1
|
Ji J, Gong C, Lu G, Zhang J, Liu B, Liu X, Lin J, Wang P, Thomas BB, Humayun MS, Zhou Q. Potential of ultrasound stimulation and sonogenetics in vision restoration: a narrative review. Neural Regen Res 2025; 20:3501-3516. [PMID: 39688549 PMCID: PMC11974640 DOI: 10.4103/nrr.nrr-d-24-00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Vision restoration presents a considerable challenge in the realm of regenerative medicine, while recent progress in ultrasound stimulation has displayed potential as a non-invasive therapeutic approach. This narrative review offers a comprehensive overview of current research on ultrasound-stimulated neuromodulation, emphasizing its potential as a treatment modality for various nerve injuries. By examining of the efficacy of different types of ultrasound stimulation in modulating peripheral and optic nerves, we can delve into their underlying molecular mechanisms. Furthermore, the review underscores the potential of sonogenetics in vision restoration, which involves leveraging pharmacological and genetic manipulations to inhibit or enhance the expression of related mechanosensitive channels, thereby modulating the strength of the ultrasound response. We also address how methods such as viral transcription can be utilized to render specific neurons or organs highly responsive to ultrasound, leading to significantly improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Baoqiang Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xunan Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Junhao Lin
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | | | - Biju B. Thomas
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mark S. Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Zheng Y, Yang G, Li P, Tian B. Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration. Biomaterials 2025; 322:123385. [PMID: 40367812 DOI: 10.1016/j.biomaterials.2025.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Understanding and exploiting bioelectric signaling pathways and physicochemical properties of materials that interface with living tissues is central to advancing tissue regeneration. In particular, the emerging field of bioelectronics leverages these principles to develop personalized, minimally invasive therapeutic strategies tailored to the dynamic demands of individual patients. By integrating sensing and actuation modules into flexible, biocompatible devices, clinicians can continuously monitor and modulate local electrical microenvironments, thereby guiding regenerative processes without extensive surgical interventions. This review provides a critical examination of how fundamental bioelectric cues and physicochemical considerations drive the design and engineering of next-generation bioelectronic platforms. These platforms not only promote the formation and maturation of new tissues across neural, cardiac, musculoskeletal, skin, and gastrointestinal systems but also precisely align therapies with the unique structural, functional, and electrophysiological characteristics of each tissue type. Collectively, these insights and innovations represent a convergence of biology, electronics, and materials science that holds tremendous promise for enhancing the efficacy, specificity, and long-term stability of regenerative treatments, ushering in a new era of advanced tissue engineering and patient-centered regenerative medicine.
Collapse
Affiliation(s)
- Yuze Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Guangqing Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA; The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Tsang QK, Gallo L, Zhu XM, Leveille CF. Terminal Schwann cells: modulators of the neuromuscular junction and a potential target for nerve reinnervation. J Physiol 2025; 603:2475-2476. [PMID: 40112192 DOI: 10.1113/jp288563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
- Quentin K Tsang
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lucas Gallo
- Division of Plastic Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Xi Ming Zhu
- Division of Plastic Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Cameron F Leveille
- Division of Plastic Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Coroneos CJ, Levis C, Willand MP, So KJ, Bain JR. Clinical evaluation of a novel disposable neurostimulator used to accelerate regeneration of injured peripheral nerves in the hand. Bioelectron Med 2025; 11:9. [PMID: 40275339 PMCID: PMC12023366 DOI: 10.1186/s42234-025-00171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Preclinical and early clinical evidence demonstrates that electrical stimulation (ES) applied for one hour following surgical nerve intervention enhances axonal regeneration and functional outcomes. Wide clinical implementation however, has been hindered by a lack of suitably designed stimulators. The aim of this pilot study was to investigate sensory recovery, safety, tolerability, and RCT feasibility for the use of a novel single-use stimulator to deliver ES therapy in an acute nerve transection cohort. METHODS Patients with complete transection of a proper digital nerve were included in the trial. An investigational version of PeriPulseTM was used with intraoperative electrode implantation and 1-hour ES therapy delivered postoperatively. Patient tolerance was assessed during stimulation and visual-analogue pain scores were collected at the first post-operative visit. At 3- and 6-months post-op, sensory recovery and quality of life were assessed using 2-point discrimination, monofilament tests, and the Disability of Arm, Shoulder, and Hand (DASH) questionnaire, respectively. RESULTS A total of 10 patients were enrolled. Intraoperative electrode placement did not impact operating room time, taking less than 5 minutes to implement. There were no related adverse events. Participants reported tolerable stimulation during ES therapy with no reports of pain. At the first post-operative visit patients had a mean visual-analogue pain score of 0.6 (range 0 - 1.9). Pressure threshold detection significantly improved between baseline, 3 months and 6 months. A greater proportion of ES treated patients (87.5%) had improved hand pressure thresholds (diminished light touch or diminished protective sensation) at 6 months compared to a historical comparator group. DASH scores improved over the timeline. Participants treated with ES therapy experienced minimal postoperative functional disability. CONCLUSIONS The use of the PeriPulseTM prototype for the delivery of perioperative ES therapy was safe, well-tolerated, and usable. Sensory recovery was demonstrated and a larger RCT is feasible. TRIAL REGISTRATION NCT04732936; 2021 - 01 - 29.
Collapse
Affiliation(s)
- Christopher J Coroneos
- Hamilton Health Sciences, 237 Barton Street East, Hamilton, Ontario, L8L 2X2, Canada
- Division of Plastic Surgery, McMaster University, 1200 Main St W, Hamilton, Ontario, L8N 3Z5, Canada
| | - Carolyn Levis
- Division of Plastic Surgery, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue, Hamilton, Ontario, L8S 4K1, Canada
- Division of Plastic Surgery, McMaster University, 1200 Main St W, Hamilton, Ontario, L8N 3Z5, Canada
| | - Michael P Willand
- Epineuron Technologies Inc., 1875 Buckhorn Gate Suite 602, Mississauga, Ontario, L4W 5P1, Canada
| | - Katelyn Jw So
- Epineuron Technologies Inc., 1875 Buckhorn Gate Suite 602, Mississauga, Ontario, L4W 5P1, Canada
| | - James R Bain
- Hamilton Health Sciences, 237 Barton Street East, Hamilton, Ontario, L8L 2X2, Canada.
- Division of Plastic Surgery, McMaster University, 1200 Main St W, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
6
|
Xu Y, Li C, Li J. Comparison of the Efficacy of Three Intervention Schemes for Postpartum Pelvic Floor Muscle Hypertonia. Int Urogynecol J 2025:10.1007/s00192-025-06128-8. [PMID: 40266309 DOI: 10.1007/s00192-025-06128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE To investigate the effects of three treatment regimens on postpartum pelvic floor muscle hypertonia. METHODS One hundred sixty-five patients with postpartum pelvic floor muscle hypertension treated in a maternal and child health hospital from December 2023 to June 2024 were selected as the research participants. According to the random number table method, they were divided into group A, group B, and group C, with 55 cases in each group. Group A was treated with lifestyle intervention, group B was treated with lifestyle intervention + electrical stimulation and biofeedback therapy, and group C was treated with lifestyle intervention + electrical stimulation and biofeedback + pelvic floor myofascial manipulation. The therapeutic effect, pelvic floor muscle resting potential before and after, and pelvic floor myofascial palpation tenderness visual analog scale score were compared among the three groups. RESULTS The total effective rate of group C (94.3%) was higher than that of group A (37.7%) and group B (87.0%) (P < 0.05). After the intervention, the resting potentials of pelvic floor muscles and the visual analog scale of pelvic floor myofascial palpation tenderness in the three groups were lower than before treatment (P < 0.05), and the reduction in group C was the most significant. CONCLUSION Lifestyle intervention, electrical stimulation, biofeedback, and pelvic floor myofascial manipulation have the highest efficiency and best therapeutic effect in treating postpartum pelvic floor muscle hypertonia. This scheme can be used optimally and is worthy of clinical promotion.
Collapse
Affiliation(s)
- Yiming Xu
- Gynecological Clinic, Shenyang Maternal and Child Health Hospital, Shenyang, 110000, Liaoning, China
| | - Chenyang Li
- Obstetric and Gynecologic Department, Shenyang Maternal and Child Health Hospital, Shenyang, 110000, Liaoning, China
| | - Jing Li
- Teaching and Research Department, Shenyang Maternal and Child Health Hospital, No.41, Shenzhou Road, Shenhe District, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
7
|
Grosu-Bularda A, Vancea CV, Hodea FV, Cretu A, Bordeanu-Diaconescu EM, Dumitru CS, Ratoiu VA, Teodoreanu RN, Lascar I, Hariga CS. Optimizing Peripheral Nerve Regeneration: Surgical Techniques, Biomolecular and Regenerative Strategies-A Narrative Review. Int J Mol Sci 2025; 26:3895. [PMID: 40332790 PMCID: PMC12027958 DOI: 10.3390/ijms26083895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Peripheral nerve injury disrupts the function of the peripheral nervous system, leading to sensory, motor, and autonomic deficits. While peripheral nerves possess an intrinsic regenerative capacity, complete sensory and motor recovery remains challenging due to the unpredictable nature of the healing process, which is influenced by the extent of the injury, age, and timely intervention. Recent advances in microsurgical techniques, imaging technologies, and a deeper understanding of nerve microanatomy have enhanced functional outcomes in nerve repair. Nerve injury initiates complex pathophysiological responses, including Wallerian degeneration, macrophage activation, Schwann cell dedifferentiation, and axonal sprouting. Complete nerve disruptions require surgical intervention to restore nerve continuity and function. Direct nerve repair is the gold standard for clean transections with minimal nerve gaps. However, in cases with larger nerve gaps or when direct repair is not feasible, alternatives such as autologous nerve grafting, vascularized nerve grafts, nerve conduits, allografts, and nerve transfers may be employed. Autologous nerve grafts provide excellent biocompatibility but are limited by donor site morbidity and availability. Vascularized grafts are used for large nerve gaps and poorly vascularized recipient beds, while nerve conduits serve as a promising solution for smaller gaps. Nerve transfers are utilized when neither direct repair nor grafting is possible, often involving re-routing intact regional nerves to restore function. Nerve conduits play a pivotal role in nerve regeneration by bridging nerve gaps, with significant advancements made in material composition and design. Emerging trends in nerve regeneration include the use of 3D bioprinting for personalized conduits, gene therapy for targeted growth factor delivery, and nanotechnology for nanofiber-based conduits and stem cell therapy. Advancements in molecular sciences have provided critical insights into the cellular and biochemical mechanisms underlying nerve repair, leading to targeted therapies that enhance axonal regeneration, remyelination, and functional recovery in peripheral nerve injuries. This review explores the current strategies for the therapeutic management of peripheral nerve injuries, highlighting their indications, benefits, and limitations, while emphasizing the need for tailored approaches based on injury severity and patient factors.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Cristian-Vladimir Vancea
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Andrei Cretu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Eliza-Maria Bordeanu-Diaconescu
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Catalina-Stefania Dumitru
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Vladut-Alin Ratoiu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Razvan-Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ioan Lascar
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Cristian-Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (C.-S.H.)
- Clinic of Plastic Surgery and Reconstructive Microsurgery, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
8
|
Kostopoulos D, Rizopoulos K, McGilvrey J, Hauskey J, Courcier J, Connor-Israel K, Koster H, von Leden R. An Open-Label Comparative Study of the Impact of Two Types of Electrical Stimulation (Direct Current Neuromuscular Electrical Stimulation and Transcutaneous Electrical Stimulation) on Physical Therapy Treatment of Diabetic Peripheral Neuropathy. J Diabetes Res 2025; 2025:9970124. [PMID: 39949402 PMCID: PMC11824710 DOI: 10.1155/jdr/9970124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025] Open
Abstract
Objective:The objective of this study is to evaluate and compare the effectiveness of treatments with two different electrical stimulation (e-stim) devices-pulsed direct current (DC) (Neubie) and alternating current (AC) (transcutaneous electrical stimulation (TENS))-in the treatment of symptoms for patients with diabetic peripheral neuropathy (DPN). Design:Randomized controlled trial (RCT) with parallel groups. Methods: One hundred fifty participants were recruited from 13 Hands-On Diagnostics-affiliated sites across several US locations. Participants were randomly divided into two groups for comparison-Neubie and TENS. Participants received a 30-min foot stimulation protocol with either TENS unit electrodes or Neubie electrodes. Outcome measures included the Toronto Clinical Neuropathy Score (TCNS), two-point discrimination, visual analogue scale (VAS), vibration sense (VBS), nerve conduction velocity (NCV), and nerve amplitude. The effect of the two variables on all outcome measures was determined using an analysis of covariance (ANCOVA). Results: The Neubie group demonstrated statistically significant improvements in TCNS for both right and left sides (p < 0.001), two-point discrimination of the dominant foot (p = 0.001), VBS (p = 0.022) and VAS scores (p = 0.009), and some but not all nerves tested by NCV (p < 0.05). Conclusion: Overall, DPN treatment with the Neubie resulted in significant improvements in several major outcome measures, whereas TENS showed no significant difference in any outcome measure. These findings support the use of DC devices as a potentially superior therapeutic treatment for neuropathy over AC devices like the TENS unit. Trial Registration: ClinicalTrials.gov identifier: NCT05442021.
Collapse
Affiliation(s)
| | | | - Joe McGilvrey
- Department of Physical Therapy, Hands-On Diagnostics, New York, New York, USA
| | - Jennifer Hauskey
- Department of Physical Therapy, Hands-On Diagnostics, New York, New York, USA
| | - Jeff Courcier
- Department of Physical Therapy, Hands-On Diagnostics, New York, New York, USA
| | - Kay Connor-Israel
- Department of Physical Therapy, Hands-On Diagnostics, New York, New York, USA
| | - Harry Koster
- Department of Physical Therapy, Hands-On Diagnostics, New York, New York, USA
| | - Ramona von Leden
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
- Department of Research, NeuFit, Austin, Texas, USA
| |
Collapse
|
9
|
Cui Y, Cong F, Huang FB, Zeng M, Wang J. Effects of Electrical Stimulation on Activation of Mirror Neuron Network in Healthy Adults during Motor Execution and Imitation: An fNIRS Study. J Integr Neurosci 2025; 24:25731. [PMID: 39862008 DOI: 10.31083/jin25731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously. This study aims to reveal whether ES could impact cortical activation during ME and MI. METHODS We recruited healthy individuals and assigned them randomly to the control group (CG) or experiment group (EG). Participants in EG performed ME and MI tasks with ES, while participants in CG performed the same two tasks with sham ES. We utilized functional near-infrared spectroscopy (fNIRS) to detect brain activation of MNN during ME and MI with and without ES, a randomized block design experiment paradigm was designed. Descriptive analysis of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) were used to show the hemoglobin (Hb) concentration changes after different event onsets in both CG and EG, a linear mixed-effects model (LMM) of HbO data was employed to analyze the effect of ES on the activation of MNN. RESULTS A total of 102 healthy adults were recruited and 72 participants' data were analysed in the final report. The block averaged Hb data showed that HbO concentration increased and HbR concentration decreased in most MNN regions during ME and MI in both groups. The LMM results showed that ES can significantly improve the activation of inferior frontal gyrus, middle frontal gyrus, and precentral gyrus during MI, the supplementary motor area, inferior parietal lobule, and superior temporal gyri showed increased activation, but without statistical significance. Although the results did not reach statistical significance during ME, ES still showed positive effects on increased overall activations. CONCLUSIONS In this study, we present potential novel rehabilitation approaches that combines MNN strategies and low-frequency ES to enhance cortical activation. Our results revealed that ES has potential to increase activation of most MNN brain areas, providing evidence for related rehabilitative interventions and device development. CLINICAL TRIAL REGISTRATION This study was registered on the China Clinical Trial Registration Center (identifier: ChiCTR2200064082, registered 26, September 2022, https://www.chictr.org.cn/showproj.html?proj=178285).
Collapse
Affiliation(s)
- Yao Cui
- Department of Physical Therapy, Beijing Bo'ai Hospital, China Rehabilitation Research Center, 100068 Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, 100068 Beijing, China
| | - Fang Cong
- Department of Physical Therapy, Beijing Bo'ai Hospital, China Rehabilitation Research Center, 100068 Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, 100068 Beijing, China
| | - Fu-Biao Huang
- School of Rehabilitation Medicine, Capital Medical University, 100068 Beijing, China
- Department of Occupational Therapy, Beijing Bo'ai Hospital, China Rehabilitation Research Center, 100068 Beijing, China
| | - Ming Zeng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing City, 314000 Jiaxing, Zhejiang, China
| | - Jun Wang
- Department of Physical Therapy, Hangzhou Geriatric Hospital, 310022 Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Tahmasbi F, Sanaie S, Salehi-Pourmehr H, Ghaderi S, Rahimi-Mamaghani A. The role of transcutaneous electrical nerve stimulation (TENS) in rehabilitation of cerebral palsy: a systematic review. Dev Neurorehabil 2025; 28:52-61. [PMID: 39713916 DOI: 10.1080/17518423.2024.2439560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Cerebral palsy (CP) is one of the most important causes of disability across the globe. Transcutaneous electrical nerve stimulation (TENS) has been proposed as a potential adjunct therapy. OBJECTIVE This systematic review aims to explore the application of TENS in the rehabilitation of individuals with CP.Methods: A comprehensive literature search was conducted across multiple databases for studies published up to December 2023. Inclusion criteria encompassed clinical studies that evaluated the effects of TENS on rehabilitation outcomes in individuals with CP. Data were extracted and synthesized in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of the included studies was assessed using the appropriate Joanna Briggs Institute (JBI) checklist based on the study design. RESULTS A total of 11 studies were eligible for entering this systematic review. Studies reported the application of TENS for different CP-induced conditions, including motor function, spasticity, and gait. Following the administration of TENS in CP patients, an overall favorable trend with few to no side effects was reported. Nevertheless, most of the included studies were of low to moderate quality. CONCLUSION Although this review offers a comprehensive examination of the use of TENS in CP rehabilitation, the scarcity of high-quality studies indicates that further research is necessary to confirm its efficacy in this population.
Collapse
Affiliation(s)
- Fateme Tahmasbi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Ghaderi
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Rahimi-Mamaghani
- Clinical Research Development Unit of Tabriz Valiasr Hospital, University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Nam YH, Kim JS, Yum Y, Yoon J, Song H, Kim HJ, Lim J, Park S, Jung SC. Application of Mesenchymal Stem Cell-Derived Schwann Cell-like Cells Spared Neuromuscular Junctions and Enhanced Functional Recovery After Peripheral Nerve Injury. Cells 2024; 13:2137. [PMID: 39768225 PMCID: PMC11674609 DOI: 10.3390/cells13242137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, it is necessary to perform microsurgery to connect the transected nerve directly or insert a nerve conduit to connect it. In this study, we applied human tonsillar mesenchymal stem cell (TMSC)-derived Schwann cell-like cells (TMSC-SCs) to facilitate nerve regeneration and prevent muscle atrophy after neurorrhaphy. The TMSC-SCs were manufactured in a good manufacturing practice facility and termed neuronal regeneration-promoting cells (NRPCs). A rat model of peripheral nerve injury (PNI) was generated and a mixture of NRPCs and fibrin glue was transplanted into the injured nerve after neurorrhaphy. The application of NRPCs and fibrin glue led to the efficient induction of sciatic nerve regeneration, with the sparing of gastrocnemius muscles and neuromuscular junctions. This sparing effect of NRPCs toward neuromuscular junctions might prevent muscle atrophy after neurorrhaphy. These results suggest that a mixture of NRPCs and fibrin glue may be a therapeutic candidate to enable peripheral nerve and muscle regeneration in the context of neurorrhaphy in patients with PNI.
Collapse
Affiliation(s)
- Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Ji-Sup Kim
- Department of Orthopaedic Surgery, College of Medicine, Seoul Hospital, Ewha Womans University, Seoul 07804, Republic of Korea;
| | - Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Ho-Jin Kim
- Cellatoz Therapeutics Inc., Seongnam 13487, Republic of Korea; (H.-J.K.); (J.L.)
| | - Jaeseung Lim
- Cellatoz Therapeutics Inc., Seongnam 13487, Republic of Korea; (H.-J.K.); (J.L.)
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
12
|
Bonnechère B. Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles. Biomimetics (Basel) 2024; 9:723. [PMID: 39727727 DOI: 10.3390/biomimetics9120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Rehabilitation science has evolved significantly with the integration of technology-supported interventions, offering objective assessments, personalized programs, and real-time feedback for patients. Despite these advances, challenges remain in fully addressing the complexities of human recovery through the rehabilitation process. Over the last few years, there has been a growing interest in the application of biomimetics to inspire technological innovation. This review explores the application of biomimetic principles in rehabilitation technologies, focusing on the use of animal models to help the design of assistive devices such as robotic exoskeletons, prosthetics, and wearable sensors. Animal locomotion studies have, for example, inspired energy-efficient exoskeletons that mimic natural gait, while insights from neural plasticity research in species like zebrafish and axolotls are advancing regenerative medicine and rehabilitation techniques. Sensory systems in animals, such as the lateral line in fish, have also led to the development of wearable sensors that provide real-time feedback for motor learning. By integrating biomimetic approaches, rehabilitation technologies can better adapt to patient needs, ultimately improving functional outcomes. As the field advances, challenges related to translating animal research to human applications, ethical considerations, and technical barriers must be addressed to unlock the full potential of biomimetic rehabilitation.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Sciences Institute, Hasselt University, 3590 Diepenbeek, Belgium
- Department of PXL-Healthcare, PXL University of Applied Sciences and Arts, 3500 Hasselt, Belgium
| |
Collapse
|
13
|
Zhang S, Huang L, Bian M, Xiao L, Zhou D, Tao Z, Zhao Z, Zhang J, Jiang LB, Li Y. Multifunctional Bone Regeneration Membrane with Flexibility, Electrical Stimulation Activity and Osteoinductive Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405311. [PMID: 39148189 DOI: 10.1002/smll.202405311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The use of membrane-based guided bone regeneration techniques has great potential for single-stage reconstruction of critical-sized bone defects. Here, a multifunctional bone regeneration membrane combining flexible elasticity, electrical stimulation (ES) and osteoinductive activity is developed by in situ doping of MXene 2D nanomaterials with conductive functionality and β-TCP particles into a Poly(lactic acid-carbonate (PDT) composite nano-absorbable membrane (P/T/MXene) via electrostatic spinning technique. The composite membrane has good feasibility due to its temperature sensitivity, elastic memory capacity, coordinated degradation profile and easy preparation process. In vitro experiments showed the P/T/MXene membrane effectively promoted the recruitment and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under ES and enhanced the angiogenic capacity of endothelial cells, which synergistically promoted bone regeneration through neovascularization. In addition, an in vivo rat model of cranial bone defects further confirmed the bone regeneration efficacy of the P/T/MXene membrane. In conclusion, the developed P/T/MXene membrane can effectively promote bone regeneration through their synergistic multifunctional effects, suggesting the membranes have great potential for guiding tissue regeneration and providing guidance for the biomaterials design.
Collapse
Affiliation(s)
- Shihao Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, Australia, 4222, Australia
| | - Dong Zhou
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ziwei Tao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zheng Zhao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li-Bo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
14
|
Kaluskar P, Bharadwaj D, Iyer KS, Dy C, Zheng M, Brogan DM. A Systematic Review to Compare Electrical, Magnetic, and Optogenetic Stimulation for Peripheral Nerve Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:722-739. [PMID: 39381397 PMCID: PMC11456630 DOI: 10.1016/j.jhsg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 10/10/2024] Open
Abstract
The purpose of this systematic review was to assess the currently available evidence for the use of external stimulation to modulate neural activity and promote peripheral nerve regeneration. The most common external stimulations are electrical stimulation (ES), optogenetic stimulation (OS), and magnetic stimulation (MS). Understanding the comparative effectiveness of these stimulation methods is pivotal in advancing therapeutic interventions for peripheral nerve injuries. This systematic review focused on these three external stimulation modalities as potential strategies to enhance peripheral nerve repair (PNR). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework to systematically evaluate and compare the efficiency of ES, OS, and MS in PNR. The review included studies published between 2018 and 2023 using ES, OS, or MS for PNR focused on enhancing recovery of peripheral nerve injuries in rodent models identified through PubMed and Google Scholar. The search strategies and inclusion criteria identified 19 studies (13 ES, 4 OS, and 2 MS) for detailed analysis, focusing on critical parameters such as functional recovery, histological outcomes, and electrophysiological data. Although ES demonstrated a consistent improvement in all the analyses, high-frequency repetitive MS (HFr-MS) emerged as a promising modality. HFr-MS demonstrated accelerated PNR, as histological and electrophysiological evidence indicated. In contrast, OS exhibited superior functional recovery outcomes. Notable limitations include constrained MS and OS data sets and the challenge of comparing relative improvements because of methodological diversity in evaluation techniques. Our findings underscore the potential of HFr-MS and OS in PNR while emphasizing the critical need for standardized testing protocols to facilitate meaningful cross-study comparisons. External stimulations have the potential to improve functional recovery in patients with nerve injury.
Collapse
Affiliation(s)
- Priya Kaluskar
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
- ARC Training Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Melbourne, Australia
| | - Dhruv Bharadwaj
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Christopher Dy
- Orthopaedic Surgery Division of Hand and Microsurgery, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
15
|
王 瑶, 李 雨, 崔 红, 李 萌, 陈 小. [A review of functional electrical stimulation based on brain-computer interface]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:650-655. [PMID: 39218589 PMCID: PMC11366473 DOI: 10.7507/1001-5515.202311036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Individuals with motor dysfunction caused by damage to the central nervous system are unable to transmit voluntary movement commands to their muscles, resulting in a reduced ability to control their limbs. However, traditional rehabilitation methods have problems such as long treatment cycles and high labor costs. Functional electrical stimulation (FES) based on brain-computer interface (BCI) connects the patient's intentions with muscle contraction, and helps to promote the reconstruction of nerve function by recognizing nerve signals and stimulating the moving muscle group with electrical impulses to produce muscle convulsions or limb movements. It is an effective treatment for sequelae of neurological diseases such as stroke and spinal cord injury. This article reviewed the current research status of BCI-based FES from three aspects: BCI paradigms, FES parameters and rehabilitation efficacy, and looked forward to the future development trend of this technology, in order to improve the understanding of BCI-based FES.
Collapse
Affiliation(s)
- 瑶 王
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - 雨涵 李
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - 红岩 崔
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - 萌 李
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| | - 小刚 陈
- 天津工业大学 生命科学学院(天津 300387)School of Life Sciences, Tianjin Polytechnic University, Tianjin 300387, P. R. China
| |
Collapse
|
16
|
Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater 2024; 19:052008. [PMID: 39025114 PMCID: PMC11425301 DOI: 10.1088/1748-605x/ad651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Soft-tissue injuries affecting muscles, nerves, vasculature, tendons, and ligaments often diminish the quality of life due to pain, loss of function, and financial burdens. Both natural healing and surgical interventions can result in scarring, which potentially may impede functional recovery and lead to persistent pain. Scar tissue, characterized by a highly disorganized fibrotic extracellular matrix, may serve as a physical barrier to regeneration and drug delivery. While approaches such as drugs, biomaterials, cells, external stimulation, and other physical forces show promise in mitigating scarring and promoting regenerative healing, their implementation remains limited and challenging. Ultrasound, laser, electrical, and magnetic forms of external stimulation have been utilized to promote soft tissue as well as neural tissue regeneration. After stimulation, neural tissues experience increased proliferation of Schwann cells, secretion of neurotropic factors, production of myelin, and growth of vasculature, all aimed at supporting axon regeneration and innervation. Yet, the outcomes of healing vary depending on the pathophysiology of the damaged nerve, the timing of stimulation following injury, and the specific parameters of stimulation employed. Increased treatment intensity and duration have been noted to hinder the healing process by inducing tissue damage. These stimulation modalities, either alone or in combination with nerve guidance conduits and scaffolds, have been demonstrated to promote healing. However, the literature currently lacks a detailed understanding of the stimulation parameters used for nerve healing applications. In this article, we aim to address this gap by summarizing existing reports and providing an overview of stimulation parameters alongside their associated healing outcomes.
Collapse
Affiliation(s)
- Rosalie Bordett
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Khadija B Danazumi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Suranji Wijekoon
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Christopher J Garcia
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
17
|
Dorrian RM, Leonard AV, Lauto A. Millimetric devices for nerve stimulation: a promising path towards miniaturization. Neural Regen Res 2024; 19:1702-1706. [PMID: 38103235 PMCID: PMC10960286 DOI: 10.4103/1673-5374.389627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023] Open
Abstract
Nerve stimulation is a rapidly developing field, demonstrating positive outcomes across several conditions. Despite potential benefits, current nerve stimulation devices are large, complicated, and are powered via implanted pulse generators. These factors necessitate invasive surgical implantation and limit potential applications. Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications. However, device miniaturization presents a serious engineering challenge. This review presents significant advancements from several groups that have overcome this challenge and developed millimetric-sized nerve stimulation devices. These are based on antennas, mini-coils, magneto-electric and opto-electronic materials, or receive ultrasound power. We highlight key design elements, findings from pilot studies, and present several considerations for future applications of these devices.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
18
|
Shi S, Ou X, Du X. Enhanced nerve function recovery in radial nerve palsy patients with humerus shaft fracture: a randomized study of low-frequency pulse electrical stimulation combined with exercise therapy. Front Neurol 2024; 15:1370316. [PMID: 39011357 PMCID: PMC11246844 DOI: 10.3389/fneur.2024.1370316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Objective To evaluate the effect of low-frequency pulse electrical stimulation plus exercise therapy on nerve function recovery in patients with radial nerve palsy after humerus shaft fracture. Methods A total of 110 patients with humerus shaft fracture and radial nerve injury admitted to our hospital from January 2017 to December 2021 were recruited. They were randomized to receive either conventional exercise therapy (control group) or conventional exercise therapy plus low-frequency pulse electrical stimulation (study group) according to the random number table method, with 55 cases in each. Clinical efficacy, muscle strength recovery, nerve conduction velocity (MCV), amplitude, wrist joint, and elbow joint activities of patients were analyzed and compared. Results Patients with low frequency stimulation (LFS) showed significantly higher treatment effectiveness (89.09%) than those with exercise therapy only (69.09%). The incorporation of LFS with exercise therapy provided more enhancement in the muscle strength of wrist extensor and total finger extensor in patients when compared with a mere exercise intervention, suggesting better muscle function recovery of patients produced by LFS. Moreover, a significant increase in MCV and its amplitude was observed in all included patients, among which those receiving LFS showed a greater escalation of MCV and its amplitude. Following a treatment duration of 6 months, more patients in the LFS cohort were reported to achieve a wrist extension and elbow extension with an angle over 45° than the controls. There was no notable variance in adverse responses noted between the two patient groups. Conclusion In patients afflicted with humerus shaft fracture and radial nerve injury, the amalgamation of exercise therapy with low-frequency pulse electrical stimulation can significantly improve clinical efficacy, promote nerve function, and muscle strength recovery, and features a high safety profile. Relevance to clinical practice The combination of exercise therapy and low-frequency pulsed electrical stimulation can notably improve the promotion of neurologic function and muscle strength recovery in patients with humerus shaft fractures and radial nerve injuries with a high degree of safety.Clinical trial registration:https://www.researchregistry.com, identifier researchregistry9461.
Collapse
Affiliation(s)
- Shaoyan Shi
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuehai Ou
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaolong Du
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Lysak A, Farnebo S, Geuna S, Dahlin LB. Muscle preservation in proximal nerve injuries: a current update. J Hand Surg Eur Vol 2024; 49:773-782. [PMID: 38819009 DOI: 10.1177/17531934231216646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Optimal recovery of muscle function after proximal nerve injuries remains a complex and challenging problem. After a nerve injury, alterations in the affected muscles lead to atrophy, and later degeneration and replacement by fat-fibrous tissues. At present, several different strategies for the preservation of skeletal muscle have been reported, including various sets of physical exercises, muscle massage, physical methods (e.g. electrical stimulation, magnetic field and laser stimulation, low-intensity pulsed ultrasound), medicines (e.g. nutrients, natural and chemical agents, anti-inflammatory and antioxidants, hormones, enzymes and enzyme inhibitors), regenerative medicine (e.g. growth factors, stem cells and microbiota) and surgical procedures (e.g. supercharge end-to-side neurotization). The present review will focus on methods that aimed to minimize the damage to muscles after denervation based on our present knowledge.
Collapse
Affiliation(s)
- Andrii Lysak
- Institute of Traumatology and Orthopedics of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, Sweden
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Torino, Italy
| | - Lars B Dahlin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
20
|
Lee H, Cho S, Kim D, Lee T, Kim HS. Bioelectric medicine: unveiling the therapeutic potential of micro-current stimulation. Biomed Eng Lett 2024; 14:367-392. [PMID: 38645592 PMCID: PMC11026362 DOI: 10.1007/s13534-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Bioelectric medicine (BEM) refers to the use of electrical signals to modulate the electrical activity of cells and tissues in the body for therapeutic purposes. In this review, we particularly focused on the microcurrent stimulation (MCS), because, this can take place at the cellular level with sub-sensory application unlike other stimuli. These extremely low-level currents mimic the body's natural electrical activity and are believed to promote various physiological processes. To date, MCS has limited use in the field of BEM with applications in several therapeutic purposes. However, recent studies provide hopeful signs that MCS is more scalable and widely applicable than what has been used so far. Therefore, this review delves into the landscape of MCS, shedding light on the multifaceted applications and untapped potential of MCS in the realm of healthcare. Particularly, we summarized the hierarchical mediation from cell to whole body responses by MCS including its physiological applications. Our final objective of this review is to contribute to the growing body of literature that unveils the captivating potential of BEM, with MCS poised at the intersection of technological innovation and the intricacies of the human body.
Collapse
Affiliation(s)
- Hana Lee
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Seungkwan Cho
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| | - Taehyun Lee
- Gfyhealth Inc., Seongnam, Gyeonggi 13488 South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Seoul, Gangwon 26493 South Korea
| |
Collapse
|
21
|
Elhelali A, Tuffaha S. A Systematic Review of Registered Clinical Trials for Peripheral Nerve Injuries. Ann Plast Surg 2024; 92:e32-e54. [PMID: 38527351 DOI: 10.1097/sap.0000000000003899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
ABSTRACT Upper extremity peripheral nerve injuries (PNIs) significantly impact daily functionality and necessitate effective treatment strategies. Clinical trials play a crucial role in developing these strategies. However, challenges like retrospective data collection, reporting biases, inconsistent outcome measures, and inadequate data sharing practices hinder effective research and treatment advancements. This review aims to analyze the landscape of reporting, methodological design, outcome measures, and data sharing practices in registered clinical trials concerning upper extremity PNIs. It seeks to guide future research in this vital area by identifying current trends and gaps.A systematic search was conducted on ClinicalTrials.gov and WHO International Clinical Trials Registry Platform up to November 10, 2023, using a combination of MeSH terms and keywords related to upper extremity nerve injury. The PRISMA 2020 guidelines were followed, and the studies were selected based on predefined inclusion and exclusion criteria. A narrative synthesis of findings was performed, with statistical analysis for associations and completion rates.Of 3051 identified studies, 96 met the inclusion criteria. These included 47 randomized controlled trials, 27 nonrandomized trials, and others. Sensory objective measures were the most common primary outcomes. Only 13 studies had a data sharing plan. The analysis revealed varied intervention methods and inconsistencies in outcome measures. There was a significant association between study funding, design, and completion status, but no association between enrollment numbers and completion.This review highlights the need for standardized outcome measures, patient-centered assessments, and improved data sharing in upper extremity PNI trials. The varied nature of interventions and inconsistency in outcome measures indicate the necessity for more rigorous and transparent research practices to strengthen the evidence base for managing these injuries.
Collapse
Affiliation(s)
- Ala Elhelali
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
22
|
Izhiman Y, Esfandiari L. Emerging role of extracellular vesicles and exogenous stimuli in molecular mechanisms of peripheral nerve regeneration. Front Cell Neurosci 2024; 18:1368630. [PMID: 38572074 PMCID: PMC10989355 DOI: 10.3389/fncel.2024.1368630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Peripheral nerve injuries lead to significant morbidity and adversely affect quality of life. The peripheral nervous system harbors the unique trait of autonomous regeneration; however, achieving successful regeneration remains uncertain. Research continues to augment and expedite successful peripheral nerve recovery, offering promising strategies for promoting peripheral nerve regeneration (PNR). These include leveraging extracellular vesicle (EV) communication and harnessing cellular activation through electrical and mechanical stimulation. Small extracellular vesicles (sEVs), 30-150 nm in diameter, play a pivotal role in regulating intercellular communication within the regenerative cascade, specifically among nerve cells, Schwann cells, macrophages, and fibroblasts. Furthermore, the utilization of exogenous stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and extracorporeal shock wave therapy (ESWT), offers remarkable advantages in accelerating and augmenting PNR. Moreover, the application of mechanical and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, consequently leading to potential improvements in PNR. In this review article, we comprehensively delve into the intricacies of cell-to-cell communication facilitated by sEVs and the key regulatory signaling pathways governing PNR. Additionally, we investigated the broad-ranging impacts of ES, US, and ESWT on PNR.
Collapse
Affiliation(s)
- Yara Izhiman
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
23
|
Gouveia D, Cardoso A, Carvalho C, Oliveira AC, Almeida A, Gamboa Ó, Lopes B, Coelho A, Alvites R, Varejão AS, Maurício AC, Ferreira A, Martins Â. Early Intensive Neurorehabilitation in Traumatic Peripheral Nerve Injury-State of the Art. Animals (Basel) 2024; 14:884. [PMID: 38539981 PMCID: PMC10967370 DOI: 10.3390/ani14060884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 02/24/2025] Open
Abstract
Traumatic nerve injuries are common lesions that affect several hundred thousand humans, as well as dogs and cats. The assessment of nerve regeneration through animal models may provide information for translational research and future therapeutic options that can be applied mutually in veterinary and human medicine, from a One Health perspective. This review offers a hands-on vision of the non-invasive and conservative approaches to peripheral nerve injury, focusing on the role of neurorehabilitation in nerve repair and regeneration. The peripheral nerve injury may lead to hypersensitivity, allodynia and hyperalgesia, with the possibility of joint contractures, decreasing functionality and impairing the quality of life. The question remains regarding how to improve nerve repair with surgical possibilities, but also considering electrical stimulation modalities by modulating sensory feedback, upregulation of BDNF, GFNF, TrKB and adenosine monophosphate, maintaining muscle mass and modulating fatigue. This could be improved by the positive synergetic effect of exercises and physical activity with locomotor training, and other physical modalities (low-level laser therapy, ultrasounds, pulsed electromagnetic fields, electroacupuncture and others). In addition, the use of cell-based therapies is an innovative treatment tool in this field. These strategies may help avoid situations of permanent monoplegic limbs that could lead to amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
| | - Ana Catarina Oliveira
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| |
Collapse
|
24
|
Morrell NT, Dahlberg RK, Scott KL. Electrical Stimulation Use in Upper Extremity Peripheral Nerve Injuries. J Am Acad Orthop Surg 2024; 32:156-161. [PMID: 38109725 DOI: 10.5435/jaaos-d-23-00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Peripheral nerve injuries can be debilitating and often have a variable course of recovery. Electrical stimulation (ES) has been used as an intervention to attempt to overcome the limits of peripheral nerve surgery and improve patient outcomes after peripheral nerve injury. Little has been written in the orthopaedic literature regarding the use of this technology. The purpose of this review was to provide a focused analysis of past and current literature surrounding the utilization of ES in the treatment of various upper extremity peripheral nerve pathologies including compression neuropathies and nerve transection. We aimed to provide clarity on the clinical benefits, appropriate timing for its employment, risks and limitations, and the need for future studies of ES.
Collapse
Affiliation(s)
- Nathan T Morrell
- Department of Orthopedics and Rehabilitation, University of New Mexico, Albuquerque, NM (Morrell and Dahlberg), Banner University Medical Center, Glendale, AZ (Scott)
| | | | | |
Collapse
|
25
|
Kong J, Teng C, Liu F, Wang X, Zhou Y, Zong Y, Wan Z, Qin J, Yu B, Mi D, Wang Y. Enhancing regeneration and repair of long-distance peripheral nerve defect injuries with continuous microcurrent electrical nerve stimulation. Front Neurosci 2024; 18:1361590. [PMID: 38406586 PMCID: PMC10885699 DOI: 10.3389/fnins.2024.1361590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Peripheral nerve injuries, especially those involving long-distance deficits, pose significant challenges in clinical repair. This study explores the potential of continuous microcurrent electrical nerve stimulation (cMENS) as an adjunctive strategy to promote regeneration and repair in such cases. Methods The study initially optimized cMENS parameters and assessed its impact on Schwann cell activity, neurotrophic factor secretion, and the nerve regeneration microenvironment. Subsequently, a rat sciatic nerve defect-bridge repair model was employed to evaluate the reparative effects of cMENS as an adjuvant treatment. Functional recovery was assessed through gait analysis, motor function tests, and nerve conduction assessments. Additionally, nerve regeneration and denervated muscle atrophy were observed through histological examination. Results The study identified a 10-day regimen of 100uA microcurrent stimulation as optimal. Evaluation focused on Schwann cell activity and the microenvironment, revealing the positive impact of cMENS on maintaining denervated Schwann cell proliferation and enhancing neurotrophic factor secretion. In the rat model of sciatic nerve defect-bridge repair, cMENS demonstrated superior effects compared to control groups, promoting motor function recovery, nerve conduction, and sensory and motor neuron regeneration. Histological examinations revealed enhanced maturation of regenerated nerve fibers and reduced denervated muscle atrophy. Discussion While cMENS shows promise as an adjuvant treatment for long-distance nerve defects, future research should explore extended stimulation durations and potential synergies with tissue engineering grafts to improve outcomes. This study contributes comprehensive evidence supporting the efficacy of cMENS in enhancing peripheral nerve regeneration.
Collapse
Affiliation(s)
- Junjie Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng Teng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fenglan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xuzhaoyu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yi Zhou
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, China
| | - Ying Zong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zixin Wan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jun Qin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Daguo Mi
- Department of Orthopedics, Nantong City Hospital of Traditional Chinese Medicine, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Affiliated Hospital and Medical School, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
26
|
Gouveia D, Cardoso A, Carvalho C, Rijo I, Almeida A, Gamboa Ó, Lopes B, Sousa P, Coelho A, Balça MM, Salgado AJ, Alvites R, Varejão ASP, Maurício AC, Ferreira A, Martins Â. The Role of Early Rehabilitation and Functional Electrical Stimulation in Rehabilitation for Cats with Partial Traumatic Brachial Plexus Injury: A Pilot Study on Domestic Cats in Portugal. Animals (Basel) 2024; 14:323. [PMID: 38275783 PMCID: PMC10812540 DOI: 10.3390/ani14020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This prospective observational cohort pilot study included 22 cats diagnosed with partial traumatic brachial plexus injury (PTBPI), aiming to explore responses to an early intensive neurorehabilitation protocol in a clinical setting. This protocol included functional electrical stimulation (FES), locomotor treadmill training and kinesiotherapy exercises, starting at the time with highest probability of nerve repair. The synergetic benefits of this multimodal approach were based on the potential structural and protective role of proteins and the release of neurotrophic factors. Furthermore, FES was parametrized according to the presence or absence of deep pain. Following treatment, 72.6% of the cats achieved ambulation: 9 cats within 15 days, 2 cats within 30 days and 5 cats within 60 days. During the four-year follow-up, there was evidence of improvement in both muscle mass and muscle weakness, in addition to the disappearance of neuropathic pain. Notably, after the 60 days of neurorehabilitation, 3 cats showed improved ambulation after arthrodesis of the carpus. Thus, early rehabilitation, with FES applied in the first weeks after injury and accurate parametrization according to the presence or absence of deep pain, may help in functional recovery and ambulation, reducing the probability of amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - Inês Rijo
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Maria Manuel Balça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| |
Collapse
|
27
|
Gerasimov AA, Burmatov NA, Kopylov SA. [Peripheral nerves' function recovery by intratissual electric stimulation]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 102:36-44. [PMID: 39248585 DOI: 10.17116/kurort202410104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
An intratissual electrical stimulation, accompanied by irritation of their central neurons, is used to recover the function of damaged peripheral nerves. Treatment results exceeded those with the use of cutaneous electrical stimulation, which is confirmed by comparative results of trial animal experiments. The time and quality of peripheral nerves' function recovery in comparison of intratissual and cutaneous electrical stimulation methods remain unknown. OBJECTIVE To evaluate the time and quality of peripheral nerves' functions recovery after their suturing and conducting two different methods of electrical stimulation, namely intratissual and cutaneous, in projection of central neurons of damaged spinal nerves in the postoperative period. MATERIAL AND METHODS The basic technical parameters of the method of peripheral nerves' functions recovery in the postoperative period were ptacticed. Postoperative rehabilitation treatment was performed in 77 patients with traumatic peripheral nerves' injuries at the level of the forearm: in 42 with intratissual electrical stimulation, in 35 - using cutaneous one with similar characteristics of electrical current and concomitant pharmacological therapy. The follow-up duration was 2 years. RESULTS A significant (in 4-6 times) reduction in time of treatment and a greater improvement in qualitative indicators when using intratissual electrical stimulation compared to the use of cutaneous stimulation were obtained. The effectiveness of the restorative therapy was dependent on the number of procedures, and a complete recovery of the damaged peripheral nerves' functions was observed after three courses of intratissual electrical stimulation. CONCLUSION The time and degree of recovery of peripheral nerves' functions depends on the functional activity of their central neurons at the level of the spinal cord. The activation of these neurons by low-frequency electrical current allows to activate their trophic function. Thus, the cutaneous electrical stimulation does not cause the necessary level of irritation of the neurons due to the fact that the skin is a barrier to electrical current, which reduces its impact in 200-500 times. The intratissual electrical stimulation allows to solve the problem by supplying the needle-electrode much closer to the «target». The proposed method of intratissual electrical stimulation has shown its advantage over cutaneous electrical stimulation, significantly reducing the duration of the restorative treatment and increasing its qualitative indicators.
Collapse
|
28
|
Li K, Liu Z, Wu P, Chen S, Wang M, Liu W, Zhang L, Guo S, Liu Y, Liu P, Zhang B, Tao L, Ding H, Qian H, Fu Q. Micro electrical fields induced MSC-sEVs attenuate neuronal cell apoptosis by activating autophagy via lncRNA MALAT1/miR-22-3p/SIRT1/AMPK axis in spinal cord injury. J Nanobiotechnology 2023; 21:451. [PMID: 38012570 PMCID: PMC10680254 DOI: 10.1186/s12951-023-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic condition of the central nervous system that causes paralysis of the limbs. Micro electric fields (EF) have been implicated in a novel therapeutic approach for nerve injury repair and regeneration, but the effects of human umbilical cord mesenchymal stem cell-derived small extracellular vesicles that are induced by micro electric fields (EF-sEVs) stimulation on SCI remain unknown. The aim of the present study was to investigate whether EF-sEVs have therapeutic effects a rat model of SCI. EF-sEVs and normally conditioned human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (CON-sEVs) were collected and injected intralesionally into SCI model rats to evaluate the therapeutic effects. We detect the expression of candidate long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA-MALAT1) in EF-sEVs and CON-sEVs. The targets and downstream effectors of lncRNA-MALAT1 were investigated using luciferase reporter assays. Using both in vivo and in vitro experiments, we demonstrated that EF-sEVs increased autophagy and decreased apoptosis after SCI, which promoted the recovery of motor function. We further confirmed that the neuroprotective effects of EF-sEVs in vitro and in vivo correlated with the presence of encapsulated lncRNA-MALAT1 in sEVs. lncRNA-MALAT1 targeted miR-22-3p via sponging, reducing miR-22-3p's suppressive effects on its target, SIRT1, and this translated into AMPK phosphorylation and increased levels of the antiapoptotic protein Bcl-2. Collectively, the present study identified that the lncRNA-MALAT1 in EF-sEVs plays a neuroprotective role via the miRNA-22-3p/SIRT1/AMPK axis and offers a fresh perspective and a potential therapeutic approach using sEVs to improve SCI.
Collapse
Affiliation(s)
- Kewei Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shenyuan Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenhui Liu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Leilei Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Song Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanbin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Beiting Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lin Tao
- Department of Orthopaedics, Dehong Hospital of Traditional Chinese Medicine, Dehong, 678400, Yunnan, China
| | - Hua Ding
- Department of Orthopaedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
29
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
30
|
Yi KK, Park C, Yang J, Lee YB, Kang CK. Quantitative Thermal Stimulation Using Therapeutic Ultrasound to Improve Cerebral Blood Flow and Reduce Vascular Stiffness. SENSORS (BASEL, SWITZERLAND) 2023; 23:8487. [PMID: 37896580 PMCID: PMC10611039 DOI: 10.3390/s23208487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
It is important to improve cerebrovascular health before the occurrence of cerebrovascular disease, as it has various aftereffects and a high recurrence rate, even with appropriate treatment. Various medical recommendations for preventing cerebrovascular diseases have been introduced, including smoking cessation, exercise, and diet. However, the effectiveness of these methods varies greatly from person to person, and their effects cannot be confirmed unless they are practiced over a long period. Therefore, there is a growing need to develop more quantitative methods that are applicable to the public to promote cerebrovascular health. Thus, in this study, we aimed to develop noninvasive and quantitative thermal stimulation techniques using ultrasound to improve cerebrovascular health and prevent cerebrovascular diseases. This study included 27 healthy adults in their 20s (14 males, 13 females). Thermal stimulation using therapeutic ultrasound at a frequency of 3 MHz was applied to the right sternocleidomastoid muscle in the supine posture for 2 min at four intensities (2.4, 5.1, 7.2, and 10.2 W/cm2). Diagnostic ultrasound was used to measure the peak systolic velocity (PSV), heart rate (HR), and pulse wave velocity (PWV) in the right common carotid artery (CCA), and the physiological changes were compared between intervention intensities. Compared to pre-intervention (preI), the PSV showed a significant increase during intervention (durI) at intensities of 7.2 W/cm2 and 10.2 W/cm2 (p = 0.010 and p = 0.021, respectively). Additionally, PWV showed a significant decrease for post-intervention (postI) at 7.2 W/cm2 and 10.2 W/cm2 (p = 0.036 and p = 0.035, respectively). However, the HR showed no significant differences at any of the intensities. The results demonstrate that an intervention at 3 MHz with an intensity of 7.2 W/cm2 or more can substantially increase cerebral blood flow and reduce arterial stiffness. Therefore, the use of therapeutic ultrasound of appropriate intensity is expected to improve the cerebral blood flow and reduce vascular stiffness to maintain cerebral blood flow at a certain level, which is closely related to the prevention and treatment of cerebrovascular diseases, thereby improving cerebrovascular health.
Collapse
Affiliation(s)
- Kyung-Kwon Yi
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - Chansol Park
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Republic of Korea;
| | - Jiwon Yang
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Yeong-Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
- Department of Health Science, Gachon University Graduate School, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
31
|
Al-Zamil M, Minenko IA, Kulikova NG, Mansur N, Nuvakhova MB, Khripunova OV, Shurygina IP, Topolyanskaya SV, Trefilova VV, Petrova MM, Narodova EA, Soloveva IA, Nasyrova RF, Shnayder NA. Efficiency of Direct Transcutaneous Electroneurostimulation of the Median Nerve in the Regression of Residual Neurological Symptoms after Carpal Tunnel Decompression Surgery. Biomedicines 2023; 11:2396. [PMID: 37760837 PMCID: PMC10525175 DOI: 10.3390/biomedicines11092396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Carpal tunnel syndrome (CTS) is the most frequent entrapment neuropathy. CTS therapy includes wrist immobilization, kinesiotherapy, non-steroidal anti-inflammatory drugs, carpal tunnel steroid injection, acupuncture, and physical therapy. Carpal tunnel decompression surgery (CTDS) is recommended after failure of conservative therapy. In many cases, neurological disorders continue despite CTDS. The aim of this study was to investigate the efficiency of direct transcutaneous electroneurostimulation (TENS) of the median nerve in the regression of residual neurological symptoms after CTDS. Material and Methods: 60 patients aged 28-62 years with persisting sensory and motor disorders after CTDS were studied; 15 patients received sham stimulation with a duration 30 min.; 15 patients received high-frequency low-amplitude TENS (HF TENS) with a duration 30 min; 15 patients received low-frequency high-amplitude TENS (LF TENS) with a duration 30 min; and 15 patients received a co-administration of HF TENS (with a duration of15 min) and LF TENS (with a duration of 15 min). Results: Our research showed that TENS significantly decreased the pain syndrome, sensory disorders, and motor deficits in the patients after CTDS. Predominantly, negative and positive sensory symptoms and the pain syndrome improved after the HF TENS course. Motor deficits, reduction of fine motor skill performance, electromyography changes, and affective responses to chronic pain syndrome regressed significantly after the LF TENS course. Co-administration of HF TENS and LF TENS was significantly more effective than use of sham stimulation, HF TENS, or LF TENS in patients with residual neurological symptoms after CTDS.
Collapse
Affiliation(s)
- Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.)
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
| | - Inessa A. Minenko
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
- Department of Sports Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Natalia G. Kulikova
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.)
- National Medical Research Center for Rehabilitation and Balneology, 121099 Moscow, Russia;
| | - Numman Mansur
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.)
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
- City Clinical Hospital Named after V. V. Vinogradov, 117292 Moscow, Russia
| | - Margarita B. Nuvakhova
- National Medical Research Center for Rehabilitation and Balneology, 121099 Moscow, Russia;
| | - Olga V. Khripunova
- Department of Sports Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Irina P. Shurygina
- Department of Ophthalmology, Rostov State Medical University, 344022 Rostov, Russia;
| | - Svetlana V. Topolyanskaya
- Department of Hospital Therapy No. 2, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.T.); (R.F.N.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (I.A.S.)
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (I.A.S.)
| | - Irina A. Soloveva
- Shared Core Facilities “Molecular and Cell Technologies”, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (I.A.S.)
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.T.); (R.F.N.)
| | - Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (V.V.T.); (R.F.N.)
- Shared Core Facilities “Molecular and Cell Technologies”, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (I.A.S.)
| |
Collapse
|