1
|
Zhang D, Wang Q, Li D, Chen S, Chen J, Zhu X, Bai F. Gut microbiome composition and metabolic activity in metabolic-associated fatty liver disease. Virulence 2025; 16:2482158. [PMID: 40122128 PMCID: PMC11959907 DOI: 10.1080/21505594.2025.2482158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/24/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Metabolic Associated Fatty Liver Disease (MAFLD) impacts approximately 25% of the global population. Between April 2023 and July 2023, 60 patients with MAFLD, along with 60 age, ethnicity, and sex-matched healthy controls (HCs), were enrolled from the Inner Mongolia Autonomous Region, China. Analysis of gut microbiota composition and plasma metabolic profiles was conducted using metagenome sequencing and LC-MS. LEfSe analysis identified five pivotal species: Eubacterium rectale, Dialister invisus, Pseudoruminococcus massiliensis, GGB3278 SGB4328, and Ruminococcaceae bacteria. In subgroup analysis, Eubacterium rectale tended to increase by more than 2 times and more than double in the non-obese MAFLD group, and MAFLD with moderate hepatic steatosis (HS), respectively. Plasma samples identified 172 metabolites mainly composed of fatty acid metabolites such as propionic acid and butyric acid analogues. Ruminococcaceae bacteria have a strong positive correlation with β-alanine, uric acid, and L-valine. Pseudoruminococcus massiliensis has a strong positive correlation with β-alanine. Combinations of phenomics and metabolomics yielded the highest accuracy (AUC = 0.97) in the MAFLD diagnosis. Combinations of phenomics and metagenomics yielded the highest accuracy (AUC = 0.94) in the prediction of the MAFLD HS progress. Increases in Eubacterium rectale and decreases in Dialister invisus seem to be indicative of MAFLD patients. Eubacterium rectale may predict HS degree of MAFLD and play an important role in the development of non-obese MAFLD. Eubacterium rectale can generate more propionic acid and butyric acid analogues to absorb energy and increase lipid synthesis and ultimately cause MAFLD.
Collapse
Affiliation(s)
- Daya Zhang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Qi Wang
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Da Li
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Shiju Chen
- The Second School of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Jinrun Chen
- Department of Gastroenterology, Otog Front Banner People 's Hospital, Otog Front Banner, China
| | - Xuli Zhu
- Department of Gastroenterology, Otog Front Banner People 's Hospital, Otog Front Banner, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Gastroenterology, The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China
| |
Collapse
|
2
|
Yan R, Zhang L, Chen Y, Zheng Y, Xu P, Xu Z. Therapeutic potential of gut microbiota modulation in epilepsy: A focus on short-chain fatty acids. Neurobiol Dis 2025; 209:106880. [PMID: 40118219 DOI: 10.1016/j.nbd.2025.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025] Open
Abstract
According to the criteria established by the International League Against Epilepsy (ILAE), epilepsy is defined as a disorder characterized by at least two unprovoked seizures occurring more than 24 h apart. Its pathogenesis is closely related to various physiological and pathological factors. Advances in high-throughput metagenomic sequencing have increasingly highlighted the role of gut microbiota dysbiosis in epilepsy. Short-chain fatty acids (SCFAs), the major metabolites of the gut microbiota and key regulators of the gut-brain axis, support physiological homeostasis through multiple mechanisms. Recent studies have indicated that SCFAs not only regulate seizures by maintaining intestinal barrier integrity and modulating intestinal immune responses, but also affect the structure and function of the blood-brain barrier (BBB) and regulate neuroinflammation. This review, based on current literatures, explores the relationship between SCFAs and epilepsy, emphasizing how SCFAs affect epilepsy by modulating the intestinal barrier and BBB. In-depth studies on SCFAs may reveal their therapeutic potential and inform the development of gut microbiota-targeted epilepsy treatments.
Collapse
Affiliation(s)
- Rong Yan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ya Chen
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongsu Zheng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi, China.
| |
Collapse
|
3
|
Hanaoka C, Pichika R, Dayanidhi S, Jayabalan P. Serum metabolomics after exercise in ambulatory individuals with cerebral palsy. Dev Med Child Neurol 2025; 67:639-647. [PMID: 39431769 PMCID: PMC11965978 DOI: 10.1111/dmcn.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
AIM To evaluate whether serum metabolomics differ between ambulatory individuals with cerebral palsy (CP) compared with individuals with typical development and whether functional capacity is associated with metabolite abundance. METHOD Thirty-eight adolescents and young adults were enrolled (CP: n = 19; typical development: n = 19). After functional capacity testing (10-meter walk, sit-to-stand, and peak knee flexion/extension torques), blood was drawn. Targeted serum metabolomics on hydrophilic metabolites were performed by high-performance liquid chromatography coupled with high-resolution and tandem mass spectrometry. Metabolite dimensionality reduction, pathway analysis, fold change, and t-tests evaluated changes in metabolite abundance. Associations were tested between functional measures and metabolite abundance. RESULTS Individuals with CP had a significant increase in the abundance of essential amino acids, catabolic products of protein metabolism, and tricarboxylic acid cycle substrates, such as valine, tryptophan, kynurenic acid, and pyruvate (p < 0.05). Importantly, the abundance of numerous metabolites was only highly associated with functional capacity in individuals with CP such that greater abundance was associated with greater capacity, but not in those with typical development. INTERPRETATION Our findings show clear increases in serum metabolites in individuals with CP, which are associated with functional capacity for movement. The altered metabolite profile measured after exercise might reflect increased energy production needed for movement. Appropriate nutritional intake during exercise might be needed given increased energy requirements.
Collapse
Affiliation(s)
- Chad Hanaoka
- Northwestern University Feinberg School of MedicineChicagoILUSA
- Shirley Ryan AbilityLabChicagoILUSA
| | - Rajeswari Pichika
- Northwestern University Feinberg School of MedicineChicagoILUSA
- Shirley Ryan AbilityLabChicagoILUSA
- Edward Hines VA Medical CenterHinesILUSA
| | - Sudarshan Dayanidhi
- Northwestern University Feinberg School of MedicineChicagoILUSA
- Shirley Ryan AbilityLabChicagoILUSA
| | - Prakash Jayabalan
- Northwestern University Feinberg School of MedicineChicagoILUSA
- Shirley Ryan AbilityLabChicagoILUSA
| |
Collapse
|
4
|
Chojnowski K, Opiełka M, Urbanowicz K, Zawadzka M, Wangin K, Smoleński RT, Mazurkiewicz-Bełdzińska M. Untargeted metabolomics reveals key metabolic alterations in pediatric epilepsy with insights into Tryptophan metabolism and the gut-brain axis. Sci Rep 2025; 15:15262. [PMID: 40307425 DOI: 10.1038/s41598-025-99805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
The biochemical processes of childhood-onset epilepsy remain unclear, with no reliable biomarkers for prognosis or management. Untargeted plasma metabolomics offers a valuable approach to uncover underlying pathomechanisms and identify actionable biomarkers. In this study, plasma samples from 18 pediatric patients with epilepsy and 11 age-matched healthy controls were analyzed using liquid chromatography-mass spectrometry. Data were analyzed using univariate and multivariate statistical methods and pathway enrichment analysis. Multivariate analyses demonstrated separation between the patient and control groups. A total of 19 endogenous metabolites (VIP > 1, adjusted p < 0.05) emerged as key differentiators. Compared with controls, patients exhibited significant reductions in tryptophan (Trp), 5-Hydroxyindoleacetic acid (5-HIAA), several gut microbiota-derived metabolites, including indole, indoxyl sulfate, and p-cresyl sulfate, as well as in niacin metabolism end-products - N1-Methyl-2-pyridone-5-carboxamide (Met2PY) and N1-Methyl-4-pyridone-3-carboxamide (Met4PY). In addition, patients showed decreased levels of tricarboxylic acid (TCA) cycle intermediates, concomitant with an increase in fatty acid derivatives and N-acetylneuraminic acid (Neu5Ac). The most substantially altered metabolic pathways in epilepsy patients involved the TCA cycle, vitamin A and C metabolism, prostaglandin synthesis, and D4/E4-neuroprostane formation. Observed alterations in tryptophan and microbiota-derived metabolites suggest gut dysbiosis may contribute to epilepsy development through the gut-brain axis. Moreover, the circulatory metabolic markers indicating an energy deficit and oxidative stress underscore the systemic impact of seizure activity.
Collapse
Affiliation(s)
- Karol Chojnowski
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, 80-211, Poland.
| | - Mikołaj Opiełka
- Department of Biochemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Krzysztof Urbanowicz
- Department of Biochemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Marta Zawadzka
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Karolina Wangin
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | | | |
Collapse
|
5
|
Zhu H, Zheng S, Xie L, Yun Y, Kwan P, Rollo B, Huang H. Identification and enrichment of potential pathways in the buffy coat of patients with DRE using non-targeted metabolomics integrated with GEO Datasets. Eur J Med Res 2025; 30:332. [PMID: 40287763 PMCID: PMC12032676 DOI: 10.1186/s40001-025-02609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND This study aims to identify potential biomarkers in the buffy coat of drug-resistant epilepsy (DRE) patients with mesial temporal lobe epilepsy and to elucidate associated pathways. METHODS A comprehensive non-targeted metabolomic and Gene Expression Omnibus (GEO) datasets analysis was first performed on buffy coat from DRE patients and non-epilepsy (CON) patients. Potential enriched biomarkers and pathways were integrated with gene expression profiles from GEO datasets to identify robust biomarkers. RESULTS In the DRE group, there were 15 patients (10 males and 5 females), with an average age of (37.67 ± 15.53) years. In the CON group, there were 10 patients (7 males and 3 females), with an average age of (51.60 ± 18.20) years. A total of 27 potential biomarkers were identified, including 7 down-regulated and 8 up-regulated. Additionally, 9 potential pathways related to DRE were identified. Notably, purine metabolism, tryptophan metabolism and aminoacyl-tRNA metabolism were closely related to DRE. Purine metabolism was up-regulated, while aminoacyl-tRNA and tryptophan metabolism were down-regulated. CONCLUSIONS The integration of metabolomic data with GEO datasets analysis offers a new strategy to identify robust biomarkers and pathways. The findings obtained from the buffy coat analysis offer potential insights for the diagnosis and treatment of DRE.
Collapse
Affiliation(s)
- Hailin Zhu
- School of Pharmacy, Nanchang University, Nanchang, China
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Suyue Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liyuan Xie
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, 566 Xuefu Road, Nanchang, 330000, China
| | - Yi Yun
- Biobank Center, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Ben Rollo
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Hui Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Nanchang University, 566 Xuefu Road, Nanchang, 330000, China.
| |
Collapse
|
6
|
Wu H, Huang C, Xiong S. Gut microbiota as a potential therapeutic target for children with cerebral palsy and epilepsy. Brain Dev 2025; 47:104286. [PMID: 39426843 DOI: 10.1016/j.braindev.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
Gut microbiota (GM), the "second genome," exerts influence on human health by impacting brain function through the gut-brain axis. This interaction involves various mechanisms, including immune regulation, metabolites, and neuronal pathways. The application of the next-generation sequencing technology provides a revolutionary tool for the study of GM, which contributes to a deeper comprehension of the GM-host relationship. Children with cerebral palsy (CP), a common neurological disorder in children, are more likely to develop epilepsy, which can exacerbate CP symptoms, particularly those related to cognitive impairment and gastrointestinal tract, such as constipation. The current study identified specific changes in the GM of children with CP accompanied by epilepsy. Furthermore, both diet and oral microbiota have the potential to influence the composition of the GM. Interventions with probiotics and dietary fiber based on GM can improve constipation and cognition, and this approach may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Hui Wu
- Child Healthcare Department, Maternal and Child Health Hospital of PanYu District, Guangzhou, China
| | - Congfu Huang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Shenghua Xiong
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Lyu J, Zhang X, Xiong S, Wu H, Han J, Xie Y, Qiu F, Yang Z, Huang C. Different care mode alter composition and function of gut microbiota in cerebral palsy children. Front Pediatr 2024; 12:1440190. [PMID: 39239470 PMCID: PMC11374594 DOI: 10.3389/fped.2024.1440190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Specialized care is essential for the recovery of children with cerebral palsy (CP). This study investigates how different care modes impact the gut microbiota. Methods Fecal samples from 32 children were collected, among whom those cared for by family (n = 21) were selected as the observation group, and those cared for by children's welfare institutions (n = 11) were selected as the control group (registration number of LGFYYXLL-024). The gut microbiota profiles were analyzed. Results There was no significant difference in the α-diversity of the gut microbiota and the abundance at the phylum level. However, at the genus level, the observation group showed a significant increase in the abundance of butyrate-producing bacteria Bacteroides and Lachnospiracea incertae sedis (P < 0.05), and a significant decrease in the abundance of opportunistic pathogens Prevotella, Clostridium cluster IV, Oscillibacter, and Fusobacterium (P < 0.05). Additionally, lipid metabolism, carbohydrate metabolism, transcription, cellular processes and signaling, and membrane transport were significantly upregulated in the observation group. Lipid metabolism was positively correlated with Bacteroides and Lachnospiracea incertae sedis, indicating a positive impact of the family-centered care mode on bacterial metabolism processes. Discussion This study highlights that the family-centered care mode had a positive impact on the composition and function of the gut microbiota. The study provides valuable insights into the relationship between care mode and gut microbiota, which can inspire the development of interventions for cerebral palsy.
Collapse
Affiliation(s)
- Jinli Lyu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shenghua Xiong
- Department of Pediatrics, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Hui Wu
- Department of Pediatrics, Hexian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Han
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongjie Xie
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Feifeng Qiu
- Department of Critical Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhenyu Yang
- Department of Microbial Research, WeHealthGene Institute, Joint Laboratory of Micro-Ecology and Children's Health, Shenzhen Children's Hospital, Shenzhen WeHealthGene Co., Ltd., Shenzhen, China
| | - Congfu Huang
- Department of Pediatrics, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, China
| |
Collapse
|
8
|
Borrego-Ruiz A, Borrego JJ. Neurodevelopmental Disorders Associated with Gut Microbiome Dysbiosis in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:796. [PMID: 39062245 PMCID: PMC11275248 DOI: 10.3390/children11070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The formation of the human gut microbiome initiates in utero, and its maturation is established during the first 2-3 years of life. Numerous factors alter the composition of the gut microbiome and its functions, including mode of delivery, early onset of breastfeeding, exposure to antibiotics and chemicals, and maternal stress, among others. The gut microbiome-brain axis refers to the interconnection of biological networks that allow bidirectional communication between the gut microbiome and the brain, involving the nervous, endocrine, and immune systems. Evidence suggests that the gut microbiome and its metabolic byproducts are actively implicated in the regulation of the early brain development. Any disturbance during this stage may adversely affect brain functions, resulting in a variety of neurodevelopmental disorders (NDDs). In the present study, we reviewed recent evidence regarding the impact of the gut microbiome on early brain development, alongside its correlation with significant NDDs, such as autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, cerebral palsy, fetal alcohol spectrum disorders, and genetic NDDs (Rett, Down, Angelman, and Turner syndromes). Understanding changes in the gut microbiome in NDDs may provide new chances for their treatment in the future.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, 29010 Málaga, Spain
| |
Collapse
|
9
|
Li Q, Gu Y, Liang J, Yang Z, Qin J. A long journey to treat epilepsy with the gut microbiota. Front Cell Neurosci 2024; 18:1386205. [PMID: 38988662 PMCID: PMC11233807 DOI: 10.3389/fncel.2024.1386205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a common neurological disorder that affects approximately 10.5 million children worldwide. Approximately 33% of affected patients exhibit resistance to all available antiseizure medications, but the underlying mechanisms are unknown and there is no effective treatment. Increasing evidence has shown that an abnormal gut microbiota may be associated with epilepsy. The gut microbiota can influence the function of the brain through multiple pathways, including the neuroendocrine, neuroimmune, and autonomic nervous systems. This review discusses the interactions between the central nervous system and the gastrointestinal tract (the brain-gut axis) and the role of the gut microbiota in the pathogenesis of epilepsy. However, the exact gut microbiota involved in epileptogenesis is unknown, and no consistent results have been obtained based on current research. Moreover, the target that should be further explored to identify a novel antiseizure drug is unclear. The role of the gut microbiota in epilepsy will most likely be uncovered with the development of genomics technology.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Youyu Gu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jingjing Liang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| |
Collapse
|
10
|
Qiu Y, Song B, Xie M, Tao Y, Yin Z, Wang M, Ma C, Chen Z, Wang Z. Causal links between gut microbiomes, cytokines and risk of different subtypes of epilepsy: a Mendelian randomization study. Front Neurosci 2024; 18:1397430. [PMID: 38855442 PMCID: PMC11157073 DOI: 10.3389/fnins.2024.1397430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Recent research suggests a potential link between the gut microbiome (GM) and epilepsy. We undertook a Mendelian randomization (MR) study to determine the possible causal influence of GM on epilepsy and its various subtypes, and explore whether cytokines act as mediators. Methods We utilized Genome-Wide Association Study (GWAS) summary statistics to examine the causal relationships between GM, cytokines, and four epilepsy subtypes. Furthermore, we assessed whether cytokines mediate the relationship between GM and epilepsy. Significant GMs were further investigated using transcriptomic MR analysis with genes mapped from the FUMA GWAS. Sensitivity analyses and reverse MR were conducted for validation, and false discovery rate (FDR) correction was applied for multiple comparisons. Results We pinpointed causal relationships between 30 GMs and various epilepsy subtypes. Notably, the Family Veillonellaceae (OR:1.03, 95%CI:1.02-1.05, p = 0.0003) consistently showed a strong positive association with child absence epilepsy, and this causal association endured even after FDR correction (p-FDR < 0.05). Seven cytokines were significantly associated with epilepsy and its subtypes. A mediating role for cytokines has not been demonstrated. Sensitivity tests validated the primary MR analysis outcomes. Additionally, no reverse causality was detected between significant GMs and epilepsy. Of the mapped genes of notable GMs, genes like BLK, FDFT1, DOK2, FAM167A, ZSCAN9, RNGTT, RBM47, DNAJC21, SUMF1, TCF20, GLO1, TMTC1, VAV2, and RNF14 exhibited a profound correlation with the risk factors of epilepsy subtypes. Conclusion Our research validates the causal role of GMs and cytokines in various epilepsy subtypes, and there has been no evidence that cytokines play a mediating role between GM and epilepsy. This could provide fresh perspectives for the prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Youjia Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyi Song
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minjia Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuchen Tao
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Ziqian Yin
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Menghan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Ma
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Wang N, Wang H, Bai Y, Zhao Y, Zheng X, Gao X, Zhang Z, Yang L. Metagenomic Analysis Reveals Difference of Gut Microbiota in ADHD. J Atten Disord 2024; 28:872-879. [PMID: 38327077 DOI: 10.1177/10870547231225491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Although ADHD is highly heritable, some environmental factors contribute to its development. Given the growing evidence that gut microbiota was involved in psychiatric disorders, we aimed to identify the characteristic composition of the gut microbiota in ADHD. METHODS We recruited 47 medication-naive children and adolescents with ADHD, and 60 healthy controls (HCs). We used shotgun metagenomics to measure the structure of the gut microbiota and analyzed the difference in bacterial taxa between ADHD and HCs. RESULTS Significant differences were found between the ADHD and HC groups in both alpha diversity indices (Simpson index, p = .025 and Shannon index, p = .049) and beta diversity indices (Euclidean distance, Bray-Curtis distance, and JSD distance, p < 2.2e-16). Nine representative species best explain the difference. CONCLUSION Patients with ADHD showed significant differences in the composition of the gut microbiota compared with HCs. These results may help identify potential biomarkers of ADHD.
Collapse
Affiliation(s)
- Ning Wang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Haibin Wang
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Yu Bai
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Yilu Zhao
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xiangyu Zheng
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xuping Gao
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Zifeng Zhang
- Yan'an Third People's Hospital, Shanxi Province, China
| | - Li Yang
- Peking University Sixth Hospital, Beijing, China
- Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
- NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
12
|
Yang R, Liu J, Diao L, Wei L, Luo H, Cai L. A meta-analysis of the changes in the Gut microbiota in patients with intractable epilepsy compared to healthy controls. J Clin Neurosci 2024; 120:213-220. [PMID: 38290181 DOI: 10.1016/j.jocn.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To explore gut microbiota changes in intractable epilepsy patients compared to healthy control individuals through meta-analysis. METHODS PubMed, Web of Science, CNKI, Wanfang, medRxiv, bioRxiv, ilae.org, clinical trial databases, and papers from the International Epilepsy Congress (IEC) were searched, and the literature on the correlation between intractable epilepsy and the gut microbiota reported from database establishment to June 2023 was included. Literature meeting the inclusion criteria was screened, and meta-analysis of the included literature was performed using RevMan5.4 software. RESULTS Ten case-control studies were included in the meta-analysis. There were 183 patients with intractable epilepsy and 283 healthy control subjects. The analysis results indicated that Bacteroidetes (MD = -0.64, 95 %-CI = -1.21 to -0.06) and Ruminococcaceae (MD = -1.44, 95 % CI = -1.96 to -0.92) were less abundant in the patients with intractable epilepsy than in the normal population. Proteobacteria (MD = 0.53, 95 % CI = 0.02 to 1.05) and Verrucomicrobia (MD = 0.26, 95 % CI = 0.06 to 0.45) were more abundant in the patients with intractable epilepsy than in the normal population. CONCLUSION This meta-analysis indicated that the abundances of Bacteroidetes and Ruminococcaceae were reduced while those of Proteobacteria and Verrucomicrobia were significantly increased in patients with intractable epilepsy. The above changes in these four taxa of the gut microbiota may have been induced by intractable epilepsy, which may increase the risk of seizures. Their roles in the pathogenesis of intractable epilepsy need to be further explored, and related factors that influence microbiota changes should be considered in future studies.
Collapse
Affiliation(s)
- Rongrong Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Limei Diao
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Liping Wei
- Department of Rehabilitation, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Huazheng Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Lun Cai
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530023, PR China.
| |
Collapse
|
13
|
Zhu H, Wang W, Li Y. The interplay between microbiota and brain-gut axis in epilepsy treatment. Front Pharmacol 2024; 15:1276551. [PMID: 38344171 PMCID: PMC10853364 DOI: 10.3389/fphar.2024.1276551] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/12/2024] [Indexed: 08/12/2024] Open
Abstract
The brain-gut axis plays a vital role in connecting the cognitive and emotional centers of the brain with the intricate workings of the intestines. An imbalance in the microbiota-mediated brain-gut axis extends far beyond conditions like Irritable Bowel Syndrome (IBS) and obesity, playing a critical role in the development and progression of various neurological disorders, including epilepsy, depression, Alzheimer's disease (AD), and Parkinson's disease (PD). Epilepsy, a brain disorder characterized by unprovoked seizures, affects approximately 50 million people worldwide. Accumulating evidence suggests that rebuilding the gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and ketogenic diets (KD) can benefit drug-resistant epilepsy. The disturbances in the gut microbiota could contribute to the toxic side effects of antiepileptic drugs and the development of drug resistance in epilepsy patients. These findings imply the potential impact of the gut microbiota on epilepsy and suggest that interventions targeting the microbiota, such as the KD, hold promise for managing and treating epilepsy. However, the full extent of the importance of microbiota in epilepsy treatment is not yet fully understood, and many aspects of this field remain unclear. Therefore, this article aims to provide an overview of the clinical and animal evidence supporting the regulatory role of gut microbiota in epilepsy, and of potential pathways within the brain-gut axis that may be influenced by the gut microbiota in epilepsy. Furthermore, we will discuss the recent advancements in epilepsy treatment, including the KD, fecal microbiota transplantation, and antiseizure drugs, all from the perspective of the gut microbiota.
Collapse
Affiliation(s)
- Hanxiao Zhu
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| | - Wei Wang
- Neurobiology Laboratory, China Agricultural University, Beijing, China
| | - Yun Li
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, China
- Clinical Medical School, Dali University, Dali, China
| |
Collapse
|
14
|
Yang J, Li J, Zhang X, Zhou Q, Wang J, Chen Q, Meng X, Xia Y. Effects of Ecologically Relevant Concentrations of Cadmium on the Microbiota, Short-Chain Fatty Acids, and FFAR 2 Expression in Zebrafish. Metabolites 2023; 13:metabo13050657. [PMID: 37233698 DOI: 10.3390/metabo13050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Exposure to cadmium (Cd) can affect neurodevelopment and results in increased potential of developing neurodegenerative diseases during the early developmental stage of organisms, but the mechanisms through which exposure to environmentally relevant concentrations of Cd lead to developmental neurotoxicity remain unclear. Although we know that microbial community fixations overlap with the neurodevelopmental window during early development and that Cd-induced neurodevelopmental toxicity may be related to the disruption of microorganisms during early development, information on the effects of exposure to environmentally relevant Cd concentrations on gut microbiota disruption and neurodevelopment is scarce. Therefore, we established a model of zebrafish exposed to Cd (5 µg/L) to observe the changes in the gut microbiota, SCFAs, and free fatty acid receptor 2 (FFAR2) in zebrafish larvae exposed to Cd for 7 days. Our results indicated that there were significant changes in the gut microbial composition due to the exposure to Cd in zebrafish larvae. At the genus level, there were decreases in the relative abundances of Phascolarctobacterium, Candidatus Saccharimonas, and Blautia in the Cd group. Our analysis revealed that the acetic acid concentration was decreased (p > 0.05) while the isobutyric acid concentration was increased (p < 0.05). Further correlation analysis indicated a positive correlation between the content of acetic acid and the relative abundances of Phascolarctobacterium and Candidatus Saccharimonas (R = 0.842, p < 0.01; R = 0.767, p < 0.01), and a negative correlation between that of isobutyric acid and the relative abundance of Blautia glucerasea (R = -0.673, p < 0.05). FFAR2 needs to be activated by SCFAs to exert physiological effects, and acetic acid is its main ligand. The FFAR2 expression and the acetic acid concentration were decreased in the Cd group. We speculate that FFAR2 may be implicated in the regulatory mechanism of the gut-brain axis in Cd-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, 283, Jianghaidadao, Guangzhou 510006, China
| | - Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, 283, Jianghaidadao, Guangzhou 510006, China
| | - Xiaoshun Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qin Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, 283, Jianghaidadao, Guangzhou 510006, China
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, 283, Jianghaidadao, Guangzhou 510006, China
| | - Xiaojing Meng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Occupational Health and Occupational Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, 283, Jianghaidadao, Guangzhou 510006, China
| |
Collapse
|