1
|
Tecchio F, Bertoli M, Sbragia E, Stara S, Pasqualetti P, L'Abbate T, Croce P, Pizzichino A, Cancelli A, Armonaite K, Cecconi F, Paulon L, Inglese M. Fatigue relief in multiple sclerosis by personalized neuromodulation: A multicenter pilot study [FaremusGE]. Mult Scler Relat Disord 2025; 94:106276. [PMID: 39842388 DOI: 10.1016/j.msard.2025.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND A recent application of the GRADE guidelines indicated Faremus, a 5-day neuromodulation for 15 min per day via transcranial direct current stimulation (tDCS), as medium to highly recommendable for alleviating fatigue in multiple sclerosis (MS). METHODS With this pilot study we aimed to evaluate the feasibility, acceptance, safety, and effectiveness of the Faremus treatment carried out in a multicenter context. The Rome unit prepared the intervention, supplied the personalized electrodes to the San Martino Hospital in Genova, where the neurological team enrolled the population of fatigued people with multiple sclerosis (PwMS) and carried out the treatment. RESULTS All 17 enrolled patients completed treatment, reporting optimal acceptance and safety when using Faremus in the multicenter setting. The team involved, including neurologists, neurophysiopathology technicians, engineers, physicists, and psychologists expressed high appreciation (average score 8 out of 10). The treatment improved fatigue symptoms by an average of 27%, to levels comparable with previous studies. Similarly, mild depressive symptoms improved by an average of 38%. CONCLUSIONS The Faremus personalized electroceutical intervention, a 5-day anodal tDCS over bilateral whole-body somatosensory cortex with occipital cathode, is well accepted and can be applied feasibly, safely and effectively in a multicenter setting, offering a reliable tool to relieve fatigue-related symptoms, thus supporting the quality of life of fatigued people with MS. The present study lays a starting point for the involvement of multiple MS units nationwide in offering therapeutic enrichment for their fatigued patients.
Collapse
Affiliation(s)
- Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy.
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Elvira Sbragia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Neurology, Galliera Hospital, Genoa, Italy
| | - Silvia Stara
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Section of Medical Statistics, Sapienza Università di Roma, Rome, Italy
| | - Teresa L'Abbate
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Uninettuno University, Rome, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | | | - Andrea Cancelli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | | | - Federico Cecconi
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Consiglio Nazionale delle Ricerche (CNR), Rome, Italy; Independent Researcher, Rome, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
2
|
Carè M, Chiappalone M, Cota VR. Personalized strategies of neurostimulation: from static biomarkers to dynamic closed-loop assessment of neural function. Front Neurosci 2024; 18:1363128. [PMID: 38516316 PMCID: PMC10954825 DOI: 10.3389/fnins.2024.1363128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Despite considerable advancement of first choice treatment (pharmacological, physical therapy, etc.) over many decades, neurological disorders still represent a major portion of the worldwide disease burden. Particularly concerning, the trend is that this scenario will worsen given an ever expanding and aging population. The many different methods of brain stimulation (electrical, magnetic, etc.) are, on the other hand, one of the most promising alternatives to mitigate the suffering of patients and families when conventional treatment fall short of delivering efficacious treatment. With applications in virtually all neurological conditions, neurostimulation has seen considerable success in providing relief of symptoms. On the other hand, a large variability of therapeutic outcomes has also been observed, particularly in the usage of non-invasive brain stimulation (NIBS) modalities. Borrowing inspiration and concepts from its pharmacological counterpart and empowered by unprecedented neurotechnological advancement, the neurostimulation field has seen in recent years a widespread of methods aimed at the personalization of its parameters, based on biomarkers of the individuals being treated. The rationale is that, by taking into account important factors influencing the outcome, personalized stimulation can yield a much-improved therapy. Here, we review the literature to delineate the state-of-the-art of personalized stimulation, while also considering the important aspects of the type of informing parameter (anatomy, function, hybrid), invasiveness, and level of development (pre-clinical experimentation versus clinical trials). Moreover, by reviewing relevant literature on closed loop neuroengineering solutions in general and on activity dependent stimulation method in particular, we put forward the idea that improved personalization may be achieved when the method is able to track in real time brain dynamics and adjust its stimulation parameters accordingly. We conclude that such approaches have great potential of promoting the recovery of lost functions and enhance the quality of life for patients.
Collapse
Affiliation(s)
- Marta Carè
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, Genova, Italy
- Rehab Technologies Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | |
Collapse
|
3
|
Bertoli M, Tataranni A, Porziani S, Pasqualetti P, Gianni E, Grifoni J, L’Abbate T, Armonaite K, Conti L, Cancelli A, Cottone C, Marinozzi F, Bini F, Cecconi F, Tecchio F. Effects on Corticospinal Tract Homology of Faremus Personalized Neuromodulation Relieving Fatigue in Multiple Sclerosis: A Proof-of-Concept Study. Brain Sci 2023; 13:brainsci13040574. [PMID: 37190539 DOI: 10.3390/brainsci13040574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Objectives: Fatigue in multiple sclerosis (MS) is a frequent and invalidating symptom, which can be relieved by non-invasive neuromodulation, which presents only negligible side effects. A 5-day transcranial direct-current stimulation, 15 min per day, anodically targeting the somatosensory representation of the whole body against a larger occipital cathode was efficacious against MS fatigue (fatigue relief in multiple sclerosis, Faremus treatment). The present proof-of-concept study tested the working hypothesis that Faremus S1 neuromodulation modifies the homology of the dominant and non-dominant corticospinal (CST) circuit recruitment. Methods: CST homology was assessed via the Fréchet distance between the morphologies of motor potentials (MEPs) evoked by transcranial magnetic stimulation in the homologous left- and right-hand muscles of 10 fatigued MS patients before and after Faremus. Results: In the absence of any change in MEP features either as differences between the two body sides or as an effect of the treatment, Faremus changed in physiological direction the CST’s homology. Faremus effects on homology were more evident than recruitment changes within the dominant and non-dominant sides. Conclusions: The Faremus-related CST changes extend the relevance of the balance between hemispheric homologs to the homology between body sides. With this work, we contribute to the development of new network-sensitive measures that can provide new insights into the mechanisms of neuronal functional patterning underlying relevant symptoms.
Collapse
|
4
|
Franca T, Andrea C, Arianna P, Teresa L, Eugenia G, Massimo B, Luca P, Silvana Z, Alessandro G, Domenico L, Patrizio P, Massimiliano M, Maddalena FM. Home treatment against fatigue in multiple sclerosis by a personalized, bilateral whole-body somatosensory cortex stimulation. Mult Scler Relat Disord 2022; 63:103813. [DOI: 10.1016/j.msard.2022.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
|
5
|
Padalino M, Scardino C, Zito G, Cancelli A, Cottone C, Bertoli M, Gianni E, L'Abbate T, Trombetta E, Porcaro C, Bini F, Marinozzi F, Filippi MM, Tecchio F. Effects on Motor Control of Personalized Neuromodulation Against Multiple Sclerosis Fatigue. Brain Topogr 2021; 34:363-372. [PMID: 33656622 DOI: 10.1007/s10548-021-00820-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Fatigue is a hidden symptom of Multiple Sclerosis (MS) disease that nevertheless impacts severely on patients' everyday life. Evidence indicates the involvement of the sensorimotor network and its inter-nodes communication at the basis of this symptom. Two randomized controlled trials (RCTs) showed that the personalized neuromodulation called Fatigue Relief in Multiple Sclerosis (FaReMuS) efficaciously fights multiple sclerosis (MS) fatigue. By this Proof of Concept study, we tested whether FaReMuS reverts the alteration of the brain-muscular synchronization previously observed occurring with fatigue. The cortico muscular coherence (CMC) was studied in 11 patients before and after FaReMuS, a 5-day tDCS (1.5 mA, 15 min per day) anodal over the whole body's somatosensory representation (S1) via a personalized MRI-based electrode (35 cm2) against the occipital cathode (70 cm2). Before FaReMuS, the CMC was observed at a mean frequency of 31.5 ± 1.6 Hz (gamma-band) and positively correlated with the level of fatigue (p = .027). After FaReMuS, fatigue reduced in average of 28% ± 33% the baseline level, and the CMC frequency reduced to 26.6 ± 1.5 Hz (p = .022), thus forthcoming the physiological beta-band as observed in healthy people. The personalized S1 neuromodulation treatment, ameliorating the central-peripheral communication that subtends simple everyday movements, supports the appropriateness of neuromodulations aiming at increasing the parietal excitability in fighting MS fatigue. The relationship between central-peripheral features and fatigue profile strengthens a central more than peripheral origin of the symptom.
Collapse
Affiliation(s)
| | - Carla Scardino
- LET'S-ISTC-CNR, via Palestro 32, 00185, Rome, Italy.,Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Rome, Italy
| | - Giancarlo Zito
- Complex Operative Unit of Neurology, Emergency Department, San Camillo de Lellis Hospital, Viale Kennedy, Rieti, 02100, RI, Italy.,Diagnostic and Clinical Assessment Unit, Istituto di Ortofonologia, Via Salaria, 30, Rome, 00198, RM, Italy
| | | | | | - Massimo Bertoli
- LET'S-ISTC-CNR, via Palestro 32, 00185, Rome, Italy.,Department of Imaging and Neuroscience and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Eugenia Gianni
- LET'S-ISTC-CNR, via Palestro 32, 00185, Rome, Italy.,Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | | | - Camillo Porcaro
- LET'S-ISTC-CNR, via Palestro 32, 00185, Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK.,Department of Information Engineering, Università Politecnica Delle Marche, Ancona, Italy.,S. Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Rome, Italy
| | - Maria Maddalena Filippi
- Complex Operative Unit of Neurology, Emergency Department, San Camillo de Lellis Hospital, Viale Kennedy, Rieti, 02100, RI, Italy
| | | |
Collapse
|
6
|
Wischnewski M, Engelhardt M, Salehinejad MA, Schutter DJLG, Kuo MF, Nitsche MA. NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. Cereb Cortex 2020; 29:2924-2931. [PMID: 29992259 DOI: 10.1093/cercor/bhy160] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations and excitability levels in the primary motor cortex (M1). These effects can last for more than an hour and an involvement of N-methyl-d-aspartate receptor (NMDAR) mediated synaptic plasticity has been suggested. However, to date the cortical mechanisms underlying tACS after-effects have not been explored. Here, we applied 20 Hz beta tACS to M1 while participants received either the NMDAR antagonist dextromethorphan or a placebo and the effects on cortical beta oscillations and excitability were explored. When a placebo medication was administered, beta tACS was found to increase cortical excitability and beta oscillations for at least 60 min, whereas when dextromethorphan was administered, these effects were completely abolished. These results provide the first direct evidence that tACS can induce NMDAR-mediated plasticity in the motor cortex, which contributes to our understanding of tACS-induced influences on human motor cortex physiology.
Collapse
Affiliation(s)
- M Wischnewski
- Donders Centre for Cognition, Donders Institute, Radboud University, Nijmegen, The Netherlands.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M Engelhardt
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M A Salehinejad
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - D J L G Schutter
- Donders Centre for Cognition, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | - M-F Kuo
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
7
|
Cortical neurodynamics changes mediate the efficacy of a personalized neuromodulation against multiple sclerosis fatigue. Sci Rep 2019; 9:18213. [PMID: 31796805 PMCID: PMC6890667 DOI: 10.1038/s41598-019-54595-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
The people with multiple sclerosis (MS) often report that fatigue restricts their life. Nowadays, pharmacological treatments are poorly effective accompanied by relevant side effects. A 5-day transcranial direct current stimulation (tDCS) targeting the somatosensory representation of the whole body (S1) delivered through an electrode personalized based on the brain MRI was efficacious against MS fatigue (FaReMuS treatment). This proof of principle study tested whether possible changes of the functional organization of the primary sensorimotor network induced by FaReMuS partly explained the effected fatigue amelioration. We measured the brain activity at rest through electroencephalography equipped with a Functional Source Separation algorithm and we assessed the neurodynamics state of the primary somatosensory (S1) and motor (M1) cortices via the Fractal Dimension and their functional connectivity via the Mutual Information. The dynamics of the neuronal electric activity, more distorted in S1 than M1 before treatment, as well as the network connectivity, altered maximally between left and right M1 homologs, reverted to normal after FaReMuS. The intervention-related changes explained 48% of variance of fatigue reduction in the regression model. A personalized neuromodulation tuned in on specific anatomo-functional features of the impaired regions can be effective against fatigue.
Collapse
|
8
|
Wischnewski M, Schutter DJ, Nitsche MA. Effects of beta-tACS on corticospinal excitability: A meta-analysis. Brain Stimul 2019; 12:1381-1389. [DOI: 10.1016/j.brs.2019.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023] Open
|
9
|
Posttraining Alpha Transcranial Alternating Current Stimulation Impairs Motor Consolidation in Elderly People. Neural Plast 2019; 2019:2689790. [PMID: 31428143 PMCID: PMC6681583 DOI: 10.1155/2019/2689790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/27/2019] [Accepted: 06/13/2019] [Indexed: 11/23/2022] Open
Abstract
The retention of a new sequential motor skill relies on repeated practice and subsequent consolidation in the absence of active skill practice. While the early phase of skill acquisition remains relatively unaffected in older adults, posttraining consolidation appears to be selectively impaired by advancing age. Motor learning is associated with posttraining changes of oscillatory alpha and beta neuronal activities in the motor cortex. However, whether or not these oscillatory dynamics relate to posttraining consolidation and how they relate to the age-specific impairment of motor consolidation in older adults remains elusive. Transcranial alternating current stimulation (tACS) is a noninvasive brain stimulation technique capable of modulating such neuronal oscillations. Here, we examined whether tACS targeting M1 immediately following explicit motor sequence training is capable of modulating motor skill consolidation in older adults. In two sets of double-blind, sham-controlled experiments, tACS targeting left M1 was applied at either 10 Hz (alpha-tACS) or 20 Hz (beta-tACS) immediately after termination of a motor sequence training with the right (dominant) hand. Task performance was retested after an interval of 6 hours to assess consolidation of the training-acquired skill. EEG was recorded over left M1 to be able to detect local after-effects on oscillatory activity induced by tACS. Relative to the sham intervention, consolidation was selectively disrupted by posttraining alpha-tACS of M1, while posttraining beta-tACS of M1 had no effect on delayed retest performance compared to the sham intervention. No significant postinterventional changes of oscillatory activity in M1 were detected following alpha-tACS or beta-tACS. Our findings point to a frequency-specific interaction of tACS with posttraining motor memory processing and may suggest an inhibitory role of immediate posttraining alpha oscillations in M1 with respect to motor consolidation in healthy older adults.
Collapse
|
10
|
Cancelli A, Cottone C, Giordani A, Asta G, Lupoi D, Pizzella V, Tecchio F. MRI-Guided Regional Personalized Electrical Stimulation in Multisession and Home Treatments. Front Neurosci 2018; 12:284. [PMID: 29867308 PMCID: PMC5964158 DOI: 10.3389/fnins.2018.00284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
The shape and position of the electrodes is a key factor for the efficacy of transcranial electrical stimulations (tES). We have recently introduced the Regional Personalized Electrode (RePE), a tES electrode fitting the personal cortical folding, that has been able to differentiate the stimulation of close by regions, in particular the primary sensory (S1) and motor (M1) cortices, and to personalize tES onto such an extended cortical district. However, neuronavigation on individual brain was compulsory for the correct montage. Here, we aimed at developing and testing a neuronavigation-free procedure for easy and quick positioning RePE, enabling multisession RePE-tES at home. We used off-line individual MRI to shape RePE via an ad-hoc computerized procedure, while an ad-hoc developed Adjustable Helmet Frame (AHF) was used to properly position it in multisession treatments, even at home. We used neuronavigation to test the RePE shape and position obtained by the new computerized procedure and the re-positioning obtained via the AHF. Using Finite Element Method (FEM) model, we also estimated the intra-cerebral current distribution induced by transcranial direct current stimulation (tDCS) comparing RePE vs. non-RePE with fixed reference. Additionally, we tested, using FEM, various shapes, and positions of the reference electrode taking into account possible small displacements of RePE, to test feasibility of RePE-tES sessions at home. The new RePE neuronavigation-free positioning relies on brain MRI space distances, and produced a mean displacement of 3.5 ± 0.8 mm, and the re-positioning of 4.8 ± 1.1 mm. Higher electric field in S1 than in M1 was best obtained with the occipital reference electrode, a montage that proved to feature low sensitivity to typical RePE millimetric displacements. Additionally, a new tES accessory was developed to enable repositioning the electrodes over the scalp also at home, with a precision which is acceptable according to the modeling-estimated intracerebral currents. Altogether, we provide here a procedure to simplify and make easily applicable RePE-tDCS, which enables efficacious personalized treatments.
Collapse
Affiliation(s)
- Andrea Cancelli
- Laboratory of Electrophysiology for Translational Neuroscience, Istituto di scienze e tecnologie della cognizione (ISTC), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Carlo Cottone
- Laboratory of Electrophysiology for Translational Neuroscience, Istituto di scienze e tecnologie della cognizione (ISTC), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Alessandro Giordani
- AFaR Division, Fatebenefratelli Foundation for Health Research and Education, Rome, Italy
| | - Giampiero Asta
- Laboratory of Electrophysiology for Translational Neuroscience, Istituto di scienze e tecnologie della cognizione (ISTC), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Domenico Lupoi
- AFaR Division, Fatebenefratelli Foundation for Health Research and Education, Rome, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, Università degli Studi G. d'Annunzio Chieti e Pescara, Chieti, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational Neuroscience, Istituto di scienze e tecnologie della cognizione (ISTC), Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy.,Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
11
|
A New, High-Efficacy, Noninvasive Transcranial Electric Stimulation Tuned to Local Neurodynamics. J Neurosci 2018; 38:586-594. [PMID: 29196322 DOI: 10.1523/jneurosci.2521-16.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 07/10/2017] [Accepted: 07/30/2017] [Indexed: 12/19/2022] Open
Abstract
In this paper, we pose the following working hypothesis: in humans, transcranial electric stimulation (tES) with a time course that mimics the endogenous activity of its target is capable of altering the target's excitability. In our case, the target was the primary motor cortex (M1). We identified the endogenous neurodynamics of hand M1's subgroups of pyramidal neuronal pools in each of our subjects by applying Functional Source Separation (FSS) to their EEG recordings. We then tested whether the corticospinal excitability of the hand representation under the above described stimulation, which we named transcranial individual neurodynamics stimulation (tIDS), was higher than in the absence of stimulation (baseline). As a check, we compared tIDS with the most efficient noninvasive facilitatory corticospinal tES known so far, which is 20 Hz transcranial alternating current stimulation (tACS). The control conditions were as follows: (1) sham, (2) transcranial random noise stimulation (tRNS) in the same frequency range as tIDS (1-250 Hz), and (3) a low current tIDS (tIDSlow). Corticospinal excitability was measured with motor-evoked potentials under transcranial magnetic stimulation. The mean motor-evoked potential amplitude increase was 31% of the baseline during tIDS (p < 0.001), and it was 15% during tACS (p = 0.096). tRNS, tIDSlow, and sham induced no effects. Whereas tACS did not produce an enhancement in any subject at the individual level, tIDS was successful in producing an enhancement in 8 of the 16 subjects. The results of the present proof-of-principle study showed that proper exploitation of local neurodynamics can enhance the efficacy of personalized tES.SIGNIFICANCE STATEMENT This study demonstrated that, in humans, transcranial individual neurodynamics stimulation (tIDS), which mimics the endogenous dynamics of the target neuronal pools, effectively changes the excitability of these pools. tIDS holds promise for high-efficacy personalized neuromodulations based on individual local neurodynamics.
Collapse
|
12
|
Cancelli A, Cottone C, Giordani A, Migliore S, Lupoi D, Porcaro C, Mirabella M, Rossini PM, Filippi MM, Tecchio F. Personalized, bilateral whole-body somatosensory cortex stimulation to relieve fatigue in multiple sclerosis. Mult Scler 2017; 24:1366-1374. [PMID: 28756744 DOI: 10.1177/1352458517720528] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The patients suffering from multiple sclerosis (MS) often consider fatigue the most debilitating symptom they experience, but conventional medicine currently offers poorly efficacious therapies. OBJECTIVE We executed a replication study of an innovative approach for relieving MS fatigue. METHODS According to the sample size estimate, we recruited 10 fatigued MS patients who received 5-day transcranial direct current stimulation (tDCS) in a randomized, double-blind, Sham-controlled, crossover study, with modified Fatigue Impact Scale (mFIS) score reduction at the end of the treatment as primary outcome. A personalized anodal electrode, shaped on the magnetic resonance imaging (MRI)-derived individual cortical folding, targeted the bilateral whole-body primary somatosensory cortex (S1) with an occipital cathode. RESULTS The amelioration of fatigue symptoms after Real stimulation (40% of baseline) was significantly larger than after Sham stimulation (14%, p = 0.012). Anodal whole body S1 induced a significant fatigue reduction in mildly disabled MS patients when the fatigue-related symptoms severely hampered their quality of life. CONCLUSION This second result in an independent group of patients supports the idea that neuromodulation interventions that properly select a personalized target might be a suitable non-pharmacological treatment for MS fatigue.
Collapse
Affiliation(s)
- Andrea Cancelli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S) - ISTC - CNR, Rome, Italy
| | - Carlo Cottone
- Laboratory of Electrophysiology for Translational neuroScience (LET'S) - ISTC - CNR, Rome, Italy
| | - Alessandro Giordani
- Department of Geriatrics, Neurosciences & Orthopedics, Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy/Service of Medical Statistics and Information Technology, Fatebenefratelli Foundation for Health Research and Education, AFaR Division, Rome, Italy
| | - Simone Migliore
- Clinical Psychology Service, University Campus Bio-Medico, Rome, Italy/LIRH Foundation, Rome, Italy
| | - Domenico Lupoi
- Neuroscience and Imaging, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Camillo Porcaro
- Laboratory of Electrophysiology for Translational neuroScience (LET'S) - ISTC - CNR, Rome, Italy
| | - Massimiliano Mirabella
- Department of Geriatrics, Neurosciences & Orthopedics, Institute of Neurology, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paolo Maria Rossini
- Department of Geriatrics, Neurosciences & Orthopedics, Institute of Neurology, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | | | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S) - ISTC - CNR, Rome, Italy
| |
Collapse
|
13
|
Mansouri F, Dunlop K, Giacobbe P, Downar J, Zariffa J. A Fast EEG Forecasting Algorithm for Phase-Locked Transcranial Electrical Stimulation of the Human Brain. Front Neurosci 2017; 11:401. [PMID: 28775678 PMCID: PMC5517498 DOI: 10.3389/fnins.2017.00401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
A growing body of research suggests that non-invasive electrical brain stimulation can more effectively modulate neural activity when phase-locked to the underlying brain rhythms. Transcranial alternating current stimulation (tACS) can potentially stimulate the brain in-phase to its natural oscillations as recorded by electroencephalography (EEG), but matching these oscillations is a challenging problem due to the complex and time-varying nature of the EEG signals. Here we address this challenge by developing and testing a novel approach intended to deliver tACS phase-locked to the activity of the underlying brain region in real-time. This novel approach extracts phase and frequency from a segment of EEG, then forecasts the signal to control the stimulation. A careful tuning of the EEG segment length and prediction horizon is required and has been investigated here for different EEG frequency bands. The algorithm was tested on EEG data from 5 healthy volunteers. Algorithm performance was quantified in terms of phase-locking values across a variety of EEG frequency bands. Phase-locking performance was found to be consistent across individuals and recording locations. With current parameters, the algorithm performs best when tracking oscillations in the alpha band (8–13 Hz), with a phase-locking value of 0.77 ± 0.08. Performance was maximized when the frequency band of interest had a dominant frequency that was stable over time. The algorithm performs faster, and provides better phase-locked stimulation, compared to other recently published algorithms devised for this purpose. The algorithm is suitable for use in future studies of phase-locked tACS in preclinical and clinical applications.
Collapse
Affiliation(s)
- Farrokh Mansouri
- Institute of Biomaterial and Biomedical Engineering, University of TorontoToronto, ON, Canada
| | - Katharine Dunlop
- Institute of Medical Science, University of TorontoToronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Mental Health, University Health NetworkToronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of TorontoToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Centre for Mental Health, University Health NetworkToronto, ON, Canada.,Krembil Research Institute, University Health NetworkToronto, ON, Canada
| | - José Zariffa
- Institute of Biomaterial and Biomedical Engineering, University of TorontoToronto, ON, Canada.,Toronto Rehabilitation Institute, University Health NetworkToronto, ON, Canada
| |
Collapse
|
14
|
Basic and functional effects of transcranial Electrical Stimulation (tES)-An introduction. Neurosci Biobehav Rev 2017; 85:81-92. [PMID: 28688701 DOI: 10.1016/j.neubiorev.2017.06.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/21/2017] [Indexed: 01/30/2023]
Abstract
Non-invasive brain stimulation (NIBS) has been gaining increased popularity in human neuroscience research during the last years. Among the emerging NIBS tools is transcranial electrical stimulation (tES), whose main modalities are transcranial direct, and alternating current stimulation (tDCS, tACS). In tES, a small current (usually less than 3mA) is delivered through the scalp. Depending on its shape, density, and duration, the applied current induces acute or long-lasting effects on excitability and activity of cerebral regions, and brain networks. tES is increasingly applied in different domains to (a) explore human brain physiology with regard to plasticity, and brain oscillations, (b) explore the impact of brain physiology on cognitive processes, and (c) treat clinical symptoms in neurological and psychiatric diseases. In this review, we give a broad overview of the main mechanisms and applications of these brain stimulation tools.
Collapse
|
15
|
Veniero D, Benwell CSY, Ahrens MM, Thut G. Inconsistent Effects of Parietal α-tACS on Pseudoneglect across Two Experiments: A Failed Internal Replication. Front Psychol 2017. [PMID: 28642729 PMCID: PMC5463322 DOI: 10.3389/fpsyg.2017.00952] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transcranial electrical stimulation (tES) is being investigated as an experimental and clinical interventional technique in human participants. While promising, important limitations have been identified, including weak effect sizes and high inter- and intra-individual variability of outcomes. Here, we compared two "inhibitory" tES-techniques with supposedly different mechanisms of action as to their effects on performance in a visuospatial attention task, and report on a direct replication attempt. In two experiments, 2 × 20 healthy participants underwent tES in three separate sessions testing different protocols (10 min stimulation each) with a montage targeting right parietal cortex (right parietal-left frontal, electrode-sizes: 3cm × 3cm-7 cm × 5 cm), while performing a perceptual line bisection (landmark) task. The tES-protocols were compared as to their ability to modulate pseudoneglect (thought to be under right hemispheric control). In experiment 1, sham-tES was compared to transcranial alternating current stimulation at alpha frequency (10 Hz; α-tACS) (expected to entrain "inhibitory" alpha oscillations) and to cathodal transcranial direct current stimulation (c-tDCS) (shown to suppress neuronal spiking activity). In experiment 2, we attempted to replicate the findings of experiment 1, and establish frequency-specificity by adding a 45 Hz-tACS condition to α-tACS and sham. In experiment 1, right parietal α-tACS led to the expected changes in spatial attention bias, namely a rightward shift in subjective midpoint estimation (relative to sham). However, this was not confirmed in experiment 2 and in the complete sample. Right parietal c-tDCS and 45 Hz-tACS had no effect. These results highlight the importance of replication studies, adequate statistical power and optimizing tES-interventions for establishing the robustness and reliability of electrical stimulation effects, and best practice.
Collapse
Affiliation(s)
- Domenica Veniero
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | | | - Merle M Ahrens
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom.,School of Psychology, University of GlasgowGlasgow, United Kingdom
| | - Gregor Thut
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| |
Collapse
|
16
|
Lee C, Jung YJ, Lee SJ, Im CH. COMETS2: An advanced MATLAB toolbox for the numerical analysis of electric fields generated by transcranial direct current stimulation. J Neurosci Methods 2016; 277:56-62. [PMID: 27989592 DOI: 10.1016/j.jneumeth.2016.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. NEW METHOD COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. RESULTS As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. COMPARISON WITH EXISTING METHODS We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. CONCLUSIONS In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS.
Collapse
Affiliation(s)
- Chany Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Young-Jin Jung
- Department of Radiological Science, Dongseo University, Busan, Republic of Korea
| | - Sang Jun Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Parazzini M, Fiocchi S, Cancelli A, Cottone C, Liorni I, Ravazzani P, Tecchio F. A Computational Model of the Electric Field Distribution due to Regional Personalized or Nonpersonalized Electrodes to Select Transcranial Electric Stimulation Target. IEEE Trans Biomed Eng 2016; 64:184-195. [PMID: 27093311 DOI: 10.1109/tbme.2016.2553177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A procedure to personalize the electrode to stimulate specific cortical regions by transcranial electric stimulations has been recently proposed. This study aims to assess the distribution of the electric field (E) induced by tES via the personalized (RePE) and the nonpersonalized (ReNPE) electrode. METHODS We used two anatomical models on which we shaped and placed the RePE, based on brain anatomy, and the ReNPE to target the bilateral primary motor (M1) or somatosensory cortex (S1) with the reference on the occipital area in both cases. The effect of shifts of the ReNPE position has been also evaluated. RESULTS The RePE induced higher E peak and median values than the ReNPE along the bilateral primary motor sensory cortices, up to their lateral regions, on a great percentage of volume of these cortices along all their extent. The shift of the ReNPE electrode toward the inion still induced higher E peak and median values than the ReNPE not shifted, but less than the RePE, mainly in the central region and, in a lower percentage of volume, in the lateral regions of these cortices. CONCLUSION The E distributions induced for both targets (M1 and S1) by the RePE are different from the ones due to the ReNPE, along the whole extent of the bilateral primary sensorimotor cortices. The shift in the ReNPE positioning can modify the E distributions mainly in the more central region of these cortices. SIGNIFICANCE These results strengthen the suitability of personalized electrodes in targeting extended cortical regions.
Collapse
|
18
|
Cunningham DA, Janini D, Wyant A, Bonnett C, Varnerin N, Sankarasubramanian V, Potter-Baker KA, Roelle S, Wang X, Siemionow V, Yue GH, Plow EB. Post-exercise depression following submaximal and maximal isometric voluntary contraction. Neuroscience 2016; 326:95-104. [PMID: 27058145 DOI: 10.1016/j.neuroscience.2016.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 11/29/2022]
Abstract
It is well known that corticomotor excitability is altered during the post-exercise depression following fatigue within the primary motor cortex (M1). However, it is currently unknown whether corticomotor reorganization following muscle fatigue differs between magnitudes of force and whether corticomotor reorganization occurs measured with transcranial magnetic stimulation (TMS). Fifteen young healthy adults (age 23.8±1.4, 8 females) participated in a within-subjects, repeated measures design study, where they underwent three testing sessions separated by one-week each. Subjects performed separate sessions of each: low-force isometric contraction (30% maximal voluntary contraction [MVC]), high-force isometric contraction (95% MVC) of the first dorsal interosseous (FDI) muscle until self-perceived exhaustion, as well as one session of a 30-min rest as a control. We examined changes in corticomotor map area, excitability and location of the FDI representation in and around M1 using TMS. The main finding was that following low-force, but not high-force fatigue (HFF) corticomotor map area and excitability reduced [by 3cm(2) (t(14)=-2.94, p=0.01) and 56% respectively t(14)=-4.01, p<0.001)]. Additionally, the region of corticomotor excitability shifted posteriorly (6.4±2.5mm) (t(14)=-6.33, p=.019). Corticomotor output became less excitable particularly in regions adjoining M1. Overall, post-exercise depression is present in low-force, but not for HFF. Further, low-force fatigue (LFF) results in a posterior shift in corticomotor output. These changes may be indicative of increased sensory feedback from the somatosensory cortex during the recovery phase of fatigue.
Collapse
Affiliation(s)
- David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Daniel Janini
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Alexandria Wyant
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Corin Bonnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Nicole Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | | | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sarah Roelle
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Vlodek Siemionow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Guang H Yue
- Human Performance & Engineering Research, Kessler Foundation, West Orange, NJ, United States; Department of Physical Medicine & Rehab, Rutgers New Jersey Medical School, Rutgers University, Newark, NJ, United States.
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Physical Medicine & Rehab, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
19
|
Cancelli A, Cottone C, Parazzini M, Fiocchi S, Truong D, Bikson M, Tecchio F, Parazzini M. Transcranial Direct Current Stimulation: Personalizing the neuromodulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:234-7. [PMID: 26736243 DOI: 10.1109/embc.2015.7318343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The beneficial effects of transcranial direct current stimulation (tDCS) has been demonstrated, but the neuroscientific community is working to increase its efficiency. A promising line of advancement may be reducing the inter-individual variability of the response through the personalization of the stimulation, adapted to fit the structural and functional features of individual subjects. In this paper, we approach the personalization of stimulation parameters using modeling, a powerful tool to test montages enabling the optimization of brain's targeting.
Collapse
|
20
|
Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, Cohen LG, Fregni F, Herrmann CS, Kappenman ES, Knotkova H, Liebetanz D, Miniussi C, Miranda PC, Paulus W, Priori A, Reato D, Stagg C, Wenderoth N, Nitsche MA. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol 2015; 127:1031-1048. [PMID: 26652115 DOI: 10.1016/j.clinph.2015.11.012] [Citation(s) in RCA: 889] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 01/29/2023]
Abstract
Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain.
Collapse
Affiliation(s)
- A J Woods
- Center for Cognitive Aging and Memory, Institute on Aging, McKnight Brain Institute, Department of Aging and Geriatric Research, Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - A Antal
- University Medical Center, Dept. Clinical Neurophysiology, Georg-August-University, Goettingen, Germany
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, USA
| | - P S Boggio
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Science, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - A R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - P Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD, USA
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - F Fregni
- Laboratory of Neuromodulation, Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation, Harvard University, USA
| | - C S Herrmann
- Experimental Psychology Lab, Center of excellence Hearing4all, Department for Psychology, Faculty for Medicine and Health Sciences, Carl von Ossietzky Universität, Ammerländer Heerstr, Oldenburg, Germany
| | - E S Kappenman
- Center for Mind & Brain and Department of Psychology, University of California, Davis, CA, USA
| | - H Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA
| | - D Liebetanz
- University Medical Center, Dept. Clinical Neurophysiology, Georg-August-University, Goettingen, Germany
| | - C Miniussi
- Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia & Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P C Miranda
- Institute of Biophysics and Biomedical Engineering (IBEB), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - W Paulus
- University Medical Center, Dept. Clinical Neurophysiology, Georg-August-University, Goettingen, Germany
| | - A Priori
- Direttore Clinica Neurologica III, Università degli Studi di Milano, Ospedale San Paolo, Milan, Italy
| | - D Reato
- Department of Biomedical Engineering, The City College of New York, USA
| | - C Stagg
- Centre for Functional MRI of the Brain (FMRIB) Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity (OHBA), Department of Psychiatry, University of Oxford, Oxford, UK
| | - N Wenderoth
- Neural Control of Movement Lab, Dept. Health Sciences and Technology, ETH Zürich, Switzerland
| | - M A Nitsche
- University Medical Center, Dept. Clinical Neurophysiology, Georg-August-University, Goettingen, Germany; Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| |
Collapse
|
21
|
Ho KA, Taylor JL, Chew T, Gálvez V, Alonzo A, Bai S, Dokos S, Loo CK. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions. Brain Stimul 2015; 9:1-7. [PMID: 26350410 DOI: 10.1016/j.brs.2015.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Current density is considered an important factor in determining the outcomes of tDCS, and is determined by the current intensity and electrode size. Previous studies examining the effect of these parameters on motor cortical excitability with small sample sizes reported mixed results. OBJECTIVE/HYPOTHESIS This study examined the effect of current intensity (1 mA, 2 mA) and electrode size (16 cm(2), 35 cm(2)) on motor cortical excitability over single and repeated tDCS sessions. METHODS Data from seven studies in 89 healthy participants were pooled for analysis. Single-session data were analyzed using mixed effects models and repeated-session data were analyzed using mixed design analyses of variance. Computational modeling was used to examine the electric field generated. RESULTS The magnitude of increases in excitability after anodal tDCS was modest. For single-session tDCS, the 35 cm(2) electrodes produced greater increases in cortical excitability compared to the 16 cm(2) electrodes. There were no differences in the magnitude of cortical excitation produced by 1 mA and 2 mA tDCS. The repeated-sessions data also showed that there were greater increases in excitability with the 35 cm(2) electrodes. Further, repeated sessions of tDCS with the 35 cm(2) electrodes resulted in a cumulative increase in cortical excitability. Computational modeling predicted higher electric field at the motor hotspot for the 35 cm(2) electrodes. CONCLUSIONS 2 mA tDCS does not necessarily produce larger effects than 1 mA tDCS in healthy participants. Careful consideration should be given to the exact positioning, size and orientation of tDCS electrodes relative to cortical regions.
Collapse
Affiliation(s)
- Kerrie-Anne Ho
- School of Psychiatry, University of New South Wales, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia
| | - Janet L Taylor
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, NSW 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Taariq Chew
- School of Psychiatry, University of New South Wales, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia
| | - Verònica Gálvez
- School of Psychiatry, University of New South Wales, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia
| | - Angelo Alonzo
- School of Psychiatry, University of New South Wales, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia
| | - Siwei Bai
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; IMETUM, Technische Universität München, Garching 85748, Germany
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; Black Dog Institute, Prince of Wales Hospital, Hospital Road, Randwick, NSW 2031, Australia; St George Hospital, South Eastern Sydney Health, Level 2, James Laws House, Gray St, Kogarah, NSW 2217, Australia.
| |
Collapse
|
22
|
Tecchio F, Cancelli A, Cottone C, Ferrucci R, Vergari M, Zito G, Pasqualetti P, Filippi MM, Ghazaryan A, Lupoi D, Smits FM, Giordani A, Migliore S, Porcaro C, Salustri C, Rossini PM, Priori A. Brain Plasticity Effects of Neuromodulation Against Multiple Sclerosis Fatigue. Front Neurol 2015; 6:141. [PMID: 26191036 PMCID: PMC4490242 DOI: 10.3389/fneur.2015.00141] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022] Open
Abstract
Rationale We recently reported on the efficacy of a personalized transcranial direct current stimulation (tDCS) treatment in reducing multiple sclerosis (MS) fatigue. The result supports the notion that interventions targeted at modifying abnormal excitability within the sensorimotor network could represent valid non-pharmacological treatments. Objective The present work aimed at assessing whether the mentioned intervention also induces changes in the excitability of sensorimotor cortical areas. Method Two separate groups of fatigued MS patients were given a 5-day tDCS treatments targeting, respectively, the whole body somatosensory areas (S1wb) and the hand sensorimotor areas (SM1hand). The study had a double blind, sham-controlled, randomized, cross-over (Real vs. Sham) design. Before and after each treatment, we measured fatigue levels (by the modified fatigue impact scale, mFIS), motor evoked potentials (MEPs) in response to transcranial magnetic stimulation and somatosensory evoked potentials (SEPs) in response to median nerve stimulation. We took MEPs and SEPs as measures of the excitability of the primary motor area (M1) and the primary somatosensory area (S1), respectively. Results The Real S1wb treatment produced a 27% reduction of the mFIS baseline level, while the SM1hand treatment showed no difference between Real and Sham stimulations. M1 excitability increased on average 6% of the baseline in the S1wb group and 40% in the SM1hand group. Observed SEP changes were not significant and we found no association between M1 excitability changes and mFIS decrease. Conclusion The tDCS treatment was more effective against MS fatigue when the electrode was focused on the bilateral whole body somatosensory area. Changes in S1 and M1 excitability did not correlate with symptoms amelioration. Significance The neuromodulation treatment that proved effective against MS fatigue induced only minor variations of the motor cortex excitability, not enough to explain the beneficial effects of the intervention.
Collapse
Affiliation(s)
- Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Department of Neuroscience, ISTC, CNR, Fatebenefratelli Hospital - Isola Tiberina , Rome , Italy ; Unit of Neuroimaging, IRCCS San Raffaele Pisana , Rome , Italy
| | - Andrea Cancelli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Department of Neuroscience, ISTC, CNR, Fatebenefratelli Hospital - Isola Tiberina , Rome , Italy ; Clinical Neurology, Catholic University, Policlinico A. Gemelli , Rome , Italy
| | - Carlo Cottone
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Department of Neuroscience, ISTC, CNR, Fatebenefratelli Hospital - Isola Tiberina , Rome , Italy
| | - Roberta Ferrucci
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and Università degli Studi di Milano , Milan , Italy
| | - Maurizio Vergari
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and Università degli Studi di Milano , Milan , Italy
| | - Giancarlo Zito
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Department of Neuroscience, ISTC, CNR, Fatebenefratelli Hospital - Isola Tiberina , Rome , Italy ; AFaR Division, Fatebenefratelli Foundation for Health Research and Education , Rome , Italy
| | - Patrizio Pasqualetti
- Unit of Neuroimaging, IRCCS San Raffaele Pisana , Rome , Italy ; AFaR Division, Fatebenefratelli Foundation for Health Research and Education , Rome , Italy
| | | | - Anna Ghazaryan
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Department of Neuroscience, ISTC, CNR, Fatebenefratelli Hospital - Isola Tiberina , Rome , Italy ; AFaR Division, Fatebenefratelli Foundation for Health Research and Education , Rome , Italy
| | - Domenico Lupoi
- AFaR Division, Fatebenefratelli Foundation for Health Research and Education , Rome , Italy
| | | | - Alessandro Giordani
- Clinical Neurology, Catholic University, Policlinico A. Gemelli , Rome , Italy ; AFaR Division, Fatebenefratelli Foundation for Health Research and Education , Rome , Italy
| | - Simone Migliore
- University of Campus Biomedico, Psychology Service , Rome , Italy
| | - Camillo Porcaro
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Department of Neuroscience, ISTC, CNR, Fatebenefratelli Hospital - Isola Tiberina , Rome , Italy ; Institute of Neuroscience, Medical School, Newcastle University , Newcastle upon Tyne , UK
| | - Carlo Salustri
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), Department of Neuroscience, ISTC, CNR, Fatebenefratelli Hospital - Isola Tiberina , Rome , Italy
| | - Paolo M Rossini
- Unit of Neuroimaging, IRCCS San Raffaele Pisana , Rome , Italy ; Clinical Neurology, Catholic University, Policlinico A. Gemelli , Rome , Italy
| | - Alberto Priori
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
23
|
Personalizing the Electrode to Neuromodulate an Extended Cortical Region. Brain Stimul 2015; 8:555-60. [DOI: 10.1016/j.brs.2015.01.398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 11/18/2022] Open
|
24
|
Tecchio F, Cancelli A, Cottone C, Zito G, Pasqualetti P, Ghazaryan A, Rossini PM, Filippi MM. Multiple sclerosis fatigue relief by bilateral somatosensory cortex neuromodulation. J Neurol 2014; 261:1552-8. [PMID: 24854634 DOI: 10.1007/s00415-014-7377-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis-related fatigue is highly common and often refractory to medical therapy. Ten fatigued multiple sclerosis patients received two blocks of 5-day anodal bilateral primary somatosensory areas transcranial direct current stimulation in a randomized, double-blind sham-controlled, cross-over study. The real neuromodulation by a personalized electrode, shaped on the MR-derived primary somatosensory cortical strip, reduced fatigue in all patients, by 26 % in average (p = 0.002), which did not change after sham (p = 0.901). Anodal tDCS over bilateral somatosensory areas was able to relief fatigue in mildly disabled MS patients, when the fatigue-related symptoms severely hamper their quality of life. These small-scale study results support the concept that interventions modifying the sensorimotor network activity balances could be a suitable non-pharmacological treatment for multiple sclerosis fatigue.
Collapse
Affiliation(s)
- Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S)-ISTC-CNR, Department of Clinical Neuroscience, Fatebenefratelli Hospital, Isola Tiberina, 00186, Rome, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Krause B, Cohen Kadosh R. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci 2014; 8:25. [PMID: 24605090 PMCID: PMC3932631 DOI: 10.3389/fnsys.2014.00025] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/05/2014] [Indexed: 01/02/2023] Open
Abstract
A current issue in the research of augmentation of brain functions using transcranial electrical stimulation (tES) is the diversity and inconsistency in outcome results. Similar studies often report different results, depending on the parameters and tasks used. Such inconsistencies have led to significant doubts about the efficacy of the method in the broader scientific community, despite its promising potential for patient recovery and treatment. Evidence on the large variability in individual cortical excitability and response to tES suggests that stimulation may affect individuals differently, depending on the subject’s age, gender, brain state, hormonal levels, and pre-existing regional excitability. Certain factors might even lead to the reversal of polarity-dependent effects, and therefore have crucial implications for neurorehabilitation and cognitive enhancement. Research paradigms may have to be refined in the future to avoid the confounding effects of such factors.
Collapse
Affiliation(s)
- Beatrix Krause
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford Oxford, UK
| |
Collapse
|