1
|
Monfaredan A, Şen S, Hosseininasab A, Taştekin D, Fazli G, Bozbey HU, Yousefi N, Hocaoğlu M, Öncül MO, Özen RS. Exosome Enveloped by Nano Lipid Particle a New Model for Signal Transducer and Activator of Transcription 3 Silencer Ribonucleic Acid Delivery System to a Glioblastoma Mice Model. Cancers (Basel) 2025; 17:1648. [PMID: 40427146 PMCID: PMC12109797 DOI: 10.3390/cancers17101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Glioblastoma is a highly aggressive brain tumor with limited treatment options and poor prognosis. Signal Transducer and Activator of Transcription 3 (STAT3) plays a crucial role in glioblastoma progression, making it a promising therapeutic target. However, effective delivery of STAT3-silencing agents across the blood-brain barrier remains a significant challenge. This study evaluates the efficacy of Lipid Nanoparticles-EXOSOME COMPLEX STAT3-silencer treatment in reducing glioblastoma tumor growth by facilitating efficient small interfering RNA delivery and inhibiting STAT3 expression. Methods: A novel exosome-based drug delivery system was developed using NLP-EXOSOME COMPLEX nanoparticles loaded with STAT3-silencer siRNA. The therapeutic efficacy was assessed in vitro using human glioblastoma cell lines and in vivo using a glioblastoma mouse model. Tumor progression, STAT3 expression levels, and survival rates were analyzed. Results: The results demonstrated that Lipid Nanoparticles-EXOSOME COMPLEX effectively transported STAT3-silencer siRNA into glioblastoma cells, leading to significant STAT3 downregulation. This resulted in reduced tumor proliferation, increased apoptosis, and extended survival in vivo. The combination of lipid nanoparticles and exosomes provided a stable and efficient delivery mechanism with improved uptake and therapeutic efficacy. Conclusion: Lipid Nanoparticles-EXOSOME COMPLEX STAT3-silencer treatment offers a promising approach for targeted glioblastoma therapy by overcoming the blood-brain barrier limitations and enhancing STAT3 inhibition. Further research is necessary to optimize long-term efficacy, assess potential immune responses, and explore combinatory therapeutic strategies for improved patient outcomes.
Collapse
Affiliation(s)
- Amir Monfaredan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
| | - Sena Şen
- Department of Basic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye;
| | | | - Didem Taştekin
- Department of Clinic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye; (D.T.); (H.U.B.)
| | - Ghazaleh Fazli
- Department of Developmental Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893780, Iran; (G.F.); (N.Y.)
| | - Hamza Uğur Bozbey
- Department of Clinic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye; (D.T.); (H.U.B.)
| | - Nasrin Yousefi
- Department of Developmental Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893780, Iran; (G.F.); (N.Y.)
| | - Merve Hocaoğlu
- Istanbul Genetics Group, Genetic Disorders Evaluation Center, 34365 Istanbul, Türkiye; (M.H.); (R.S.Ö.)
| | - Mustafa Oral Öncül
- Department of Infectious Diseases and Clinical Microbiology, Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| | - Rıdvan Seçkin Özen
- Istanbul Genetics Group, Genetic Disorders Evaluation Center, 34365 Istanbul, Türkiye; (M.H.); (R.S.Ö.)
| |
Collapse
|
2
|
Mehdizadeh S, Mamaghani M, Hassanikia S, Pilehvar Y, Ertas YN. Exosome-powered neuropharmaceutics: unlocking the blood-brain barrier for next-gen therapies. J Nanobiotechnology 2025; 23:329. [PMID: 40319325 PMCID: PMC12049023 DOI: 10.1186/s12951-025-03352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/24/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) presents a formidable challenge in neuropharmacology, limiting the delivery of therapeutic agents to the brain. Exosomes, nature's nanocarriers, have emerged as a promising solution due to their biocompatibility, low immunogenicity, and innate ability to traverse the BBB. A thorough examination of BBB anatomy and physiology reveals the complexities of neurological drug delivery and underscores the limitations of conventional methods. MAIN BODY This review explores the potential of exosome-powered neuropharmaceutics, highlighting their structural and functional properties, biogenesis, and mechanisms of release. Their intrinsic advantages in drug delivery, including enhanced stability and efficient cellular uptake, are discussed in detail. Exosomes naturally overcome BBB barriers through specific translocation mechanisms, making them a compelling vehicle for targeted brain therapies. Advances in engineering strategies, such as genetic and biochemical modifications, drug loading techniques, and specificity enhancement, further bolster their therapeutic potential. Exosome-based approaches hold immense promise for treating a spectrum of neurological disorders, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), brain tumors, stroke, and psychiatric conditions. CONCLUSION By leveraging their innate properties and engineering innovations, exosomes offer a versatile platform for precision neurotherapeutics. Despite their promise, challenges remain in clinical translation, including large-scale production, standardization, and regulatory considerations. Future research directions in exosome nanobiotechnology aim to refine these therapeutic strategies, unlocking new avenues for treating neurological diseases. This review underscores the transformative impact of exosome-based drug delivery, paving the way for next-generation therapies that can effectively penetrate the BBB and revolutionize neuropharmacology.
Collapse
Affiliation(s)
- Sepehr Mehdizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mobin Mamaghani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| |
Collapse
|
3
|
Yang YP, Nicol CJB, Chiang MC. A Review of the Neuroprotective Properties of Exosomes Derived from Stem Cells and Exosome-Coated Nanoparticles for Treating Neurodegenerative Diseases and Stroke. Int J Mol Sci 2025; 26:3915. [PMID: 40332773 PMCID: PMC12028030 DOI: 10.3390/ijms26083915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Neurological diseases, including neurodegenerative disorders and stroke, represent significant medical challenges due to their complexity and the limitations of current treatment approaches. This review explores the potential of stem cell (SC)-derived exosomes (Exos) as a transformative therapeutic strategy for these diseases. Exos, especially those derived from SCs, exhibit natural targeting ability, biocompatibility, and the capacity to cross the blood-brain barrier (BBB), making them ideal vehicles for drug delivery. This review provides an in-depth discussion of the properties and advantages of SC-Exos. It highlights their potential synergistic benefits in therapeutic approaches to treat neurological diseases. This article discusses the mechanisms of action of SC-Exos, highlighting their ability to target specific cells, modulate disease pathways, and provide controlled release of therapeutic agents. Applications in specific neurological disorders have been investigated, demonstrating the potential to improve outcomes in conditions such as Alzheimer's Disease (AD), Parkinson's Disease (PD), and stroke. Moreover, Exos-coated nanoparticles (NPs) combine the natural properties of Exos with the multifunctionality of NPs. This integration takes advantage of exosome membrane biocompatibility and targeting capabilities while preserving NPs' beneficial features, such as drug loading and controlled release. As a result, Exos-coated NPs may enhance the precision, efficacy, and safety of therapeutic interventions. In conclusion, SC-Exos represent a promising and innovative approach to treating neurological diseases.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J. B. Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Sinclair Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
4
|
Chen HX, Xu HJ, Zhang W, Luo ZY, Zhang ZX, Shi HH, Dong YC, Xie ZJ, Ben Y, An SJ. HucMSCs-derived Exosomes Protect Against 6-hydroxydopamineinduced Parkinson's Disease in Rats by Inhibiting Caspase-3 Expression and Suppressing Apoptosis. Curr Stem Cell Res Ther 2025; 20:266-278. [PMID: 40351080 DOI: 10.2174/011574888x301827240613063513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2025]
Abstract
OBJECTIVE Parkinson's disease (PD) is a progressive neurodegenerative disorder with symptoms including tremor and bradykinesia, while traditional dopamine replacement therapy and hypothalamic deep brain stimulation can temporarily relieve patients' symptoms, they cannot cure the disease. Hence, discovering new methods is crucial to designing more effective therapeutic approaches to address the condition. In our previous study, we found that exosomes (Exos) derived from human umbilical cord mesenchymal stem cells (hucMSCs) repaired a PD model by inducing dopaminergic neuron autophagy and inhibiting microglia. However, it is not clear whether its therapeutic effect is related to inhibiting apoptosis by inhibiting caspase-3 expression. METHODS Three intervention schemes were used concerning previous literature, and the dosage of each scheme is the same, with different dosing intervals and treatment courses and to compare the aspects of behavior, histomorphology, and biochemical indexes. To predict and determine target gene enrichment, high-throughput sequencing and miRNA expression profiling of exosomes, GO and KEGG analysis, and Western blot were used. RESULTS Exos labeled with PKH67 were found to reach the substantia nigra through the bloodbrain barrier and existed in the liver and spleen. 6-hydroxydopamine (6-OHDA) induced PD rats were treated with Exos every two days for one month, which alleviated the asymmetric rotation induced by morphine, reduced the loss of dopaminergic neurons in the substantia nigra, and increased dopamine levels in the striatum. The effect became more significant as the treatment time was extended to two months. These results suggest that hucMSCs-Exos can inhibit the 6-OHDA- induced neuron damage in PD rats, and its neuroprotective effects may be mediated by inhibiting cell apoptosis. Through high-throughput sequencing of miRNA, potential targets for Exos to inhibit apoptosis may be BAD, IKBKB, TRAF2, BCL2, and CYCS. CONCLUSION The above results indicate that hucMSCs-Exos can inhibit 6-OHDA-induced damage in PD rats, and its neuroprotective effect may be mediated by inhibiting cell apoptosis.
Collapse
Affiliation(s)
- Hong-Xu Chen
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| | - Hong-Jun Xu
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| | - Wang Zhang
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| | - Zi-Yu Luo
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| | - Zhong-Xia Zhang
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| | - Hao-Han Shi
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
| | - Yu-Chang Dong
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
| | - Zhan-Jun Xie
- Department of Research Center, Hebei General Hospital, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, China
| | - Ying Ben
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
| | - Sheng-Jun An
- Department of Research Center, Hebei University of Chinese Medicine, No. 3 Xingyuan Road, Luquan Economic Development Zone, Shijiazhuang, Hebei, 050090, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, 050090, Hebei, China
| |
Collapse
|
5
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
6
|
Wang M, Jin F, Tong X. From bench to bedside: The promising value of exosomes in precision medicine for CNS tumors. Heliyon 2024; 10:e32376. [PMID: 38961907 PMCID: PMC11219334 DOI: 10.1016/j.heliyon.2024.e32376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Exosomes are naturally present extracellular vesicles (EVs) released into the surrounding body fluids upon the fusion of polycystic and plasma membranes. They facilitate intercellular communication by transporting DNA, mRNA, microRNA, long non-coding RNA, circular RNA, proteins, lipids, and nucleic acids. They contribute to the onset and progression of Central Nervous System (CNS) tumors. In addition, they can be used as biomarkers of tumor proliferation, migration, and blood vessel formation, thereby affecting the Tumor Microenvironment (TME). This paper reviews the recent advancements in the diagnosis and treatment of exosomes in various CNS tumors, the promise and challenges of exosomes as natural carriers of CNS tumors, and the therapeutic prospects of exosomes in CNS tumors. Furthermore, we hope this research can contribute to the development of more targeted and effective treatments for central nervous system tumors.
Collapse
Affiliation(s)
- Mengjie Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Feng Jin
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital).266042, Qingdao, Shandong, China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|