1
|
Bo X. Microalgae and exercise: from molecular mechanisms and brain health to clinical perspectives in the context of 3P medicine. EPMA J 2025; 16:351-386. [PMID: 40438495 PMCID: PMC12106266 DOI: 10.1007/s13167-025-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/11/2025] [Indexed: 06/01/2025]
Abstract
Microalgae are emerging as innovative bioresources with diverse therapeutic applications, particularly in cardiovascular health, neuroprotection, anti-inflammatory, and antioxidant responses. These bioactive compounds effectively reduce inflammatory mediators, mitigate oxidative stress, and support mitochondrial health-critical factors in exercise performance, recovery, and chronic disease management. Notably, microalgae such as Spirulina and Chlorella exhibit promising biological activities in preclinical and limited clinical studies, including anti-inflammatory and neuroprotective effects. However, large-scale, randomized controlled trials (RCTs) remain scarce, limiting their clinical translation. Although preliminary evidence suggests potential benefits for sports performance, oxidative stress reduction, and cognitive function, most studies are small-scale, preclinical, or observational. Large, well-powered RCTs are needed to confirm their efficacy and safety. Within the framework of Predictive, Preventive, and Personalized Medicine (PPPM/3PM), this review explores microalgae's potential in predictive diagnostics, targeted prevention, and individualized supplementation strategies. Despite promising findings, clinical application requires a cautious approach due to insufficient high-quality trials supporting microalgae-based interventions in medical practice. Future research should prioritize RCTs, pharmacokinetic studies, and long-term safety assessments to establish evidence-based guidelines for their use in health and disease management.
Collapse
Affiliation(s)
- Xuanyu Bo
- University of Glasgow, Gilmorehill, Glasgow, Scotland G128QQ UK
| |
Collapse
|
2
|
Liao Z, Zeng J, Lin A, Zou Y, Zhou Z. Pre-treated mesenchymal stem cell-derived exosomes: A new perspective for accelerating spinal cord injury repair. Eur J Pharmacol 2025; 992:177349. [PMID: 39921061 DOI: 10.1016/j.ejphar.2025.177349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Spinal cord injury (SCI) is a devastating event for the central nervous system (CNS), often resulting in the loss of sensory and motor functions. It profoundly affects both the physiological and psychological well-being of patients, reducing their quality of life while also imposing significant economic pressure on families and the healthcare system. Due to the complex pathophysiology of SCI, effective treatments for promoting recovery remain scarce. Mesenchymal stem cell-derived exosomes (MSC-Exos) offer advantages such as low immunogenicity, good biocompatibility, and the ability to cross the blood-spinal cord barrier (BSCB). In preclinical studies, they have progressively shown efficacy in promoting SCI repair and functional recovery. However, the low yield and insufficient targeting of MSC-Exos limit their therapeutic efficacy. Currently, genetic engineering and other preprocessing techniques are being employed to optimize both the yield and functional properties of exosomes, thereby enhancing their therapeutic potential. Therefore, this paper provides an overview of the pathophysiology of SCI and the biogenesis of exosomes. It also summarizes current approaches to optimizing exosome performance. Additionally, it details the mechanisms through which optimized exosomes provide neuroprotection and explores the potential of combined treatments involving MSC-Exos and hydrogels.
Collapse
Affiliation(s)
- Zhiqiang Liao
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Jiangxi Province Key Laboratory of Anesthesiology, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, China
| | - Junjian Zeng
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Jiangxi Province Key Laboratory of Anesthesiology, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, China
| | - Aiqing Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Jiangxi Province Key Laboratory of Anesthesiology, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, China
| | - Yu Zou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Jiangxi Province Key Laboratory of Anesthesiology, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, China
| | - Zhidong Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Jiangxi Province Key Laboratory of Anesthesiology, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, China.
| |
Collapse
|