1
|
El-Sayed R, Davis KD. Regional and interregional functional and structural brain abnormalities in neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:91-123. [PMID: 39580223 DOI: 10.1016/bs.irn.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Neuropathic pain is a severe form of chronic pain due to a lesion or disease of the somatosensory nervous system. Here we provide an overview of the neuroimaging approaches that can be used to assess brain abnormalities in a chronic pain condition, with particular focus on people with neuropathic pain and then summarize the findings of studies that applied these methodologies to study neuropathic pain. First, we review the most commonly used approaches to examine grey and white matter abnormalities using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) and then review functional neuroimaging techniques to measure regional activity and inter-regional communication using functional MRI, electroencephalography (EEG) and magnetoencephalography (MEG). In neuropathic pain the most prominent structural abnormalities have been found to be in the primary somatosensory cortex, insula, anterior cingulate cortex and thalamus, with differences in volume directionality linked to neuropathic pain symptomology. Functional connectivity findings related to treatment outcome point to a potential clinical utility. Some prominent abnormalities in neuropathic pain identified with EEG and MEG throughout the dynamic pain connectome are slowing of alpha activity and higher regional oscillatory activity in the theta and alpha band, lower low beta and higher high beta band power. Finally, connectivity and coupling findings placed into context how regional abnormalities impact the networks and pathways of the dynamic pain connectome. Overall, functional and structural neuroimaging have the potential to identify predictive biomarkers that can be used to guide development of personalized pain management of neuropathic pain.
Collapse
Affiliation(s)
- Rima El-Sayed
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen Deborah Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Wang L, Wang S, Zheng W, Yang B, Yang Y, Chen X, Chen Q, Li X, Hu Y, Du J, Qin W, Lu J, Chen N. Altered Brain Function in Pediatric Patients With Complete Spinal Cord Injury: A Resting-State Functional MRI Study. J Magn Reson Imaging 2024; 60:304-313. [PMID: 37800893 DOI: 10.1002/jmri.29045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Injury to the spinal cord of children may cause potential brain reorganizations, affecting their rehabilitation. However, the specific functional alterations of children after complete spinal cord injury (CSCI) remain unclear. PURPOSE To explore the specific functional changes in local brain and the relationship with clinical characteristics in pediatric CSCI patients, clarifying the impact of CSCI on brain function in developing children. STUDY TYPE Prospective. SUBJECTS Thirty pediatric CSCI patients (7.83 ± 1.206 years) and 30 age-, gender-matched healthy children as controls (HCs) (8.77 ± 2.079 years). FIELD STRENGTH/SEQUENCE 3.0 T/Resting-state functional MRI (rs-fMRI) using echo-planar-imaging (EPI) sequence. ASSESSMENT Amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were used to characterize regional neural function. STATISTICAL TESTS Two-sample t-tests were used to compare the ALFF, fALFF, ReHo values of the brain between pediatric CSCI and HCs (voxel-level FWE correction, P < 0.05). Spearman correlation analyses were performed to analyze the associations between the ALFF, fALFF, ReHo values in altered regions and the injury duration, sensory motor scores of pediatric CSCI patients (P < 0.05). Then receiver operating characteristic (ROC) analysis was conducted to identify possible sensitive imaging indicators for clinical therapy. RESULTS Compared with HCs, pediatric CSCI showed significantly decreased ALFF in the right postcentral gyrus (S1), orbitofrontal cortex, and left superior temporal gyrus (STG), increased ALFF in bilateral caudate nucleus, thalamus, middle cingulate gyrus, and cerebellar lobules IV-VI, and increased ReHo in left cerebellum Crus II and Brodmann area 21. The ALFF value in the right S1 negatively correlated with the pinprick and light touch sensory scores of pediatric CSCI. When the left STG was used as an imaging biomarker for pediatric CSCI, it achieved the highest area under the curve of 0.989. CONCLUSIONS These findings may provide potential neural mechanisms for sensory motor and cognitive-emotional deficits in children after CSCI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Shengqiang Wang
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Weimin Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanhui Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
3
|
Wu Z, Feng K, Huang J, Ye X, Yang R, Huang Q, Jiang Q. Brain region changes following a spinal cord injury. Neurochem Int 2024; 174:105696. [PMID: 38354751 DOI: 10.1016/j.neuint.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Brain-related complications are common in clinical practice after spinal cord injury (SCI); however, the molecular mechanisms of these complications are still unclear. Here, we reviewed the changes in the brain regions caused by SCI from three perspectives: imaging, molecular analysis, and electrophysiology. Imaging studies revealed abnormal functional connectivity, gray matter volume atrophy, and metabolic abnormalities in brain regions after SCI, leading to changes in the structure and function of brain regions. At the molecular level, chemokines, inflammatory factors, and damage-associated molecular patterns produced in the injured area were retrogradely transmitted through the corticospinal tract, cerebrospinal fluid, or blood circulation to the specific brain area to cause pathologic changes. Electrophysiologic recordings also suggested abnormal changes in brain electrical activity after SCI. Transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation alleviated pain and improved motor function in patients with SCI; therefore, transcranial therapy may be a new strategy for the treatment of patients with SCI.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Kaiming Feng
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Jinqing Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Xinyun Ye
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Ruijin Yang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| | - Qiuhua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Rafati Fard A, Mowforth OD, Yuan M, Myrtle S, Lee KS, Banerjee A, Khan M, Kotter MR, Newcombe VFJ, Stamatakis EA, Davies BM. Brain MRI changes in degenerative cervical myelopathy: a systematic review. EBioMedicine 2024; 99:104915. [PMID: 38113760 PMCID: PMC10772405 DOI: 10.1016/j.ebiom.2023.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) is the most common cause of adult spinal cord dysfunction globally. Associated neurological symptoms and signs have historically been explained by pathobiology within the cervical spine. However, recent advances in imaging have shed light on numerous brain changes in patients with DCM, and it is hypothesised that these changes contribute to DCM pathogenesis. The aetiology, significance, and distribution of these supraspinal changes is currently unknown. The objective was therefore to synthesise all current evidence on brain changes in DCM. METHODS A systematic review was performed. Cross-sectional and longitudinal studies with magnetic resonance imaging on a cohort of patients with DCM were eligible. PRISMA guidelines were followed. MEDLINE and Embase were searched to 28th August 2023. Duplicate title/abstract screening, data extraction and risk of bias assessments were conducted. A qualitative synthesis of the literature is presented as per the Synthesis Without Meta-Analysis (SWiM) reporting guideline. The review was registered with PROSPERO (ID: CRD42022298538). FINDINGS Of the 2014 studies that were screened, 47 studies were identified that used MRI to investigate brain changes in DCM. In total, 1500 patients with DCM were included in the synthesis, with a mean age of 53 years. Brain alterations on MRI were associated with DCM both before and after surgery, particularly within the sensorimotor network, visual network, default mode network, thalamus and cerebellum. Associations were commonly reported between brain MRI alterations and clinical measures, particularly the Japanese orthopaedic association (JOA) score. Risk of bias of included studies was low to moderate. INTERPRETATION The rapidly expanding literature provides mounting evidence for brain changes in DCM. We have identified key structures and pathways that are altered, although there remains uncertainty regarding the directionality and clinical significance of these changes. Future studies with greater sample sizes, more detailed phenotyping and longer follow-up are now needed. FUNDING ODM is supported by an Academic Clinical Fellowship at the University of Cambridge. BMD is supported by an NIHR Clinical Doctoral Fellowship at the University of Cambridge (NIHR300696). VFJN is supported by an NIHR Rosetrees Trust Advanced Fellowship (NIHR302544). This project was supported by an award from the Rosetrees Foundation with the Storygate Trust (A2844).
Collapse
Affiliation(s)
- Amir Rafati Fard
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Oliver D Mowforth
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Melissa Yuan
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Samuel Myrtle
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Keng Siang Lee
- Department of Neurosurgery, King's College Hospital, London, UK
| | - Arka Banerjee
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Maaz Khan
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Mark R Kotter
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Virginia F J Newcombe
- PACE Section, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- PACE Section, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Benjamin M Davies
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Mandloi S, Syed M, Shoraka O, Ailes I, Kang KC, Sathe A, Heller J, Thalheimer S, Mohamed FB, Sharan A, Harrop J, Krisa L, Matias C, Alizadeh M. The role of the insula in chronic pain following spinal cord injury: A resting-state fMRI study. J Neuroimaging 2023; 33:781-791. [PMID: 37188633 DOI: 10.1111/jon.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Spinal cord injury (SCI) results in the loss of motor and sensory function from disconnections between efferent and afferent pathways. Most SCI patients are affected with chronic neuropathic pain, but there is a paucity of data concerning neuroplastic changes following SCI. Chronic pain disrupts default networks and is associated with abnormal insular connectivity. The posterior insula (PI) is associated with the degree of pain and intensity of pain. The anterior insula (AI) is related to signal changes. Comprehension of SCI pain mechanisms is essential to elucidate effective treatment options. METHODS This study examines the insular gyri functional connectivity (FC) of seven (five male, two female) SCI participants with moderate-severe chronic pain compared to 10 (five male, five female) healthy controls (HC). All subjects had 3-Tesla MRI performed and resting-state functional MRI (fMRI) was acquired. FC metrics were obtained from the comparisons of resting-state fMRI among our various groups. A seed-to-voxel analysis was pursued, encompassing six gyri of the insula. For multiple comparisons, a correction was applied with a significance level of p < .05. RESULTS There were significant differences in FC of the insula between SCI participants with chronic pain compared with HC. In the SCI participants, there was hyperconnectivity of the AI and PI to the frontal pole. In addition, there was increased FC noted between the PI and the anterior cingulate cortex. Hyperconnectivity was also observed between the AI and the occipital cortex. CONCLUSIONS These findings illustrate that there is a complex hyperconnectivity and modulation of pain pathways after traumatic SCI.
Collapse
Affiliation(s)
- Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Omid Shoraka
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Isaiah Ailes
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ki Chang Kang
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anish Sathe
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joshua Heller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Thalheimer
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B Mohamed
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James Harrop
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Caio Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Thomas Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|