1
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
2
|
Liu S, Zhang R, Hallajzadeh J. Role of exercise on ncRNAs and exosomal ncRNAs in preventing neurodegenerative diseases: a narrative review. Mol Med 2025; 31:51. [PMID: 39920595 PMCID: PMC11803956 DOI: 10.1186/s10020-025-01091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Engaging in activity has proven to have beneficial effects on different facets of well-being, such as conditions related to the deterioration of the nervous system. Non-coding RNAs (ncRNAs) and exosomal ncRNAs associated with vesicles have been recognized as influencers of gene expression and cell signaling, potentially contributing to the positive impact of physical activity on neurodegenerative conditions. It is hypothesized that exercise-induced changes in ncRNA expression may regulate key processes involved in neuroprotection, including neuroinflammation, oxidative stress, protein aggregation, and synaptic function. Exercise has shown promise in preventing neurodegenerative diseases (NDs), and ncRNAs and exosomal ncRNAs are emerging as potential mediators of these benefits. In review, we explored how ncRNAs and exosomal ncRNAs play a role in enhancing the impacts of activity on neurodegenerative disorders for future treatments. Research studies, both preclinical and clinical, that have documented the use of various exercises and their effects on ncRNAs and exosomal ncRNAs for the treatment of NDs have been compiled and enlisted from the PubMed database, spanning the time period from the year 2000 up to the current time. Studies show that manipulating specific ncRNAs or harnessing exercise-induced changes in ncRNA expression and exosomal cargo could potentially be utilized as therapeutic strategies for preventing or treating NDs. In conclusion, studies suggest that various exercise modalities, including aerobic, resistance, and high-intensity interval training, can modulate the expression of ncRNAs and exosomal ncRNAs in the context of NDs. The altered ncRNA profiles may contribute to the neuroprotective and therapeutic effects observed with exercise interventions. However, more research is needed to fully understand the underlying mechanisms and to further explore the potential of exercise-induced ncRNA signatures as biomarkers and therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shangwu Liu
- Department of Physical Education, Lyuliang University, Lishi, 033000, Shanxi, China
| | - Runhong Zhang
- Department of Physical Education, Lyuliang University, Lishi, 033000, Shanxi, China.
| | - Jamal Hallajzadeh
- Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
3
|
Poloni JF, Oliveira FHS, Feltes BC. Localization is the key to action: regulatory peculiarities of lncRNAs. Front Genet 2024; 15:1478352. [PMID: 39737005 PMCID: PMC11683014 DOI: 10.3389/fgene.2024.1478352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
To understand the transcriptomic profile of an individual cell in a multicellular organism, we must comprehend its surrounding environment and the cellular space where distinct molecular stimuli responses are located. Contradicting the initial perception that RNAs were nonfunctional and that only a few could act in chromatin remodeling, over the last few decades, research has revealed that they are multifaceted, versatile regulators of most cellular processes. Among the various RNAs, long non-coding RNAs (LncRNAs) regulate multiple biological processes and can even impact cell fate. In this sense, the subcellular localization of lncRNAs is the primary determinant of their functions. It affects their behavior by limiting their potential molecular partner and which process it can affect. The fine-tuned activity of lncRNAs is also tissue-specific and modulated by their cis and trans regulation. Hence, the spatial context of lncRNAs is crucial for understanding the regulatory networks by which they influence and are influenced. Therefore, predicting a lncRNA's correct location is not just a technical challenge but a critical step in understanding the biological meaning of its activity. Hence, examining these peculiarities is crucial to researching and discussing lncRNAs. In this review, we debate the spatial regulation of lncRNAs and their tissue-specific roles and regulatory mechanisms. We also briefly highlight how bioinformatic tools can aid research in the area.
Collapse
Affiliation(s)
| | | | - Bruno César Feltes
- Department of Biophysics, Laboratory of DNA Repair and Aging, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Singh V, Panda SP. Nexus of NFκB/VEGF/MMP9 signaling in diabetic retinopathy-linked dementia: Management by phenolic acid-enabled nanotherapeutics. Life Sci 2024; 358:123123. [PMID: 39419266 DOI: 10.1016/j.lfs.2024.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
AIMS The purpose of this review is to highlight the therapeutic effectiveness of phenolic acids in slowing the progression of diabetic retinopathy (DR)-linked dementia by addressing the nuclear factor kappa B (NFκB)/matrix metalloproteinase-9 (MMP9)/vascular endothelial growth factor (VEGF) interconnected pathway. MATERIALS AND METHODS We searched 80 papers published in the last 20 years using terms like DR, dementia, phenolic acids, NFkB/VEFG/MMP9 signaling, and microRNAs (miRs) in databases including Pub-Med, WOS, and Google Scholar. By encasing phenolic acid in nanoparticles and then controlling its release into the targeted tissues, nanotherapeutics can increase their effectiveness. Results were summarized, and compared, and research gaps were identified throughout the data collection and interpretation. KEY FINDINGS Amyloid beta (Aβ) deposition in neuronal cells and drusen sites of the eye leads to the activation of NFkB/VEGF/MMP9 signaling and microRNAs (miR146a and miR155), which in turn energizes the accumulation of pro-inflammatory and pro-angiogenic microenvironments in the brain and retina leading to DR-linked dementia. This study demonstrates the potential of phenolic acid-enabled nanotherapeutics as a functional food or supplement for preventing and treating DR-linked dementia, and oxidative stress-related diseases. SIGNIFICANCE The retina has mechanisms to clear metabolic waste including Aβ, but the activation of NFkB/ MMP9/ VEGF signaling leads to fatal pathological consequences. Understanding the role of miR146a and miR155 provides potential therapeutic avenues for managing the complex pathology shared between DR and dementia. In particular, phenolic acid nanotherapeutics offer a dual benefit in retinal regeneration and dementia management.
Collapse
Affiliation(s)
- Vikrant Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
5
|
Behl T, Kyada A, Roopashree R, Nathiya D, Arya R, Kumar MR, Khalid M, Gulati M, Sachdeva M, Fareed M, Patra PK, Agrawal A, Wal P, Gasmi A. Epigenetic biomarkers in Alzheimer's disease: Diagnostic and prognostic relevance. Ageing Res Rev 2024; 102:102556. [PMID: 39490904 DOI: 10.1016/j.arr.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive decline in the aging population, presenting a critical need for early diagnosis and effective prognostic tools. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have emerged as promising biomarkers for AD due to their roles in regulating gene expression and potential for reversibility. This review examines the current landscape of epigenetic biomarkers in AD, emphasizing their diagnostic and prognostic relevance. DNA methylation patterns in genes such as APP, PSEN1, and PSEN2 are highlighted for their strong associations with AD pathology. Alterations in DNA methylation at specific CpG sites have been consistently observed in AD patients, suggesting their utility in early detection. Histone modifications, such as acetylation and methylation, also play a crucial role in chromatin remodelling and gene expression regulation in AD. Dysregulated histone acetylation and methylation have been linked to AD progression, making these modifications valuable biomarkers. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), further contribute to the epigenetic regulation in AD. miRNAs can modulate gene expression post-transcriptionally and have been found in altered levels in AD, while lncRNAs can influence chromatin structure and gene expression. The presence of these non-coding RNAs in biofluids like blood and cerebrospinal fluid positions them as accessible and minimally invasive biomarkers. Technological advancements in detecting and quantifying epigenetic modifications have propelled the field forward. Techniques such as next-generation sequencing, bisulfite sequencing, and chromatin immunoprecipitation assays offer high sensitivity and specificity, enabling the detailed analysis of epigenetic changes in clinical samples. These tools are instrumental in translating epigenetic research into clinical practice. This review underscores the potential of epigenetic biomarkers to enhance the early diagnosis and prognosis of AD, paving the way for personalized therapeutic strategies and improved patient outcomes. The integration of these biomarkers into clinical workflows promises to revolutionize AD management, offering hope for better disease monitoring and intervention.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India.
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box No. 71666, Riyadh 11597, Saudi Arabia
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Managemnet, Bhubaneswar, Odisha 752050, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh 474001, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP 209305, India
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint-Étienne, France
| |
Collapse
|
6
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
7
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
8
|
Shanmugam I, Radhakrishnan S, Santosh S, Ramnath A, Anil M, Devarajan Y, Maheswaran S, Narayanan V, Pitchaimani A. Emerging role and translational potential of small extracellular vesicles in neuroscience. Life Sci 2024; 355:122987. [PMID: 39151884 DOI: 10.1016/j.lfs.2024.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Small extracellular vesicles (sEV) are endogenous lipid-bound membrane vesicles secreted by both prokaryotic and eukaryotic cells into the extracellular environment, performs several biological functions such as cell-cell communication, transfer of proteins, mRNA, and ncRNA to target cells in distant sites. Due to their role in molecular pathogenesis and its potential to deliver biological cargo to target cells, it has become a prominent area of interest in recent research in the field of Neuroscience. However, their role in neurological disorders, like neurodegenerative diseases is more complex and still unaddressed. Thus, this review focuses on the role of sEV in neurodegenerative and neurodevelopmental diseases, including their biogenesis, classification, and pathogenesis, with translational advantages and limitations in the area of neurobiology.
Collapse
Affiliation(s)
- Iswarya Shanmugam
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Sivani Radhakrishnan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Shradha Santosh
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Akansha Ramnath
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Meghna Anil
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Yogesh Devarajan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Saravanakumar Maheswaran
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Vaibav Narayanan
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Arunkumar Pitchaimani
- Precision Nanomedicine and Microfluidic Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore. TN, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Tiruvalam Rd, Katpadi, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
9
|
Bhadra F, Vasundhara M. Anti-inflammatory potential of aconitine produced by endophytic fungus Acremonium alternatum. World J Microbiol Biotechnol 2024; 40:274. [PMID: 39030384 DOI: 10.1007/s11274-024-04083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Argemone mexicana belonging to family Papaveraceae is a traditional medicinal plant widely utilized by tribal people in India for treating various ailments like skin infections, wounds and inflammation. This plant is very rich in alkaloidal content, which has a great potential in the treatment of anti-inflammatory disorders. Therapeutically promising bioactive molecules are often produced by endophytic fungi associated with medicinal plants. In this investigation, endophytic fungi were isolated from various parts of A. mexicana and screened for alkaloidal content. Among these, one of the fungal isolate, Acremonium alternatum AMEF-5 producing maximum alkaloids showed significant anti-inflammatory activity. Fractionation of this crude fungal extract through column chromatography yielded eight fractions, which were further screened for anti-inflammatory activities. Fraction 3 exhibited significant anti-inflammatory activity by the inhibition of lipoxygenase enzyme (IC50 15.2 ± 0.09 µg/ml), scavenging of the nitric oxide radicals (IC50 11.38 ± 0.35 µg/ml), protein denaturation (IC50 14.93 ± 0.4 µg/ml), trypsin inhibition (IC50 12.06 ± 0.64 µg/ml) and HRBC stabilization (IC50 11.9 ± 0.22 µg/ml). The bioactive alkaloid in fraction 3 was identified as aconitine which was confirmed by UV, FTIR, HPLC, HRMS, 1H NMR, and 13C NMR analysis. This study demonstrates that endophytic fungi serve a potential source for sustainable production of therapeutically important alkaloids.
Collapse
Affiliation(s)
- Fatima Bhadra
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
10
|
Gao S, Fan C, Wang Y, Yang W, Jiang H. LncRNA ENST00000440246.1 Promotes Alzheimer's Disease Progression by Targeting PP2A. Biochem Genet 2024; 62:2100-2116. [PMID: 37856039 DOI: 10.1007/s10528-023-10552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Alzheimer's disease (AD) is an extremely prevalent neurodegenerative disease. Long noncoding RNAs (lncRNAs) play pivotal roles in the regulation of AD. However, the function of most lncRNAs in AD remains to be elucidated. In this study, the effects of lncRNA ENST00000440246.1 on the biological characteristics of AD were explored. Differentially expressed lncRNAs in AD were identified through bioinformatics analysis and peripheral blood from thirty AD patients was collected to verify the expression of these lncRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). The correlations between lncRNAs and the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) were assessed by Pearson's correlation analysis. Immunofluorescence (IF), Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to evaluate the biological effect of ENST00000440246.1 and protein phosphatase 2 A (PP2A) in SK-N-SH cells. Gene expression at the protein and mRNA levels was analyzed by Western blotting and RT-qPCR. The interaction between PP2A and ENST00000440246.1 was confirmed by IntaRNA and RNA pulldown assays. ENST00000440246.1 was upregulated and significantly negatively correlated with the MMSE and MoCA scores and the overexpression of ENST00000440246.1 inhibited cell proliferation and facilitated apoptosis and Aβ expression in SK-N-SH cells. Mechanistically, ENST00000440246.1 targeted PP2A and regulated AD-related gene expression. The silencing of ENST00000440246.1 had the opposite effect. Furthermore, PP2A overexpression reversed the influence of ENST00000440246.1 overexpression in SK-N-SH cells. In conclusion, ENST00000440246.1 could promote AD progression by targeting PP2A, which indicates that ENST00000440246.1 has the potential to be a diagnostic target in AD.
Collapse
Affiliation(s)
- Shang Gao
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
- Department of pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
11
|
Belei O, Basaca DG, Olariu L, Pantea M, Bozgan D, Nanu A, Sîrbu I, Mărginean O, Enătescu I. The Interaction between Stress and Inflammatory Bowel Disease in Pediatric and Adult Patients. J Clin Med 2024; 13:1361. [PMID: 38592680 PMCID: PMC10932475 DOI: 10.3390/jcm13051361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Inflammatory bowel diseases (IBDs) have seen an exponential increase in incidence, particularly among pediatric patients. Psychological stress is a significant risk factor influencing the disease course. This review assesses the interaction between stress and disease progression, focusing on articles that quantified inflammatory markers in IBD patients exposed to varying degrees of psychological stress. Methods: A systematic narrative literature review was conducted, focusing on the interaction between IBD and stress among adult and pediatric patients, as well as animal subjects. The research involved searching PubMed, Scopus, Medline, and Cochrane Library databases from 2000 to December 2023. Results: The interplay between the intestinal immunity response, the nervous system, and psychological disorders, known as the gut-brain axis, plays a major role in IBD pathophysiology. Various types of stressors alter gut mucosal integrity through different pathways, increasing gut mucosa permeability and promoting bacterial translocation. A denser microbial load in the gut wall emphasizes cytokine production, worsening the disease course. The risk of developing depression and anxiety is higher in IBD patients compared with the general population, and stress is a significant trigger for inducing acute flares of the disease. Conclusions: Further large studies should be conducted to assess the relationship between stressors, psychological disorders, and their impact on the course of IBD. Clinicians involved in the medical care of IBD patients should aim to implement stress reduction practices in addition to pharmacological therapies.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Laura Olariu
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Manuela Pantea
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| | - Daiana Bozgan
- Clinic of Neonatology, “Pius Brânzeu” County Emergency Clinical Hospital, 300723 Timișoara, Romania;
| | - Anda Nanu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Iuliana Sîrbu
- Third Pediatric Clinic, “Louis Țurcanu” Emergency Children Hospital, 300011 Timișoara, Romania; (A.N.); (I.S.)
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (O.M.)
- Department of Pediatrics, First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ileana Enătescu
- Twelfth Department, Neonatology Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.P.); (I.E.)
| |
Collapse
|
12
|
Khish NS, Ghiasizadeh P, Rasti A, Moghimi O, Zadeh AZ, Bahiraee A, Ebrahimi R. Regulatory Non-coding RNAs Involved in Oxidative Stress and Neuroinflammation: An Intriguing Crosstalk in Parkinson's Disease. Curr Med Chem 2024; 31:5576-5597. [PMID: 37592769 DOI: 10.2174/0929867331666230817102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the accumulation of α-synuclein and the degeneration of dopaminergic neurons in the substantia nigra. Although the molecular bases for PD development are not fully recognized, extensive evidence has suggested that the development of PD is strongly associated with neuroinflammation. It is noteworthy that while neuroinflammation might not be a primary factor in all patients with PD, it seems to be a driving force for disease progression, and therefore, exploring the role of pathways involved in neuroinflammation is of great importance. Besides, the importance of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs), has been widely studied with a focus on the pathogenesis of PD. However, there is no comprehensive review regarding the role of neuroinflammation- related ncRNAs as prospective biomarkers and therapeutic targets involved in the pathogenesis of PD, even though the number of studies connecting ncRNAs to neuroinflammatory pathways and oxidative stress has markedly increased in the last few years. Hence, the present narrative review intended to describe the crosstalk between regulatory ncRNAs and neuroinflammatory targets with respect to PD to find and propose novel combining biomarkers or therapeutic targets in clinical settings.
Collapse
Affiliation(s)
- Naser Salari Khish
- Department of Biology, Payam Noor University International, Center of Gheshm, Hormozgan, Iran
| | - Pooran Ghiasizadeh
- Student Research Committee, Arak University of Medical Science, Arak, Iran
| | - Abolhasan Rasti
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Moghimi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arash Zeynali Zadeh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reyhane Ebrahimi
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
13
|
Theron D, Hopkins LN, Sutherland HG, Griffiths LR, Fernandez F. Can Genetic Markers Predict the Sporadic Form of Alzheimer's Disease? An Updated Review on Genetic Peripheral Markers. Int J Mol Sci 2023; 24:13480. [PMID: 37686283 PMCID: PMC10488021 DOI: 10.3390/ijms241713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools.
Collapse
Affiliation(s)
- Danelda Theron
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lloyd N. Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| |
Collapse
|
14
|
Grel H, Woznica D, Ratajczak K, Kalwarczyk E, Anchimowicz J, Switlik W, Olejnik P, Zielonka P, Stobiecka M, Jakiela S. Mitochondrial Dynamics in Neurodegenerative Diseases: Unraveling the Role of Fusion and Fission Processes. Int J Mol Sci 2023; 24:13033. [PMID: 37685840 PMCID: PMC10487704 DOI: 10.3390/ijms241713033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration and death of neurons, leading to a range of neurological symptoms. Despite the heterogeneity of these conditions, a common denominator is the implication of mitochondrial dysfunction in their pathogenesis. Mitochondria play a crucial role in creating biomolecules, providing energy through adenosine triphosphate (ATP) generated by oxidative phosphorylation (OXPHOS), and producing reactive oxygen species (ROS). When they're not functioning correctly, becoming fragmented and losing their membrane potential, they contribute to these diseases. In this review, we explore how mitochondria fuse and undergo fission, especially in the context of NDs. We discuss the genetic and protein mutations linked to these diseases and how they impact mitochondrial dynamics. We also look at the key regulatory proteins in fusion (MFN1, MFN2, and OPA1) and fission (DRP1 and FIS1), including their post-translational modifications. Furthermore, we highlight potential drugs that can influence mitochondrial dynamics. By unpacking these complex processes, we aim to direct research towards treatments that can improve life quality for people with these challenging conditions.
Collapse
Affiliation(s)
- Hubert Grel
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Damian Woznica
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Katarzyna Ratajczak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Ewelina Kalwarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Julia Anchimowicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Weronika Switlik
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Zielonka
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
15
|
Boicean A, Birsan S, Ichim C, Boeras I, Roman-Filip I, Blanca G, Bacila C, Fleaca RS, Dura H, Roman-Filip C. Has-miR-129-5p's Involvement in Different Disorders, from Digestive Cancer to Neurodegenerative Diseases. Biomedicines 2023; 11:2058. [PMID: 37509697 PMCID: PMC10377727 DOI: 10.3390/biomedicines11072058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
At present, it is necessary to identify specific biochemical, molecular, and genetic markers that can reliably aid in screening digestive cancer and correlate with the degree of disease development. Has-miR-129-5p is a small, non-coding molecule of RNA, circulating in plasma, gastric juice, and other biological fluids; it plays a protective role in tumoral growth, metastasis, etc. Furthermore, it is involved in various diseases, from the development of digestive cancer in cases of downregulation to neurodegenerative diseases and depression. Methods: We examined meta-analyses, research, and studies related to miR-129-5-p involved in digestive cancer and its implications in cancer processes, as well as metastasis, and described its implications in neurological diseases. Conclusions: Our review outlines that miR-129-5p is a significant controller of different pathways, genes, and proteins and influences different diseases. Some important pathways include the WNT and PI3K/AKT/mTOR pathways; their dysregulation results in digestive neoplasia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Ioana Boeras
- Molecular Biology Laboratory of the Applied Ecology Research Center, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Iulian Roman-Filip
- Department of Neurology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Grama Blanca
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Radu Sorin Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania
| |
Collapse
|
16
|
Fu Y, Gong C, Zhu C, Zhong W, Guo J, Chen B. Research trends and hotspots of neuropathic pain in neurodegenerative diseases: a bibliometric analysis. Front Immunol 2023; 14:1182411. [PMID: 37503342 PMCID: PMC10369061 DOI: 10.3389/fimmu.2023.1182411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Background Neuropathic pain is caused by a neurological injury or disease and can have a significant impact on people's daily lives. Studies have shown that neuropathic pain is commonly associated with neurodegenerative diseases. In recent years, there has been a lot of literature on the relationship between neuropathic pain and neurodegenerative diseases. However, bibliometrics is rarely used in analyzing the general aspects of studies on neuropathic pain in neurodegenerative diseases. Methods The bibliometric analysis software CiteSpace and VOSviewer were used to analyze the knowledge graph of 387 studies in the Science Citation Index Expanded of the Web of Science Core Collection Database. Results We obtained 2,036 documents through the search, leaving 387 documents after culling. 387 documents were used for the data analysis. The data analysis showed that 330 papers related to neuropathic pain in neurodegenerative diseases were published from 2007-2022, accounting for 85.27% of all published literature. In terms of contributions to the scientific study of neuropathic pain, the United States is in the top tier, with the highest number of publications, citations, and H-indexes. Conclusion The findings in our study may provide researchers with useful information about research trends, frontiers, and cooperative institutions. Multiple sclerosis, Parkinson's disease, and Alzheimer's disease are the three most studied neurodegenerative diseases. Among the pathological basis of neurodegenerative diseases, microglia-regulated neuroinflammation is a hot research topic. Deep brain stimulation and gamma knife radiosurgery are two popular treatments.
Collapse
Affiliation(s)
| | | | | | | | - Jiabao Guo
- *Correspondence: Binglin Chen, ; Jiabao Guo,
| | | |
Collapse
|
17
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
18
|
Ren Z, Chu C, Pang Y, Cai H, Jia L. A Group of Long Non-coding RNAs in Blood Acts as a Specific Biomarker of Alzheimer's Disease. Mol Neurobiol 2023; 60:566-575. [PMID: 36327022 DOI: 10.1007/s12035-022-03105-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been identified to be involved in the pathogenesis of Alzheimer's disease (AD). In this study, we evaluated whether lncRNAs can be used to discriminate AD patients from controls and patients with other dementias, such as vascular, Parkinson's disease, behavioral variant frontotemporal, and dementia with Lewy body. In this study, we used three datasets to measure the blood lncRNA levels. A pilot study (dataset 1, n = 40; controls, 20; AD, 20) was used to screen for differentially expressed lncRNAs. Dataset 2 (n = 174; controls, 86; AD, 88) was used to identify a lncRNA panel for the diagnostic model. Dataset 3 (n = 333; control, 60; AD, 54; vascular dementia, 53; Parkinson's disease dementia, 55; behavioral variant frontotemporal dementia, 56; and dementia with Lewy body, 55) was used to validate the diagnostic model. In dataset 1, 12 upregulated and 15 downregulated lncRNAs were identified. In dataset 2, a panel of seven lncRNAs was found to have the ability to differentiate AD patients from controls. Finally, this panel was applied to dataset 3 to successfully distinguish AD from other dementias. This study proposes a panel of seven lncRNAs as specific and promising biomarker for AD diagnosis.
Collapse
Affiliation(s)
- Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun St., Beijing, China
| | - Changbiao Chu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun St., Beijing, China
| | - Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun St., Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun St., Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun St., Beijing, China.
| |
Collapse
|
19
|
Fei X, Wang S, Li J, Zeng Q, Gao Y, Hu Y. Bibliometric analysis of research on Alzheimer’s disease and non-coding RNAs: Opportunities and challenges. Front Aging Neurosci 2022; 14:1037068. [PMID: 36329875 PMCID: PMC9623309 DOI: 10.3389/fnagi.2022.1037068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-coding RNAs (ncRNA) are a kind of RNA that does not encode protein, which play an important role in Alzheimer’s disease (AD). However, there is a lack of bibliometric analysis and visualization analysis of the research related to AD and ncRNAs. Materials and methods Literature related to AD and ncRNAs in the last decade were searched through the Web of Science Core Collection (WOSCC). The relevant information from all the searched articles was collected. The bibliometric visualization website, CiteSpace, and VOSviewer were used for visualization analysis of countries/regions, institutions, authors, and keywords. Results In total, 1,613 kinds of literature were published in the field. Literature in this field were published in 494 journals. The Journal of Alzheimer’s Disease was the most popular journal. China, Louisiana State University System, and Lukiw WJ were the countries/regions, institutions, and authors with the highest scientific productivity, respectively. The research hotspots in this field focused on the role and mechanism of ncRNAs, especially microRNAs, in AD. The level of research was mainly based on basic research, focusing on animal and cellular levels, and related to proteomics. “Circular RNAs,” “regulation of neuroinflammation,” and “tau protein” were the future research directions. Conclusion Taken together, the field of AD and ncRNAs is developing well. The research hotspots and frontiers in this field can provide a reference for researchers to choose their research direction.
Collapse
Affiliation(s)
- Xinxing Fei
- Department of Psychiatry, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Shiqi Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, China
| | - Jiyang Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiu Zeng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yaqian Gao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Yaqian Gao,
| | - Yue Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Yue Hu,
| |
Collapse
|
20
|
Cheng Y, Wu X, Xia Y, Liu W, Wang P. The role of lncRNAs in regulation of DKD and diabetes-related cancer. Front Oncol 2022; 12:1035487. [PMID: 36313695 PMCID: PMC9606714 DOI: 10.3389/fonc.2022.1035487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus often results in several complications, such as diabetic kidney disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often have the dysregulated glucose metabolism. Abnormal glucose metabolism can enhance the tumor malignant progression. Recently, lncRNAs have been reported to regulate the key proteins and signaling pathways in DKD development and progression and in cancer patients with diabetes. In this review article, we elaborate the evidence to support the function of lncRNAs in development of DKD and diabetes-associated cancer. Moreover, we envisage that lncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer patients with diabetes. Furthermore, we delineated that targeting lncRNAs might be an alternative approach for treating DKD and cancer with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Yawei Cheng
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| | - Xiaowen Wu
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Yujie Xia
- Department of Food Science and Technology Centers, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| |
Collapse
|