1
|
Verbitsky R, Anderson B, Danckert J, Dukelow S, Striemer CL. Left Cerebellar Lesions may be Associated with an Increase in Spatial Neglect-like Symptoms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:431-443. [PMID: 36995498 DOI: 10.1007/s12311-023-01542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
Each cerebellar hemisphere projects to the contralateral cerebral hemisphere. Previous research suggests a lateralization of cognitive functions in the cerebellum that mirrors the cerebral cortex, with attention/visuospatial functions represented in the left cerebellar hemisphere, and language functions in the right cerebellar hemisphere. Although there is good evidence supporting the role of the right cerebellum with language functions, the evidence supporting the notion that attention and visuospatial functions are left lateralized is less clear. Given that spatial neglect is one of the most common disorders arising from right cortical damage, we reasoned that damage to the left cerebellum would result in increased spatial neglect-like symptoms, without necessarily leading to an official diagnosis of spatial neglect. To examine this disconnection hypothesis, we analyzed neglect screening data (line bisection, cancellation, figure copying) from 20 patients with isolated unilateral cerebellar stroke. Results indicated that left cerebellar patients (n = 9) missed significantly more targets on the left side of cancellation tasks compared to a normative sample. No significant effects were observed for right cerebellar patients (n = 11). A lesion overlap analysis indicated that Crus II (78% overlap), and lobules VII and IX (66% overlap) were the regions most commonly damaged in left cerebellar patients. Our results are consistent with the notion that the left cerebellum may be important for attention and visuospatial functions. Given the poor prognosis typically associated with neglect, we suggest that screening for neglect symptoms, and visuospatial deficits more generally, may be important for tailoring rehabilitative efforts to help maximize recovery in cerebellar patients.
Collapse
Affiliation(s)
- Ryan Verbitsky
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Britt Anderson
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - James Danckert
- Department of Psychology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Christopher L Striemer
- Department of Psychology, MacEwan University, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Olgiati E, Malhotra PA. Using non-invasive transcranial direct current stimulation for neglect and associated attentional deficits following stroke. Neuropsychol Rehabil 2022; 32:732-763. [PMID: 32892712 DOI: 10.1080/09602011.2020.1805335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neglect is a disabling neuropsychological syndrome that is frequently observed following right-hemispheric stroke. Affected individuals often present with multiple attentional deficits, ranging from reduced orienting towards contralesional space to a generalized impairment in maintaining attention over time. Although a degree of spontaneous recovery occurs in most patients, in some individuals this condition can be treatment-resistant with prominent ongoing non-spatial deficits. Further, there is a large inter-individual variability in response to different therapeutic approaches. Given its potential to alter neuronal excitability and affect neuroplasticity, non-invasive brain stimulation is a promising tool that could potentially be utilized to facilitate recovery. However, there are many outstanding questions regarding its implementation in this heterogeneous patient group. Here we provide a critical overview of the available evidence on the use of non-invasive electrical brain stimulation, focussing on transcranial direct current stimulation (tDCS), to improve neglect and associated attentional deficits after right-hemispheric stroke. At present, there is insufficient robust evidence supporting the clinical use of tDCS to alleviate symptoms of neglect. Future research would benefit from careful study design, enhanced precision of electrical montages, multi-modal approaches exploring predictors of response, tailored dose-control applications and increased efforts to evaluate standalone tDCS versus its incorporation into combination therapy.
Collapse
Affiliation(s)
- Elena Olgiati
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London, UK.,Imperial College Healthcare NHS Trust, London, UK.,UK Dementia Research Institute, Care Research & Technology Centre, Imperial College London and University of Surrey, London, UK
| |
Collapse
|
3
|
A systematic review of the use of subcortical intraoperative electrical stimulation mapping for monitoring of executive deficits and neglect: what is the evidence so far? Acta Neurochir (Wien) 2022; 164:177-191. [PMID: 34674026 PMCID: PMC8761150 DOI: 10.1007/s00701-021-05012-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Over the past decade, the functional importance of white matter pathways has been increasingly acknowledged in neurosurgical planning. A method to directly study anatomo-functional correlations is direct electrical stimulation (DES). DES has been widely accepted by neurosurgeons as a reliable tool to minimize the occurrence of permanent postoperative motor, vision, and language deficits. In recent years, DES has also been used for stimulation mapping of other cognitive functions, such as executive functions and visuospatial awareness. METHODS The aim of this review is to summarize the evidence so far from DES studies on subcortical pathways that are involved in visuospatial awareness and in the following three executive functions: (1) inhibitory control, (2) working memory, and (3) cognitive flexibility. RESULTS Eleven articles reported on intraoperative electrical stimulation of white matter pathways to map the cognitive functions and explicitly clarified which subcortical tract was stimulated. The results indicate that the right SLF-II is involved in visuospatial awareness, the left SLF-III and possibly the right SLF-I are involved in working memory, and the cingulum is involved in cognitive flexibility. CONCLUSIONS We were unable to draw any more specific conclusions, nor unequivocally establish the critical involvement of pathways in executive functions or visuospatial awareness due to the heterogeneity of the study types and methods, and the limited number of studies that assessed these relationships. Possible approaches for future research to obtain converging and more definite evidence for the involvement of pathways in specific cognitive functions are discussed.
Collapse
|
4
|
Mizuno K, Tsujimoto K, Tsuji T. Effect of Prism Adaptation Therapy on the Activities of Daily Living and Awareness for Spatial Neglect: A Secondary Analysis of the Randomized, Controlled Trial. Brain Sci 2021; 11:brainsci11030347. [PMID: 33803412 PMCID: PMC8001351 DOI: 10.3390/brainsci11030347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Rehabilitation for unilateral spatial neglect (USN) using prism adaptation (PA) is one of the most widely used methods, and the effectiveness of PA is well-evidenced. Although the effect of PA generalized various neglect symptoms, the effectiveness for some aspects of neglect is not fully proven. The Catherine Bergego Scale (CBS) was developed to identify problems with the activities of daily living (ADL) caused by USN. The CBS is composed of 10 observation assessments and a self-assessment questionnaire. To assess the self-awareness of USN, the anosognosia score is calculated as the difference between the observational scores and the self-assessment scores. To investigate how PA affects ADL and self-awareness in subacute USN patients during rehabilitation, we analyzed each item of the CBS and self-awareness from a randomized, controlled trial (RCT) that we previously conducted (Mizuno et al., 2011). METHODS A double-masked randomized, controlled trial was conducted to evaluate the effects of a 2-week PA therapy on USN in 8 hospitals in Japan. We compared each item of the CBS, anosognosia score, and absolute value of the anosognosia score between the prism group and the control group. RESULTS Two of ten items (gaze orientation and exploration of personal belongings) were significantly improved in the prism group compared with those in the control group. The absolute value of the anosognosia score was significantly improved by PA. CONCLUSIONS Improvement of oculomotor exploration by PA may generalize the behavioral level in a daily living environment. This study suggested that PA could accelerate the self-awareness of neglect during subacute rehabilitation.
Collapse
Affiliation(s)
- Katsuhiro Mizuno
- Department of Physical Rehabilitation, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan;
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-(0)-42-341-2711
| | - Kengo Tsujimoto
- Department of Physical Rehabilitation, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan;
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| |
Collapse
|
5
|
Vilimovsky T, Chen P, Hoidekrova K, Petioky J, Harsa P. Prism adaptation treatment to address spatial neglect in an intensive rehabilitation program: A randomized pilot and feasibility trial. PLoS One 2021; 16:e0245425. [PMID: 33481828 PMCID: PMC7822563 DOI: 10.1371/journal.pone.0245425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/01/2021] [Indexed: 11/21/2022] Open
Abstract
Spatial neglect (SN) is a common cognitive disorder after brain injury. Prism adaptation treatment (PAT) is one of the promising interventions for SN albeit inconsistent results from previous studies. We carried out a comparison intervention (PAT vs. Sham) and aimed to evaluate the efficacy of PAT on visuospatial symptoms of SN in an inpatient rehabilitation setting that offered a highly intensive comprehensive brain injury rehabilitation program. A total of 34 patients with moderate-to-severe SN secondary to stroke or traumatic brain injury were randomized to the PAT group and the Sham group (an active control group). Both groups received 10 sessions of treatment, over two weeks, in addition to the rehabilitation therapies provided by their rehabilitation care teams. Outcomes were measured using an ecological instrument (the Catherine Bergego Scale) and paper-and-pencil tests (the Bells Test, the Line Bisection Test and the Scene Copying Test). Patients were assessed at baseline, immediately after treatment, two weeks after treatment, and four weeks after treatment. 23 (67.6%) patients completed treatment and all the assessment sessions and were included in the final analyses using mixed linear modeling. While SN symptoms reduced in both groups, we found no difference between the two groups in the degree of improvement. In addition, the average SN recovery rates were 39.1% and 28.6% in the PAT and Sham groups, respectively, but this discrepancy did not reach statistical significance. Thus, the present study suggests that PAT may contribute little to SN care in the context of a highly intensive inpatient rehabilitation program. Further large-scale investigation is required to uncover the mechanisms underlying PAT and Sham in order to refine the treatment or create new interventions.
Collapse
Affiliation(s)
- Tomas Vilimovsky
- Department of Psychiatry, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peii Chen
- Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers University, Newark, NJ, United States of America
| | - Kristyna Hoidekrova
- Department of Rehabilitation Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Rehabilitation Center Kladruby, Kladruby, Czech Republic
- Department of Kinanthropology, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Jakub Petioky
- Rehabilitation Center Kladruby, Kladruby, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Harsa
- Department of Psychiatry, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Useros Olmo AI, Periañez JA, Martínez-Pernía D, Miangolarra Page JC. Effects of spatial working memory in balance during dual tasking in traumatic brain injury and healthy controls. Brain Inj 2020; 34:1159-1167. [PMID: 32658560 DOI: 10.1080/02699052.2020.1792984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The aim of this research was to assess cognitive-motor interactions though dual tasks of working memory in patients with traumatic brain injury (TBI) and control subjects. Methods: Twenty patients with chronic TBI with good functional level and 19 matched healthy controls performed dual working memory tasks (1-back numeric and 1-back spatial (S)) while sitting, standing, and walking. The center of pressure (COP) displacement amplitude, cadence, and error percentage (PER) were recorded as dependent variables. Results: The results revealed main effects of Group (TBI, controls) (p = .011) and Task factors (Single, Dual Standing 1-back, Dual Standing 1-back (S); p = .0001) for the COP. Patients showed greater displacement than controls (p = .011), and an analysis of the Task factor showed a minor displacement for the dual 1-back (S) task compared with the 1-back and single task (p = .002 and p = .001, respectively). Conclusions: Postural control during both standing and walking improved during performance of the spatial working memory task. In the dual task, both patients and controls showed a postural prioritization as an adaptive response to the increase in cognitive demand.
Collapse
Affiliation(s)
- Ana Isabel Useros Olmo
- Department of Physiotherapy, Motion in Brains Research Group, Instituto de Neurociencias y Ciencias del Movimiento, Centro Superior de Estudios Universitarios la Salle, Universidad Autónoma de Madrid , Spain.,Hospital Beata María Ana, Unidad de daño Cerebral , Madrid, Spain
| | - Jose A Periañez
- Department Experimental Psychology, Complutense University of Madrid , Madrid, Spain
| | - David Martínez-Pernía
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Universidad , Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Faculty of Medicine, University of Chile , Santiago, Chile
| | - Juan Carlos Miangolarra Page
- Universidad de Medicina Física y Rehabilitación de la Universidad Rey Juan Carlos , Madrid, Spain.,Servicio de Medicina Física y Rehabilitación del Hospital Universitario de Fuenlabrada , Madrid, Spain.,Consejería de Salud, Comunidad de Madrid, Servicio Madrileño de Salud (SERMAS) , Madrid, Spain.,de la Universidad Rey Juan Carlos , Madrid, Spain
| |
Collapse
|
7
|
Visual working memory deficits following right brain damage. Brain Cogn 2020; 142:105566. [DOI: 10.1016/j.bandc.2020.105566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 11/27/2022]
|
8
|
Fabius J, Ten Brink AF, Van der Stigchel S, Nijboer TCW. The relationship between visuospatial neglect, spatial working memory and search behavior. J Clin Exp Neuropsychol 2020; 42:251-262. [PMID: 31900083 DOI: 10.1080/13803395.2019.1707779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Visuospatial neglect (VSN) is characterized by a lateralized attentional deficit in the visual domain. In addition, patients with VSN might have an impairment in the temporary storage of spatial information in working memory (spatial working memory; SWM) that, like VSN, could impair systematic searching behavior. Several studies have demonstrated either SWM impairments or impaired searching behavior in VSN patients. Here, we related SWM performance to search behavior in patients with and without VSN. We assessed SWM using a novel task in a group of 182 stroke patients (24 with VSN, 158 without) and 65 healthy controls. We related SWM performance to available stroke-related and cognitive data. Patients with VSN exhibited lower SWM performance than patients without VSN and healthy controls. Additional control analyses indicated that differences in SWM performance are specific to visuospatial processing, instead of e.g. verbal working memory or the general level of physical disability. Last, we related SWM performance to visual search performance on cancellation tasks, one where their cancellation markings remained visible and another one where their prior cancellations markings were invisible to the patient and therefore patients had to remember which targets they had canceled. SWM performance correlated with search organization. Together, these results from a large sample of stroke patients corroborate the findings of earlier studies, while excluding several alternative explanations: SWM impairment is a part of the neglect syndrome, and SWM impairments are related to search behavior.
Collapse
Affiliation(s)
- Jasper Fabius
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.,Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Antonia F Ten Brink
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.,Department of Psychology, University of Bath, Bath, UK
| | - Stefan Van der Stigchel
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Tanja C W Nijboer
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.,Center of Excellence for Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| |
Collapse
|
9
|
Zebhauser PT, Vernet M, Unterburger E, Brem AK. Visuospatial Neglect - a Theory-Informed Overview of Current and Emerging Strategies and a Systematic Review on the Therapeutic Use of Non-invasive Brain Stimulation. Neuropsychol Rev 2019; 29:397-420. [PMID: 31748841 PMCID: PMC6892765 DOI: 10.1007/s11065-019-09417-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/27/2019] [Indexed: 01/12/2023]
Abstract
Visuospatial neglect constitutes a supramodal cognitive deficit characterized by reduction or loss of spatial awareness for the contralesional space. It occurs in over 40% of right- and 20% of left-brain-lesioned stroke patients with lesions located mostly in parietal, frontal and subcortical brain areas. Visuospatial neglect is a multifaceted syndrome - symptoms can be divided into sensory, motor and representational neglect - and therefore requires an individually adapted diagnostic and therapeutic approach. Several models try to explain the origins of visuospatial neglect, of which the "interhemispheric rivalry model" is strongly supported by animal and human research. This model proposes that allocation of spatial attention is balanced by transcallosal inhibition and both hemispheres compete to direct attention to the contralateral hemi-space. Accordingly, a brain lesion causes an interhemispheric imbalance, which may be re-installed by activation of lesioned, or deactivation of unlesioned (over-activated) brain areas through noninvasive brain stimulation. Research in larger patient samples is needed to confirm whether noninvasive brain stimulation can improve long-term outcomes and whether these also affect activities of daily living and discharge destination.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität, Munich, Germany
| | - Marine Vernet
- Section on Neurocircuitry, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD, USA
| | - Evelyn Unterburger
- Division of Neuropsychology, Universitätsklinik Zürich USZ, Frauenklinikstrasse 26, Zurich, Switzerland
| | - Anna-Katharine Brem
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Pierce J, Saj A. A critical review of the role of impaired spatial remapping processes in spatial neglect. Clin Neuropsychol 2018; 33:948-970. [DOI: 10.1080/13854046.2018.1503722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jordan Pierce
- Department of Neurosciences, University of Geneva, Geneva, Switzerland
| | - Arnaud Saj
- Department of Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Neurology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Ogourtsova T, Archambault PS, Lamontagne A. Post-stroke visual neglect affects goal-directed locomotion in different perceptuo-cognitive conditions and on a wide visual spectrum. Restor Neurol Neurosci 2018; 36:313-331. [PMID: 29782328 DOI: 10.3233/rnn-170766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Unilateral spatial neglect (USN), a highly prevalent and disabling post-stroke deficit, has been shown to affect the recovery of locomotion. However, our current understanding of USN role in goal-directed locomotion control, and this, in different cognitive/perceptual conditions tapping into daily life demands, is limited. OBJECTIVES To examine goal-directed locomotion abilities in individuals with and without post-stroke USN vs. healthy controls. METHODS Participants (n = 45, n = 15 per group) performed goal-directed locomotion trials to actual, remembered and shifting targets located 7 m away at 0° and 15° right/left while immersed in a 3-D virtual environment. RESULTS Greater end-point mediolateral displacement and heading errors (end-point accuracy measures) were found for the actual and the remembered left and right targets among those with post-stroke USN compared to the two other groups (p < 0.05). A delayed onset of reorientation to the left and right shifting targets was also observed in USN+ participants vs. the other two groups (p < 0.05). Results on clinical near space USN assessment and walking speed explained only a third of the variance in goal-directed walking performance. CONCLUSION Post-stroke USN was found to affect goal-directed locomotion in different perceptuo-cognitive conditions, both to contralesional and ipsilesional targets, demonstrating the presence of lateralized and non-lateralized deficits. Beyond neglect severity and walking capacity, other factors related to attention, executive functioning and higher-order visual perceptual abilities (e.g. optic flow perception) may account for the goal-directed walking deficits observed in post-stroke USN+. Goal-directed locomotion can be explored in the design of future VR-based evaluation and training tools for USN to improve the currently used conventional methods.
Collapse
Affiliation(s)
- Tatiana Ogourtsova
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Feil-Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada
| | - Philippe S Archambault
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Feil-Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada
| | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Feil-Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada
| |
Collapse
|
12
|
Prism adaptation speeds reach initiation in the direction of the prism after-effect. Exp Brain Res 2017; 235:3193-3206. [DOI: 10.1007/s00221-017-5038-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
13
|
Low E, Laycock R, Crewther S. Neural Markers Associated with the Temporal Deployment of Attention: A Systematic Review of Non-motor Psychophysical Measures Post-stroke. Front Hum Neurosci 2017; 11:31. [PMID: 28239343 PMCID: PMC5301011 DOI: 10.3389/fnhum.2017.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
|
14
|
Clarke S, Crottaz-Herbette S. Modulation of visual attention by prismatic adaptation. Neuropsychologia 2016; 92:31-41. [DOI: 10.1016/j.neuropsychologia.2016.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/05/2023]
|
15
|
Prism adaptation magnitude has differential influences on perceptual versus manual responses. Exp Brain Res 2016; 234:2761-72. [DOI: 10.1007/s00221-016-4678-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/13/2016] [Indexed: 11/25/2022]
|
16
|
Wansard M, Meulemans T, Geurten M. Shedding new light on representational neglect: The importance of dissociating visual and spatial components. Neuropsychologia 2016; 84:150-7. [DOI: 10.1016/j.neuropsychologia.2016.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
|
17
|
Abstract
Prismatic adaptation has been shown to induce a realignment of visuoproprioceptive representations and to involve parietocerebellar networks. We have investigated in humans how far other types of functions known to involve the parietal cortex are influenced by a brief exposure to prismatic adaptation. Normal subjects underwent an fMRI evaluation before and after a brief session of prismatic adaptation using rightward deviating prisms for one group or after an equivalent session using plain glasses for the other group. Activation patterns to three tasks were analyzed: (1) visual detection; (2) visuospatial short-term memory; and (3) verbal short-term memory. The prismatic adaptation-related changes were found bilaterally in the inferior parietal lobule when prisms, but not plain glasses, were used. This effect was driven by selective changes during the visual detection task: an increase in neural activity was induced on the left and a decrease on the right parietal side after prismatic adaptation. Comparison of activation patterns after prismatic adaptation on the visual detection task demonstrated a significant increase of the ipsilateral field representation in the left inferior parietal lobule and a significant decrease in the right inferior parietal lobule. In conclusion, a brief exposure to prismatic adaptation modulates differently left and right parietal activation during visual detection but not during short-term memory. Furthermore, the visuospatial representation within the inferior parietal lobule changes, with a decrease of the ipsilateral hemifield representation on the right and increase on the left side, suggesting thus a left hemispheric dominance.
Collapse
|
18
|
Van der Stigchel S, Nijboer TCW. Introduction to the research topic novel insights in rehabilitation of neglect. Front Hum Neurosci 2014; 8:233. [PMID: 24782747 PMCID: PMC3995039 DOI: 10.3389/fnhum.2014.00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/01/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Stefan Van der Stigchel
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University , Utrecht , Netherlands
| | - Tanja C W Nijboer
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University , Utrecht , Netherlands ; Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation Center , Utrecht , Netherlands
| |
Collapse
|
19
|
Van Vleet TM, DeGutis JM. The nonspatial side of spatial neglect and related approaches to treatment. PROGRESS IN BRAIN RESEARCH 2013; 207:327-49. [PMID: 24309261 DOI: 10.1016/b978-0-444-63327-9.00012-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In addition to deficits in spatial attention, individuals with persistent spatial neglect almost universally exhibit nonspatially lateralized deficits in sustained and selective attention, and working memory. However, nonspatially lateralized deficits in neglect have received considerably less attention in the literature than deficits in spatial attention. This is in spite of the fact that nonspatially lateralized deficits better predict the chronicity and functional disability associated with neglect than spatially lateralized deficits. Furthermore, only a few treatment studies have specifically targeted nonspatially lateralized deficits as a means to improve spatial neglect. In this chapter, we will briefly review several models of spatial attention bias in neglect before focusing on nonspatial deficits and the mechanisms of nonspatial-spatial interactions and implications for treatment. Treatment approaches that more completely address nonspatial deficits and better account for their interactions with spatial attention will likely produce better outcomes.
Collapse
Affiliation(s)
- Thomas M Van Vleet
- Department of Veteran Affairs, Martinez, CA, USA; Brain Plasticity Institute at Posit Science Corporation, San Francisco, CA, USA.
| | | |
Collapse
|