1
|
Ghezzi A, Gianferrari G, Baldassarri E, Zucchi E, Martinelli I, Vacchiano V, Bonan L, Zinno L, Nuredini A, Canali E, Gizzi M, Terlizzi E, Medici D, Sette E, Currò Dossi M, Morresi S, Santangelo M, Patuelli A, Longoni M, De Massis P, Ferro S, Fini N, Simonini C, Carra S, Zamboni G, Mandrioli J. Phenotypical Characterization of C9ALS Patients from the Emilia Romagna Registry of ALS: A Retrospective Case-Control Study. Genes (Basel) 2025; 16:309. [PMID: 40149460 PMCID: PMC11942173 DOI: 10.3390/genes16030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES C9ORF72 expansion is associated with significant phenotypic heterogeneity. This study aimed to characterize the clinical features of C9ALS patients from the Emilia Romagna ALS registry (ERRALS) and compare them with non-mutated ALS (nmALS) patients matched for sex, age at onset, and diagnostic delay, sourced from the same register. METHODS In total, 67 C9ALS patients were compared to 201 nmALS. Clinical data, phenotype, and prognostic factors were analyzed in the two groups and within the C9ALS group after stratification by sex. RESULTS C9ALS patients displayed a higher disease progression rate and shorter times to gastrostomy and invasive ventilation, despite no differences in overall survival. Female C9ALS had a more severe bulbar and upper motor neuron involvement compared to males. Cognitive and behavioral symptoms were more common in the C9ALS group, and the former was an independent prognostic factor. Prevalences of, autoimmune diseases, and dyslipidemia were significantly higher among C9ALS patients. CONCLUSIONS In our dataset, we show an overall increased disease progression rate in C9ALS patients and hint at sex-specific discrepancies in some phenotypical characteristics. We also suggest a possible clinically relevant involvement of C9ORF72 expansion in metabolism and autoimmunity.
Collapse
Affiliation(s)
- Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Elisa Baldassarri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
| | - Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Ilaria Martinelli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Luigi Bonan
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40126 Bologna, Italy;
| | - Lucia Zinno
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.Z.); (A.N.)
| | - Andi Nuredini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.Z.); (A.N.)
| | - Elena Canali
- Neurology Unit, Arcispedale Santa Maria Nuova, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Matteo Gizzi
- Department of Neurology, Faenza and Ravenna Hospital, 48121 Ravenna, Italy;
| | - Emilio Terlizzi
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy;
| | - Doriana Medici
- Department of Neurology, Fidenza Hospital, 43036 Fidenza, Italy;
| | - Elisabetta Sette
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy;
| | | | - Simonetta Morresi
- Department of Neurology and Stroke Unit, Bufalini Hospital, 47521 Cesena, Italy;
| | | | - Alberto Patuelli
- Department of Neurology and Stroke Unit, “Morgagni-Pierantoni” Hospital, 47121 Forlì, Italy; (A.P.); (M.L.)
| | - Marco Longoni
- Department of Neurology and Stroke Unit, “Morgagni-Pierantoni” Hospital, 47121 Forlì, Italy; (A.P.); (M.L.)
| | | | - Salvatore Ferro
- Department of Hospital Services, Emilia Romagna Regional Health Authority, 40127 Bologna, Italy;
| | - Nicola Fini
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Cecilia Simonini
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| |
Collapse
|
2
|
Li L, Wang M, Huang L, Zheng X, Wang L, Miao H. Ataxin-2: a powerful RNA-binding protein. Discov Oncol 2024; 15:298. [PMID: 39039334 PMCID: PMC11263328 DOI: 10.1007/s12672-024-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Ataxin-2 (ATXN2) was originally discovered in the context of spinocerebellar ataxia type 2 (SCA2), but it has become a key player in various neurodegenerative diseases. This review delves into the multifaceted roles of ATXN2 in human diseases, revealing its diverse molecular and cellular pathways. The impact of ATXN2 on diseases extends beyond functional outcomes; it mainly interacts with various RNA-binding proteins (RBPs) to regulate different stages of post-transcriptional gene expression in diseases. With the progress of research, ATXN2 has also been found to play an important role in the development of various cancers, including breast cancer, gastric cancer, pancreatic cancer, colon cancer, and esophageal cancer. This comprehensive exploration underscores the crucial role of ATXN2 in the pathogenesis of diseases and warrants further investigation by the scientific community. By reviewing the latest discoveries on the regulatory functions of ATXN2 in diseases, this article helps us understand the complex molecular mechanisms of a series of human diseases related to this intriguing protein.
Collapse
Affiliation(s)
- Lulu Li
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Meng Wang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Lai Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Xiaoli Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Zheng W, He J, Chen L, Yu W, Zhang N, Liu X, Fan D. Genetic link between KIF1A mutations and amyotrophic lateral sclerosis: evidence from whole-exome sequencing. Front Aging Neurosci 2024; 16:1421841. [PMID: 39076207 PMCID: PMC11284166 DOI: 10.3389/fnagi.2024.1421841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Objectives Genetics have been shown to have a substantial impact on amyotrophic lateral sclerosis (ALS). The ALS process involves defects in axonal transport and cytoskeletal dynamics. It has been identified that KIF1A, responsible for encoding a kinesin-3 motor protein that carries synaptic vesicles, is considered a genetic predisposing factor for ALS. Methods The analysis of whole-exome sequencing data from 1,068 patients was conducted to examine the genetic link between ALS and KIF1A. For patients with KIF1A gene mutations and a family history, we extended the analysis to their families and reanalyzed them using Sanger sequencing for cosegregation analysis. Results In our cohort, the KIF1A mutation frequency was 1.31% (14/1,068). Thirteen nonsynonymous variants were detected in 14 ALS patients. Consistent with the connection between KIF1A and ALS, the missense mutation p.A1083T (c.3247G>A) was shown to cosegregate with disease. The mutations related to ALS in our study were primarily located in the cargo-binding region at the C-terminal, as opposed to the mutations of motor domain at the N-terminal of KIF1A which were linked to hereditary peripheral neuropathy and spastic paraplegia. We observed high clinical heterogeneity in ALS patients with missense mutations in the KIF1A gene. KIF5A is a more frequent determinant of ALS in the European population, while KIF1A accounts for a similar proportion of ALS in both the European and Chinese populations. Conclusion Our investigation revealed that mutations in the C-terminus of KIF1A could increase the risk of ALS, support the pathogenic role of KIF1A in ALS and expand the phenotypic and genetic spectrum of KIF1A-related ALS.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
4
|
Peverelli S, Brusati A, Casiraghi V, Sorce MN, Invernizzi S, Santangelo S, Morelli C, Verde F, Silani V, Ticozzi N, Ratti A. Analysis of normal C9orf72 repeat length as possible disease modifier in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:207-210. [PMID: 38099605 DOI: 10.1080/21678421.2023.2273965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 01/24/2024]
Abstract
The C9orf72 hexanucleotide repeat (HR) expansion is the main genetic cause of amyotrophic lateral sclerosis (ALS), with expansion size from 30 to >4000 units. Normal C9orf72 HR length is polymorphic (2-23 repeats) with alleles >8 units showing a low frequency in the general population. This study aimed to investigate if the normal C9orf72 HR length influences C9orf72 gene expression and acts as disease modifier in ALS patients negative for C9orf72 mutation (ALS-C9Neg). We found that the distribution of HR alleles was similar in 325 ALS-C9Neg and 303 healthy controls. Gene expression analysis in blood revealed a significant increase of total C9orf72 and V3 mRNA levels in ALS-C9Neg carrying two long alleles (L/L; ≥8 units) compared to patients homozygous for the 2-unit short allele (S/S). However, HR allele genotypes (L/L, S/L, S/S) correlated with no clinical parameters. Our data suggest that normal C9orf72 HR length does not act as disease modifier in ALS-C9Neg despite increasing gene expression.
Collapse
Affiliation(s)
- Silvia Peverelli
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Valeria Casiraghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy, and
| | - Marta Nice Sorce
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Sabrina Invernizzi
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Serena Santangelo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy, and
| | - Claudia Morelli
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Federico Verde
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Dept. of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Dept. of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- "Dino Ferrari" Center, Dept. of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Antonia Ratti
- Department of Neurology-Laboratory of Neuroscience, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy, and
| |
Collapse
|