisboa, Portugal
- PTSurg – Portuguese Surgical Research Collaborative, Lisboa, Portugal PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
| | - Mafalda Sampaio-Alves
- PTSurg – Portuguese Surgical Research Collaborative, Lisboa, Portugal PTSurg – Portuguese Surgical Research Collaborative, Lisbon, Portugal
- Faculty of Medicine, University of Porto, Oporto, Portugal
| | - Nuno Guerra
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Portuguese Navy, Lisbon, Portugal
| | | | - Carla Espiney Amaro
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Portuguese Navy, Lisbon, Portugal
| |
Collapse
|
4
|
Moreira Monteiro A, Alpuim Costa D, Mareco V, Espiney Amaro C. The effectiveness of hyperbaric oxygen therapy for managing radiation-induced proctitis - results of a 10-year retrospective cohort study. Front Oncol 2023; 13:1235237. [PMID: 37637048 PMCID: PMC10450915 DOI: 10.3389/fonc.2023.1235237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Despite modern radiotherapy (RT) techniques, radiation-induced proctitis (RIP) remains a significant complication of RT for pelvic organ malignancies. Over the last decades, an enormous therapeutic armamentarium has been considered in RIP, including hyperbaric oxygen therapy (HBOT). However, the evidence regarding the impact of HBOT on RIP is conflicting. This study aims to evaluate the effectiveness and safety of HBOT in the treatment of RIP. Methods Ten-year (2013-2023) retrospective analysis of all consecutive patients with RIP treated with HBOT at Centro de Medicina Subaquática e Hiperbárica (CMSH) (Armed Forces Hospital - Lisbon, Portugal). Patients were exposed to 100% oxygen at 2.5 ATA, in a multiplace first-class hyperbaric chamber, for 70-min periods, once daily, five times per week. Fisher's exact test was performed using SPSS (version 23.0); p<0.05 was accepted as statistically significant. Results Of a total of 151 patients with RIP, 88 were included in the final analysis, of whom 38.6% evidenced other concurrent radiation-induced soft tissue lesions. The most reported primary pelvic tumor treated with RT was prostate cancer (77.3%), followed by cervical cancer (10.2%). Hematochezia was the most observed clinical manifestation (86.4%). After a median of 60 HBOT sessions (interquartile range [IQR]: 40-87.5), 62.5% and 31.8% of patients achieved a clinical complete and partial response, respectively, with a hematochezia resolution rate of 93.7% (complete or partial). While partial and complete responses require fewer than 70 sessions of HBOT in terms of overall RIP symptoms (p=0.069), isolated hematochezia tends to require at least 70 sessions (p=0.075). Individuals with at least two concurrent late radiation tissue injuries were associated with a complete response to HBOT (p=0.029). Only about 5.7% of patients did not respond to the treatment. Eighteen patients (20.5%) developed reversible ear barotrauma. The number of HBOT sessions was a predictor of HBOT side effects (odds ratio: 1.010; 95% confidence interval, 1.000-1.020; p=0.047). Conclusion The HBOT proved to be an effective and safe treatment for RIP refractory to medical and/or endoscopic treatments. This real-world evidence study adds value to published data on the management of RIP with HBOT.
Collapse
Affiliation(s)
| | - Diogo Alpuim Costa
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Armed Forces Hospital, Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais Dr. José de Almeida, Alcabideche, Portugal
- Hematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
| | - Virgínia Mareco
- Radiotherapy Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Carla Espiney Amaro
- Centro de Medicina Subaquática e Hiperbárica (CMSH), Armed Forces Hospital, Lisbon, Portugal
| |
Collapse
|
5
|
Dzhalilova DS, Zolotova NA, Mkhitarov VA, Kosyreva AM, Tsvetkov IS, Khalansky AS, Alekseeva AI, Fatkhudinov TH, Makarova OV. Morphological and molecular-biological features of glioblastoma progression in tolerant and susceptible to hypoxia Wistar rats. Sci Rep 2023; 13:12694. [PMID: 37542119 PMCID: PMC10403616 DOI: 10.1038/s41598-023-39914-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
Hypoxia is a major pathogenetic factor in many cancers. Individual resistance to suboptimal oxygen availability is subject to broad variation and its possible role in tumorigenesis remains underexplored. This study aimed at specific characterization of glioblastoma progression in male tolerant and susceptible to hypoxia Wistar rats. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 13), 'normal', and 'susceptible to hypoxia' (n = 24). The 'normal' group was excluded from subsequent experiments. One month later, the animals underwent inoculation with rat glioblastoma 101.8 followed by monitoring of survival, body weight dynamics and neurological symptoms. The animals were sacrificed on post-inoculation days 11 (subgroup 1) and 15 (subgroup 2). Relative vessels number, necrosis areas and Ki-67 index were assessed microscopically; tumor volumes were determined by 3D reconstruction from histological images; serum levels of HIF-1α, IL-1β, and TNFα were determined by ELISA. None of the tolerant to hypoxia animals died of the disease during observation period, cf. 85% survival on day 11 and 55% survival on day 15 in the susceptible group. On day 11, proliferative activity of the tumors in the tolerant animals was higher compared with the susceptible group. On day 15, proliferative activity, necrosis area and volume of the tumors in the tolerant to hypoxia animals were higher compared with the susceptible group. ELISA revealed no dynamics in TNFα levels, elevated levels of IL-1β in the susceptible animals on day 15 in comparison with day 11 and tolerant ones. Moreover, there were elevated levels of HIF-1α in the tolerant animals on day 15 in comparison with day 11. Thus, the proliferative activity of glioblastoma cells and the content of HIF-1α were higher in tolerant to hypoxia rats, but the mortality associated with the tumor process and IL-1β level in them were lower than in susceptible animals. Specific features of glioblastoma 101.8 progression in tolerant and susceptible to hypoxia rats, including survival, tumor growth rates and IL-1β level, can become the basis of new personalized approaches for cancer diseases treatment in accordance to individual hypoxia resistance.
Collapse
Affiliation(s)
- D Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418.
| | - N A Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - V A Mkhitarov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A M Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya St, Moscow, Russia, 117198
| | - I S Tsvetkov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A S Khalansky
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - A I Alekseeva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| | - T H Fatkhudinov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya St, Moscow, Russia, 117198
| | - O V Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 3 Tsyurupy Street, Moscow, Russia, 117418
| |
Collapse
|
6
|
Shi T, Zhu J, Zhang X, Mao X. The Role of Hypoxia and Cancer Stem Cells in Development of Glioblastoma. Cancers (Basel) 2023; 15:cancers15092613. [PMID: 37174078 PMCID: PMC10177528 DOI: 10.3390/cancers15092613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is recognized as the most malignant brain tumor with a high level of hypoxia, containing a small population of glioblastoma stem like cells (GSCs). These GSCs have the capacity of self-renewal, proliferation, invasion and recapitulating the parent tumor, and are major causes of radio-and chemoresistance of GBM. Upregulated expression of hypoxia inducible factors (HIFs) in hypoxia fundamentally contributes to maintenance and progression of GSCs. Therefore, we thoroughly reviewed the currently acknowledged roles of hypoxia-associated GSCs in development of GBM. In detail, we recapitulated general features of GBM, especially GSC-related features, and delineated essential responses resulted from interactions between GSC and hypoxia, including hypoxia-induced signatures, genes and pathways, and hypoxia-regulated metabolic alterations. Five hypothesized GSC niches are discussed and integrated into one comprehensive concept: hypoxic peri-arteriolar niche of GSCs. Autophagy, another protective mechanism against chemotherapy, is also closely related to hypoxia and is a potential therapeutic target for GBM. In addition, potential causes of therapeutic resistance (chemo-, radio-, surgical-, immuno-), and chemotherapeutic agents which can improve the therapeutic effects of chemo-, radio-, or immunotherapy are introduced and discussed. At last, as a potential approach to reverse the hypoxic microenvironment in GBM, hyperbaric oxygen therapy (HBOT) might be an adjuvant therapy to chemo-and radiotherapy after surgery. In conclusion, we focus on demonstrating the important role of hypoxia on development of GBM, especially by affecting the function of GSCs. Important advantages have been made to understand the complicated responses induced by hypoxia in GBM. Further exploration of targeting hypoxia and GSCs can help to develop novel therapeutic strategies to improve the survival of GBM patients.
Collapse
Affiliation(s)
- Tingyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710024, China
| | - Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|