1
|
Elmaghraby R, Blank E, Miyakoshi M, Gilbert DL, Wu SW, Larsh T, Westerkamp G, Liu Y, Horn PS, Erickson CA, Pedapati EV. Probing the Neurodynamic Mechanisms of Cognitive Flexibility in Depressed Individuals with Autism Spectrum Disorder. J Child Adolesc Psychopharmacol 2025; 35:231-243. [PMID: 39792483 DOI: 10.1089/cap.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by deficits in social behavior and executive function (EF), particularly in cognitive flexibility. Whether transcranial magnetic stimulation (TMS) can improve cognitive outcomes in patients with ASD remains an open question. We examined the acute effects of prefrontal TMS on cortical excitability and fluid cognition in individuals with ASD who underwent TMS for refractory major depression. Methods: We analyzed data from an open-label pilot study involving nine participants with ASD and treatment-resistant depression who received 30 sessions of accelerated theta burst stimulation of the dorsolateral prefrontal cortex, either unilaterally or bilaterally. Electroencephalography data were collected at baseline and 1, 4, and 12-weeks posttreatment and analyzed using a mixed-effects linear model to assess changes in regional cortical excitability using three models of spectral parametrization. Fluid cognition was measured using the National Institutes of Health Toolbox Cognitive Battery. Results: Prefrontal TMS led to a decrease in prefrontal cortical excitability and an increase in right temporoparietal excitability, as measured using spectral exponent analysis. This was associated with a significant improvement in the NIH Toolbox Fluid Cognition Composite score and the Dimensional Change Card Sort subtest from baseline to 12 weeks posttreatment (t = 3.79, p = 0.005, n = 9). Improvement in depressive symptomatology was significant (HDRS-17, F (3, 21) = 28.49, p < 0.001) and there was a significant correlation between cognitive improvement at week 4 and improvement in depression at week 12 (r = 0.71, p = 0.05). Conclusion: These findings link reduced prefrontal excitability in patients with ASD and improvements in cognitive flexibility. The degree to which these mechanisms can be generalized to ASD populations without Major Depressive Disorder remains a compelling question for future research.
Collapse
Affiliation(s)
- Rana Elmaghraby
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth Blank
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Travis Larsh
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Grace Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yanchen Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Jang SS, Takahashi F, Huguenard JR. Reticular Thalamic Hyperexcitability Drives Autism Spectrum Disorder Behaviors in the Cntnap2 Model of Autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644680. [PMID: 40166234 PMCID: PMC11957169 DOI: 10.1101/2025.03.21.644680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by social communication deficits, repetitive behaviors, and comorbidities such as sensory abnormalities, sleep disturbances, and seizures. Dysregulation of thalamocortical circuits has been implicated in these comorbid features, yet their precise roles in ASD pathophysiology remain elusive. This study focuses on the reticular thalamic nucleus (RT), a key regulator of thalamocortical interactions, to elucidate its contribution to ASD-related behavioral deficits using a Cntnap2 knockout (KO) mouse model. Our behavioral and EEG analyses comparing Cntnap2 +/+ and Cntnap2 -/- mice demonstrated that Cntnap2 knockout heightened seizure susceptibility, elevated locomotor activity, and produced hallmark ASD phenotypes, including social deficits, and repetitive behaviors. Electrophysiological recordings from thalamic brain slices revealed increased spontaneous and evoked network oscillations with increased RT excitability due to enhanced T-type calcium currents and burst firing. We observed behavior related heightened RT population activity in vivo with fiber photometry. Notably, suppressing RT activity via Z944, a T-type calcium channel blocker, and via C21 and the inhibitory DREADD hM4Di, improved ASD-related behavioral deficits. These findings identify RT hyperexcitability as a mechanistic driver of ASD behaviors and underscore RT as a potential therapeutic target for modulating thalamocortical circuit dysfunction in ASD. Teaser RT hyperexcitability drives ASD behaviors in Cntnap2-/- mice, highlighting RT as a therapeutic target for circuit dysfunction.
Collapse
|
3
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The Role of Androgens and Estrogens in Social Interactions and Social Cognition. Neuroscience 2025; 568:476-502. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, Canada; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Canada.
| |
Collapse
|
4
|
Mattingly Z, Chetty S. Untangling the Molecular Mechanisms Contributing to Autism Spectrum Disorder Using Stem Cells. Autism Res 2025; 18:476-485. [PMID: 39989339 DOI: 10.1002/aur.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Autism spectrum disorder (ASD) is a complex neuro developmental condition characterized by significant genetic and phenotypic variability, making diagnosis and treatment challenging. The heterogeneity of ASD-associated genetic variants and the absence of clear causal factors in many cases complicate personalized care. Traditional models, such as postmortem brain tissue and animal studies, have provided valuable insights but are limited in capturing the dynamic processes and human-specific aspects of ASD pathology. Recent advances in human induced pluripotent stem cell (iPSC) technology have transformed ASD research by enabling the generation of patient-derived neural cells in both two-dimensional cultures and three-dimensional brain organoid models. These models retain the donor's genetic background, allowing researchers to investigate disease-specific cellular and molecular mechanisms while identifying potential therapeutic targets tailored to individual patients. This commentary highlights how stem cell-based approaches are advancing our understanding of ASD and paving the way for more personalized diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zoe Mattingly
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sundari Chetty
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Lurie Center for Autism, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Lee Masson H. Dynamic functional adaptations during touch observation in autism: connectivity strength is linked to attitudes towards social touch and social responsiveness. Mol Autism 2025; 16:11. [PMID: 39966865 PMCID: PMC11837348 DOI: 10.1186/s13229-025-00644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Autistic adults experience differences in social interactions involving physical contact. Brain imaging studies suggest that these differences may be related to atypical brain responses to social-affective cues, affecting both the experience of receiving touch and observing it in others. However, it remains unclear whether these atypical responses are limited to specific brain regions or represent broader alterations in brain connectivity. The current study investigated how the functional network architecture is modulated during touch observation associated with autism and explored the extent to which changes in this architecture are associated with individual differences in social touch preferences and social responsiveness. METHODS By integrating generalized psychophysiological interaction (gPPI) analysis with independent component analysis (ICA), the current study analyzed existing fMRI datasets, in which 21 autistic and 21 non-autistic male adults viewed videos of social and nonsocial touch while undergoing MRI scans. RESULTS A gPPI analysis of regions of interest revealed that autistic adults exhibited increased connectivity between sensory and social brain regions. The strength of some of these connections was positively associated with a higher preference for social touch and greater social responsiveness, suggesting neural compensatory mechanisms that may help autistic adults better understand the meaning of touch. At the level of large-scale brain networks extracted using ICA, atypical connectivity was predominantly observed between the sensorimotor network and other networks involved in social-emotional processing. Increased connectivity was observed in the sensorimotor network during nonsocial touch, suggesting that embodied simulation, the process by which individuals internally simulate touch experience of others in this context, may be more engaged when observing human-object interactions than during human-to-human touch. LIMITATIONS This study focused on a specific subgroup of 21 autistic male adults with minimal support needs. Future research would benefit from including a more diverse autistic sample. CONCLUSIONS This study reveals atypical context-dependent modulation of functional brain architecture associated with autism during touch observation. Neural compensatory mechanisms in autistic individuals who enjoy social touch and show higher social responsiveness may function as adaptive social responses. However, these compensations may be limited to specific brain regions, rather than occurring at the level of large-scale brain networks.
Collapse
Affiliation(s)
- Haemy Lee Masson
- Centre for Neurodiversity and Development, Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Yun DH, Park YG, Cho JH, Kamentsky L, Evans NB, DiNapoli N, Xie K, Choi SW, Albanese A, Tian Y, Sohn CH, Zhang Q, Kim ME, Swaney J, Guan W, Park J, Drummond G, Choi H, Ruelas L, Feng G, Chung K. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat Biotechnol 2025:10.1038/s41587-024-02533-4. [PMID: 39856430 DOI: 10.1038/s41587-024-02533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Extending single-cell analysis to intact tissues while maintaining organ-scale spatial information poses a major challenge due to unequal chemical processing of densely packed cells. Here we introduce Continuous Redispersion of Volumetric Equilibrium (CuRVE) in nanoporous matrices, a framework to address this challenge. CuRVE ensures uniform processing of all cells in organ-scale tissues by perpetually maintaining dynamic equilibrium of the tissue's gradually shifting chemical environment. The tissue chemical reaction environment changes at a continuous, slow rate, allowing redispersion of unevenly distributed chemicals and preserving chemical equilibrium tissue wide at any given moment. We implemented CuRVE to immunologically label whole mouse and rat brains and marmoset and human tissue blocks within 1 day. We discovered highly variable regionalized reduction of parvalbumin immunoreactive cells in wild-type adult mice, a phenotype missed by the commonly used genetic labeling. We envision that our platform will advance volumetric single-cell processing and analysis, facilitating comprehensive single-cell level investigations within their spatial context in organ-scale tissues.
Collapse
Affiliation(s)
- Dae Hee Yun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lee Kamentsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas B Evans
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas DiNapoli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Katherine Xie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Seo Woo Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Alexandre Albanese
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Yuxuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Chang Ho Sohn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyoung E Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Juhyuk Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gabi Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Heejin Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luzdary Ruelas
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Williams OOF, Coppolino M, Micelli CB, McCallum RT, Henry-Duru PT, Manduca JD, Lalonde J, Perreault ML. Prenatal exposure to valproic acid induces sex-specific alterations in rat cortical and hippocampal neuronal structure and function in vitro. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111222. [PMID: 39701172 DOI: 10.1016/j.pnpbp.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
There are substantial differences in the characteristics of males and females with an autism spectrum disorder (ASD), yet there is little knowledge surrounding the mechanistic underpinnings of these differences. The valproic acid (VPA) rodent model is based upon the human fetal valproate spectrum disorder, which is associated with increased risk of developing ASD. This model, which displays significant social, learning, and memory alterations, has therefore been widely used to further our understanding of specific biological features of ASD. However, to date, almost all of the studies employing this model have used male rodents. To fill this knowledge gap, we evaluated sex differences for neuronal activity, morphology, and glycogen synthase kinase-3 (GSK-3) signaling in primary cortical (CTX) and hippocampal (HIP) neurons prepared from rats exposed to VPA in utero. In vivo, sex-specific VPA-induced alterations in the frontal CTX transcriptome at birth were also determined. Overall, VPA induced more robust changes in neuronal function and structure in the CTX than in the HIP. Male- and female-derived primary CTX neurons from rats exposed to prenatal VPA had elevated activity and showed more disorganized firing. In the HIP, only the female VPA neurons showed elevated firing, while the male VPA neurons exhibited disorganized activity. Dendritic arborization of CTX neurons from VPA rats was less complex in both sexes, though this was more pronounced in the females. Conversely, both female and male HIP neurons from VPA rats showed elevated complexity distal to the soma. Female VPA CTX neurons also had an elevated number of dendritic spines. The relative activity of the α and β isoforms of GSK-3 were suppressed in both female and male VPA CTX neurons, with no changes in the HIP neurons. On postnatal day 0, alterations in CTX genes associated with neuropeptides (e.g., penk, pdyn) and receptors (e.g., drd1, adora2a) were seen in both sexes, though they were downregulated in females and upregulated in males. Together these findings suggest that substantial sex differences in neuronal structure and function in the VPA model may have relevance to the reported sex differences in idiopathic ASD.
Collapse
Affiliation(s)
- Olivia O F Williams
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| | - Madeleine Coppolino
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Cecilia B Micelli
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Ryan T McCallum
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Paula T Henry-Duru
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| | - Joshua D Manduca
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
8
|
Toolan KP, McGrath BT, Brinkmeier ML, Camper SA, Bielas SL. Ash1l loss-of-function results in structural birth defects and altered cortical development. Brain 2025; 148:55-68. [PMID: 38943682 PMCID: PMC11706301 DOI: 10.1093/brain/awae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
The histone methyltransferase ASH1L plays a crucial role in regulating gene expression across various organ systems during development, yet its role in brain development remains largely unexplored. Over 130 individuals with autism harbour heterozygous loss-of-function ASH1L variants, and population studies confirm it as a high-risk autism gene. Previous studies on Ash1l deficient mice have reported autistic-like behaviours and provided insights into the underlying neuropathophysiology. In this study, we used mice with a cre-inducible deletion of Ash1l exon 4, which results in a frame shift and premature stop codon (p.V1693Afs*2). Our investigation evaluated the impact of Ash1l loss-of-function on survival and craniofacial skeletal development. Using a tamoxifen-inducible cre strain, we targeted Ash1l knockout early in cortical development [Emx1-Cre-ERT2; embryonic Day (e) 10.5]. Immunohistochemistry was utilized to assess cortical lamination, while EdU incorporation aided in birthdating cortical neurons. Additionally, single-cell RNA sequencing was employed to compare cortical cell populations and identify genes with differential expression. At e18.5, the proportion of homozygous Ash1l germline knockout embryos appeared normal; however, no live Ash1l null pups were present at birth (e18.5: n = 77, P = 0.90; p0: n = 41, P = 0.00095). Notably, Ash1l-/- exhibited shortened nasal bones (n = 31, P = 0.017). In the cortical-specific knockout model, SATB2 neurons showed increased numbers (n = 6/genotype, P = 0.0001) and were distributed through the cortical plate. Birthdating revealed generation of ectopically placed deep layer neurons that express SATB2 (e13.5 injection: n = 4/genotype, P = 0.0126). Single cell RNA sequencing revealed significant differences in gene expression between control and mutant upper layer neurons, leading to distinct clustering. Pseudotime analysis indicated that the mutant cluster followed an altered cell differentiation trajectory. This study underscores the essential role of Ash1l in postnatal survival and normal craniofacial development. In the cortex, ASH1L exerts broad effects on gene expression and is indispensable for determining the fate of upper layer cortical neurons. These findings provide valuable insights into the potential mechanisms of ASH1L neuropathology, shedding light on its significance in neurodevelopmental disorders like autism.
Collapse
Affiliation(s)
- Kevin P Toolan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
| | - Brian T McGrath
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Mamat M, Chen Y, Shen W, Li L. Molecular architecture of the altered cortical complexity in autism. Mol Autism 2025; 16:1. [PMID: 39763008 PMCID: PMC11705879 DOI: 10.1186/s13229-024-00632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication challenges, and repetitive behaviors. Despite extensive research, the molecular mechanisms underlying these neurodevelopmental abnormalities remain elusive. We integrated microscale brain gene expression data with macroscale MRI data from 1829 participants, including individuals with ASD and typically developing controls, from the autism brain imaging data exchange I and II. Using fractal dimension as an index for quantifying cortical complexity, we identified significant regional alterations in ASD, within the left temporoparietal, left peripheral visual, right central visual, left somatomotor (including the insula), and left ventral attention networks. Partial least squares regression analysis revealed gene sets associated with these cortical complexity changes, enriched for biological functions related to synaptic transmission, synaptic plasticity, mitochondrial dysfunction, and chromatin organization. Cell-specific analyses, protein-protein interaction network analysis and gene temporal expression profiling further elucidated the dynamic molecular landscape associated with these alterations. These findings indicate that ASD-related alterations in cortical complexity are closely linked to specific genetic pathways. The combined analysis of neuroimaging and transcriptomic data enhances our understanding of how genetic factors contribute to brain structural changes in ASD.
Collapse
Affiliation(s)
- Makliya Mamat
- School of Basic Medical Sciences, Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Yiyong Chen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang, People's Republic of China.
| | - Wenwen Shen
- Affiliated Kangning Hospital of Ningbo University, Ningbo, 315201, Zhejiang, People's Republic of China.
| | - Lin Li
- Human Anatomy Department, Nanjing Medical University, No.101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Biagioni M, Baronchelli F, Fossati M. Multiscale spatio-temporal dynamics of UBE3A gene in brain physiology and neurodevelopmental disorders. Neurobiol Dis 2024; 201:106669. [PMID: 39293689 DOI: 10.1016/j.nbd.2024.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024] Open
Abstract
The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication syndrome (Dup15q). In the last two decades, the development of in vitro and in vivo models of AS and Dup15q were fundamental to improve the understanding of UBE3A function in the brain. However, the pathogenic mechanisms of these diseases remain elusive and effective treatments are lacking. Recent evidence suggests that UBE3A functions are both spatially and temporally specific, varying across subcellular compartments, brain regions, and neuronal circuits. In the present review, we summarize current knowledge on the role of UBE3A in neuronal pathophysiology under this spatio-temporal perspective. Additionally, we propose key research questions that will be instrumental to better understand the pathogenic mechanisms underpinning AS and Dup15q disorders and provide the rationale to develop novel therapies.
Collapse
Affiliation(s)
- Martina Biagioni
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy
| | - Federica Baronchelli
- CNR - Institute of Neuroscience, Section of Milano, via Manzoni 56, Rozzano 20089, MI, Italy; Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy
| | - Matteo Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy; CNR - Institute of Neuroscience, Section of Milano, via Manzoni 56, Rozzano 20089, MI, Italy.
| |
Collapse
|
11
|
King C, Maze T, Plakke B. Altered prefrontal and cerebellar parvalbumin neuron counts are associated with cognitive changes in male rats. Exp Brain Res 2024; 242:2295-2308. [PMID: 39085433 DOI: 10.1007/s00221-024-06902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
Collapse
Affiliation(s)
- Cole King
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Tessa Maze
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA
| | - Bethany Plakke
- Psychological Sciences, Kansas State University, 1114 Mid-Campus Dr., Manhattan, KS, 66506, USA.
| |
Collapse
|
12
|
Zhang F, Chen Y, Ning L, Rushmore J, Liu Q, Du M, Hassanzadeh‐Behbahani S, Legarreta J, Yeterian E, Makris N, Rathi Y, O'Donnell L. Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI. Hum Brain Mapp 2024; 45:e70041. [PMID: 39392220 PMCID: PMC11467805 DOI: 10.1002/hbm.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
The superficial white matter (SWM) consists of numerous short-range association fibers connecting adjacent and nearby gyri and plays an important role in brain function, development, aging, and various neurological disorders. Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the SWM. However, detailed imaging of the small, highly-curved fibers of the SWM is a challenge for current clinical and research dMRI acquisitions. This work investigates the efficacy of mapping the SWM using in vivo ultra-high-resolution dMRI data. We compare the SWM mapping performance from two dMRI acquisitions: a high-resolution 0.76-mm isotropic acquisition using the generalized slice-dithered enhanced resolution (gSlider) protocol and a lower resolution 1.25-mm isotropic acquisition obtained from the Human Connectome Project Young Adult (HCP-YA) database. Our results demonstrate significant differences in the cortico-cortical anatomical connectivity that is depicted by these two acquisitions. We perform a detailed assessment of the anatomical plausibility of these results with respect to the nonhuman primate (macaque) tract-tracing literature. We find that the high-resolution gSlider dataset is more successful at depicting a large number of true positive anatomical connections in the SWM. An additional cortical coverage analysis demonstrates significantly higher cortical coverage in the gSlider dataset for SWM streamlines under 40 mm in length. Overall, we conclude that the spatial resolution of the dMRI data is one important factor that can significantly affect the mapping of SWM. Considering the relatively long acquisition time, the application of dMRI tractography for SWM mapping in future work should consider the balance of data acquisition efforts and the efficacy of SWM depiction.
Collapse
Affiliation(s)
- Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yuqian Chen
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lipeng Ning
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Qiang Liu
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mubai Du
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
| | | | - Jon Haitz Legarreta
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Edward Yeterian
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
13
|
Prakasam R, Determan J, Narasimhan M, Shen R, Saleh M, Chapman G, Kaushik K, Gontarz P, Meganathan K, Hakim B, Zhang B, Huettner JE, Kroll KL. Autism and Intellectual Disability-Associated MYT1L Mutation Alters Human Cortical Interneuron Differentiation, Maturation, and Physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612541. [PMID: 39314432 PMCID: PMC11419074 DOI: 10.1101/2024.09.11.612541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
MYT1L is a neuronal transcription factor highly expressed in the developing and adult brain. While pathogenic MYT1L mutation causes neurodevelopmental disorders, these have not been characterized in human models of neurodevelopment. Here, we defined the consequences of pathogenic MYT1L mutation in human pluripotent stem cell-derived cortical interneurons. During differentiation, mutation reduced MYT1L expression and increased progenitor cell cycle exit and neuronal differentiation and synapse-related gene expression, morphological complexity, and synaptic puncta formation. Conversely, interneuron maturation was compromised, while variant neurons exhibited altered sodium and potassium channel activity and reduced function in electrophysiological analyses. CRISPRi-based knockdown similarly impaired interneuron differentiation and maturation, supporting loss of function-based effects. We further defined MYT1L genome-wide occupancy in interneurons and related this to the transcriptomic dysregulation resulting from MYT1L mutation, to identify direct targets that could mediate these phenotypic consequences. Together, this work delineates contributors to the etiology of neurodevelopmental disorders resulting from MYT1L mutation.
Collapse
|
14
|
Luo Y, Wang L, Cao Y, Shen Y, Gu Y, Wang L. Reduced excitatory activity in the developing mPFC mediates a PV H-to-PV L transition and impaired social cognition in autism spectrum disorders. Transl Psychiatry 2024; 14:325. [PMID: 39107319 PMCID: PMC11303698 DOI: 10.1038/s41398-024-03043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the neuropathogenesis of impaired social cognition in autism spectrum disorders (ASD) is challenging. Altered cortical parvalbumin-positive (PV+) interneurons have been consistently observed in ASD, but their roles and the underlying mechanisms remain poorly understood. In our study, we observed a downward-shifted spectrum of PV expression in the developing medial prefrontal cortex (mPFC) of ASD mouse models due to decreased activity of PV+ neurons. Surprisingly, chemogenetically suppressing PV+ neuron activity during postnatal development failed to induce ASD-like behaviors. In contrast, lowering excitatory activity in the developing mPFC not only dampened the activity state and PV expression of individual PV+ neurons, but also replicated ASD-like social deficits. Furthermore, enhancing excitation, but not PV+ interneuron-mediated inhibition, rescued social deficits in ASD mouse models. Collectively, our findings propose that reduced excitatory activity in the developing mPFC may serve as a shared local circuitry mechanism triggering alterations in PV+ interneurons and mediating impaired social functions in ASD.
Collapse
Affiliation(s)
- Yujian Luo
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yirong Cao
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China.
| | - Lang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Erickson CA, Perez-Cano L, Pedapati EV, Painbeni E, Bonfils G, Schmitt LM, Sachs H, Nelson M, De Stefano L, Westerkamp G, de Souza ALS, Pohl O, Laufer O, Issachar G, Blaettler T, Hyvelin JM, Durham LA. Safety, Tolerability, and EEG-Based Target Engagement of STP1 (PDE3,4 Inhibitor and NKCC1 Antagonist) in a Randomized Clinical Trial in a Subgroup of Patients with ASD. Biomedicines 2024; 12:1430. [PMID: 39062003 PMCID: PMC11274259 DOI: 10.3390/biomedicines12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to evaluate the safety and tolerability of STP1, a combination of ibudilast and bumetanide, tailored for the treatment of a clinically and biologically defined subgroup of patients with Autism Spectrum Disorder (ASD), namely ASD Phenotype 1 (ASD-Phen1). We conducted a randomized, double-blind, placebo-controlled, parallel-group phase 1b study with two 14-day treatment phases (registered at clinicaltrials.gov as NCT04644003). Nine ASD-Phen1 patients were administered STP1, while three received a placebo. We assessed safety and tolerability, along with electrophysiological markers, such as EEG, Auditory Habituation, and Auditory Chirp Synchronization, to better understand STP1's mechanism of action. Additionally, we used several clinical scales to measure treatment outcomes. The results showed that STP1 was well-tolerated, with electrophysiological markers indicating a significant and dose-related reduction of gamma power in the whole brain and in brain areas associated with executive function and memory. Treatment with STP1 also increased alpha 2 power in frontal and occipital regions and improved habituation and neural synchronization to auditory chirps. Although numerical improvements were observed in several clinical scales, they did not reach statistical significance. Overall, this study suggests that STP1 is well-tolerated in ASD-Phen1 patients and shows indirect target engagement in ASD brain regions of interest.
Collapse
Affiliation(s)
- Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Laura Perez-Cano
- Discovery and Data Science (DDS) Unit, STALICLA SL, Moll de Barcelona, s/n, Edif Este, 08039 Barcelona, Spain
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45229, USA
- Division of Child Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eric Painbeni
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Gregory Bonfils
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hannah Sachs
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Meredith Nelson
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa De Stefano
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Grace Westerkamp
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adriano L. S. de Souza
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Oliver Pohl
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | | | | | - Thomas Blaettler
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Jean-Marc Hyvelin
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| | - Lynn A. Durham
- Drug Development Unit (DDU), STALICLA SA, Campus Biotech Innovation Park, Avenue de Sécheron 15, 1202 Geneva, Switzerland
| |
Collapse
|
16
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Metabolomic changes in children with autism. World J Clin Pediatr 2024; 13:92737. [PMID: 38947988 PMCID: PMC11212761 DOI: 10.5409/wjcp.v13.i2.92737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Pediatric, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Bahrain, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
- Department of Chest Disease, University Medical Center, Dr. Sulaiman Al Habib Medical Group, Manama, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
17
|
Arutiunian V, Santhosh M, Neuhaus E, Borland H, Tompkins C, Bernier RA, Bookheimer SY, Dapretto M, Gupta AR, Jack A, Jeste S, McPartland JC, Naples A, Van Horn JD, Pelphrey KA, Webb SJ. The relationship between gamma-band neural oscillations and language skills in youth with Autism Spectrum Disorder and their first-degree relatives. Mol Autism 2024; 15:19. [PMID: 38711098 PMCID: PMC11075235 DOI: 10.1186/s13229-024-00598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Most children with Autism Spectrum Disorder (ASD) have co-occurring language impairments and some of these autism-specific language difficulties are also present in their non-autistic first-degree relatives. One of the possible neural mechanisms associated with variability in language functioning is alterations in cortical gamma-band oscillations, hypothesized to be related to neural excitation and inhibition balance. METHODS We used a high-density 128-channel electroencephalography (EEG) to register brain response to speech stimuli in a large sex-balanced sample of participants: 125 youth with ASD, 121 typically developing (TD) youth, and 40 unaffected siblings (US) of youth with ASD. Language skills were assessed with Clinical Evaluation of Language Fundamentals. RESULTS First, during speech processing, we identified significantly elevated gamma power in ASD participants compared to TD controls. Second, across all youth, higher gamma power was associated with lower language skills. Finally, the US group demonstrated an intermediate profile in both language and gamma power, with nonverbal IQ mediating the relationship between gamma power and language skills. LIMITATIONS We only focused on one of the possible neural contributors to variability in language functioning. Also, the US group consisted of a smaller number of participants in comparison to the ASD or TD groups. Finally, due to the timing issue in EEG system we have provided only non-phase-locked analysis. CONCLUSIONS Autistic youth showed elevated gamma power, suggesting higher excitation in the brain in response to speech stimuli and elevated gamma power was related to lower language skills. The US group showed an intermediate pattern of gamma activity, suggesting that the broader autism phenotype extends to neural profiles.
Collapse
Affiliation(s)
- Vardan Arutiunian
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave., Seattle, WA, 98101, USA
| | - Megha Santhosh
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave., Seattle, WA, 98101, USA
| | - Emily Neuhaus
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave., Seattle, WA, 98101, USA
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, USA
- Institute of Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Heather Borland
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave., Seattle, WA, 98101, USA
| | - Chris Tompkins
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, USA
- Institute of Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, USA
| | - Susan Y Bookheimer
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Mirella Dapretto
- Center for Autism Research and Treatment, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Abha R Gupta
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Shafali Jeste
- Department of Neurology, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | | - Adam Naples
- Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - John D Van Horn
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Kevin A Pelphrey
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Sara Jane Webb
- Center for Child Health, Behavior and Development, Seattle Children's Research Institute, 1920 Terry Ave., Seattle, WA, 98101, USA.
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, WA, USA.
- Institute of Human Development and Disability, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Wang Y, Long H, Bo T, Zheng J. Residual graph transformer for autism spectrum disorder prediction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108065. [PMID: 38428249 DOI: 10.1016/j.cmpb.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Brain functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI) has been in vogue to predict Autism Spectrum Disorder (ASD), which is a neuropsychiatric disease up the plight of locating latent biomarkers for clinical diagnosis. Albeit massive endeavors have been made, most studies are fed up with several chronic issues, such as the intractability of harnessing the interaction flourishing within brain regions, the astriction of representation due to vanishing gradient within deeper network architecture, and the poor interpretability leading to unpersuasive diagnosis. To ameliorate these issues, a FC-learned Residual Graph Transformer Network, namely RGTNet, is proposed. Specifically, we design a Graph Encoder to extract temporal-related features with long-range dependencies, from which interpretable FC matrices would be modeled. Besides, the residual trick is introduced to deepen the GCN architecture, thereby learning the higher-level information. Moreover, a novel Graph Sparse Fitting followed by weighted aggregation is proposed to ease dimensionality explosion. Empirically, the results on two types of ABIDE data sets demonstrate the meliority of RGTNet. Notably, the achieved ACC metric reaches 73.4%, overwhelming most competitors with merely 70.9% on the AAL atlas using a five-fold cross-validation policy. Moreover, the investigated biomarkers concord closely with the authoritative medical knowledge, paving a viable way for ASD-clinical diagnosis. Our code is available at https://github.com/CodeGoat24/RGTNet.
Collapse
Affiliation(s)
- Yibin Wang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jianwei Zheng
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
19
|
Grezenko H, Rodoshi ZN, Mimms CS, Ahmed M, Sabani A, Hlaing MS, Batu BJ, Hundesa MI, Ayalew BD, Shehryar A, Rehman A, Hassan A. From Alzheimer's Disease to Anxiety, Epilepsy to Schizophrenia: A Comprehensive Dive Into Neuro-Psychiatric Disorders. Cureus 2024; 16:e58776. [PMID: 38784315 PMCID: PMC11112393 DOI: 10.7759/cureus.58776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
This comprehensive narrative review endeavors to dissect the intricate web of neuropsychiatric disorders that significantly impact cognition, emotion regulation, behavior, and mental health. With a keen focus on Alzheimer's disease (AD), anxiety disorders, epilepsy, schizophrenia, and autism spectrum disorder (ASD), this article delves into their underlying mechanisms, clinical presentations, diagnostic challenges, and therapeutic interventions. Highlighting the considerable disability and societal costs that these conditions impose, it reflects on the over six million individuals grappling with Alzheimer's, the 19 million American adults living with anxiety disorders, the three million with epilepsy, and the global reach of schizophrenia affecting approximately 20 million people. Furthermore, it examines the emerging landscape of ASD, noting the escalating diagnosis rates and the pressing need for innovative treatments and equitable healthcare access. Through a detailed exploration of current research, technological innovations, and the promise of personalized medicine, this review aims to illuminate the complexities of these conditions, advocate for early intervention strategies, and call for a unified approach to tackling the multifaceted challenges they present. The ultimate goal is to inform and inspire healthcare professionals, researchers, and policymakers to foster advancements that improve outcomes and quality of life for individuals affected by these profound neuropsychiatric disorders, steering towards a future where these conditions are no longer insurmountable.
Collapse
Affiliation(s)
- Han Grezenko
- Medicine and Surgery, Guangxi Medical University, Nanning, CHN
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | | | - Ciara S Mimms
- Medicine, St. George's University, St. George's, USA
| | - Muhammad Ahmed
- Psychiatry and Behavioral Sciences, Dow University of Health Sciences, Karachi, PAK
| | - Astrit Sabani
- Medicine, St. George's University, St. George's, USA
| | - May Su Hlaing
- Geriatrics, United Lincolnshire Hospitals NHS Trust, Boston, GBR
| | - Biniyam J Batu
- General Practice, St. Paul's Hospital Millennium Medical College, Addis Ababa, ETH
| | - Muhidin I Hundesa
- Medical Services, Federal Democratic Republic of Ethiopia Ministry of Health, Addis Ababa, ETH
| | - Biruk D Ayalew
- Internal Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, ETH
| | | | | | | |
Collapse
|
20
|
Siemann J, Kroeger A, Bender S, Muthuraman M, Siniatchkin M. Segregated Dynamical Networks for Biological Motion Perception in the Mu and Beta Range Underlie Social Deficits in Autism. Diagnostics (Basel) 2024; 14:408. [PMID: 38396447 PMCID: PMC10887711 DOI: 10.3390/diagnostics14040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Biological motion perception (BMP) correlating with a mirror neuron system (MNS) is attenuated in underage individuals with autism spectrum disorder (ASD). While BMP in typically-developing controls (TDCs) encompasses interconnected MNS structures, ASD data hint at segregated form and motion processing. This coincides with less fewer long-range connections in ASD than TDC. Using BMP and electroencephalography (EEG) in ASD, we characterized directionality and coherence (mu and beta frequencies). Deficient BMP may stem from desynchronization thereof in MNS and may predict social-communicative deficits in ASD. Clinical considerations thus profit from brain-behavior associations. METHODS Point-like walkers elicited BMP using 15 white dots (walker vs. scramble in 21 ASD (mean: 11.3 ± 2.3 years) vs. 23 TDC (mean: 11.9 ± 2.5 years). Dynamic Imaging of Coherent Sources (DICS) characterized the underlying EEG time-frequency causality through time-resolved Partial Directed Coherence (tPDC). Support Vector Machine (SVM) classification validated the group effects (ASD vs. TDC). RESULTS TDC showed MNS sources and long-distance paths (both feedback and bidirectional); ASD demonstrated distinct from and motion sources, predominantly local feedforward connectivity, and weaker coherence. Brain-behavior correlations point towards dysfunctional networks. SVM successfully classified ASD regarding EEG and performance. CONCLUSION ASD participants showed segregated local networks for BMP potentially underlying thwarted complex social interactions. Alternative explanations include selective attention and global-local processing deficits. SIGNIFICANCE This is the first study applying source-based connectivity to reveal segregated BMP networks in ASD regarding structure, cognition, frequencies, and temporal dynamics that may explain socio-communicative aberrancies.
Collapse
Affiliation(s)
- Julia Siemann
- Department of Child and Adolescent Psychiatry and Psychotherapy Bethel, Evangelical Hospital Bielefeld, 33617 Bielefeld, Germany;
| | - Anne Kroeger
- Clinic of Child and Adolescent Psychiatry, Goethe-University of Frankfurt am Main, 60389 Frankfurt, Germany (S.B.)
| | - Stephan Bender
- Clinic of Child and Adolescent Psychiatry, Goethe-University of Frankfurt am Main, 60389 Frankfurt, Germany (S.B.)
- Department for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Neural Engineering with Signal Analytics and Artificial Intelligence (NESA-AI), University Clinic Würzburg, 97080 Würzburg, Germany;
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry and Psychotherapy Bethel, Evangelical Hospital Bielefeld, 33617 Bielefeld, Germany;
- University Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
21
|
Goikolea-Vives A, Fernandes C, Thomas MSC, Thornton C, Stolp HB. Sex-Specific Behavioural Deficits in Adulthood following Acute Activation of the GABAA Receptor in the Neonatal Mouse. Dev Neurosci 2024; 46:386-400. [PMID: 38325353 DOI: 10.1159/000536641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Sex differences exist in the prevalence of neurodevelopmental disorders (NDDs). Part of the aetiology of NDDs has been proposed to be alterations in the balance between excitatory and inhibitory neurotransmission, leading to the question of whether males and females respond differently to altered neurotransmitter balance. We investigated whether pharmacological alteration of GABAA signalling in early development results in sex-dependent changes in adult behaviours associated with NDDs. METHODS Male and female C57BL/6J mice received intraperitoneal injections of 0.5 mg/kg muscimol or saline on postnatal days (P) 3-5 and were subjected to behavioural testing, specifically open field, light/dark box, marble-burying, sucralose preference, social interaction, and olfactory habituation/dishabituation tests between P60 and P90. RESULTS Early postnatal administration of muscimol resulted in reduced anxiety in the light/dark box test in both male and female adult mice. Muscimol reduced sucralose preference in males, but not females, whereas female mice showed reduced social behaviours. Regional alterations in cortical thickness were observed in the weeks following GABAA receptor activation, pointing to an evolving structural difference in the brain underlying adult behaviour. CONCLUSIONS We conclude that activation of the GABAA receptor in the first week of life resulted in long-lasting changes in a range of behaviours in adulthood following altered neurodevelopment. Sex of the individual affected the nature and severity of these abnormalities, explaining part of the varied pathophysiology and neurodevelopmental diagnosis that derive from excitatory/inhibitory imbalance.
Collapse
Affiliation(s)
- Ane Goikolea-Vives
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Cathy Fernandes
- SGDP Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Michael S C Thomas
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Helen B Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
22
|
Soto-Icaza P, Soto-Fernández P, Kausel L, Márquez-Rodríguez V, Carvajal-Paredes P, Martínez-Molina MP, Figueroa-Vargas A, Billeke P. Oscillatory activity underlying cognitive performance in children and adolescents with autism: a systematic review. Front Hum Neurosci 2024; 18:1320761. [PMID: 38384334 PMCID: PMC10879575 DOI: 10.3389/fnhum.2024.1320761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition that exhibits a widely heterogeneous range of social and cognitive symptoms. This feature has challenged a broad comprehension of this neurodevelopmental disorder and therapeutic efforts to address its difficulties. Current therapeutic strategies have focused primarily on treating behavioral symptoms rather than on brain psychophysiology. During the past years, the emergence of non-invasive brain stimulation techniques (NIBS) has opened alternatives to the design of potential combined treatments focused on the neurophysiopathology of neuropsychiatric disorders like ASD. Such interventions require identifying the key brain mechanisms underlying the symptomatology and cognitive features. Evidence has shown alterations in oscillatory features of the neural ensembles associated with cognitive functions in ASD. In this line, we elaborated a systematic revision of the evidence of alterations in brain oscillations that underlie key cognitive processes that have been shown to be affected in ASD during childhood and adolescence, namely, social cognition, attention, working memory, inhibitory control, and cognitive flexibility. This knowledge could contribute to developing therapies based on NIBS to improve these processes in populations with ASD.
Collapse
Affiliation(s)
- Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | | | - Leonie Kausel
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Víctor Márquez-Rodríguez
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Patricio Carvajal-Paredes
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - María Paz Martínez-Molina
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Centro Interdisciplinario de Neurociencia, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
23
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
24
|
Al-Beltagi M. Pre-autism: What a paediatrician should know about early diagnosis of autism. World J Clin Pediatr 2023; 12:273-294. [PMID: 38178935 PMCID: PMC10762597 DOI: 10.5409/wjcp.v12.i5.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
Autism, also known as an autism spectrum disorder, is a complex neurodevelopmental disorder usually diagnosed in the first three years of a child's life. A range of symptoms characterizes it and can be diagnosed at any age, including adolescence and adulthood. However, early diagnosis is crucial for effective management, prognosis, and care. Unfortunately, there are no established fetal, prenatal, or newborn screening programs for autism, making early detection difficult. This review aims to shed light on the early detection of autism prenatally, natally, and early in life, during a stage we call as "pre-autism" when typical symptoms are not yet apparent. Some fetal, neonatal, and infant biomarkers may predict an increased risk of autism in the coming baby. By developing a biomarker array, we can create an objective diagnostic tool to diagnose and rank the severity of autism for each patient. These biomarkers could be genetic, immunological, hormonal, metabolic, amino acids, acute phase reactants, neonatal brainstem function biophysical activity, behavioral profile, body measurements, or radiological markers. However, every biomarker has its accuracy and limitations. Several factors can make early detection of autism a real challenge. To improve early detection, we need to overcome various challenges, such as raising community awareness of early signs of autism, improving access to diagnostic tools, reducing the stigma attached to the diagnosis of autism, and addressing various culturally sensitive concepts related to the disorder.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
25
|
Weber CF, Lake EMR, Haider SP, Mozayan A, Bobba PS, Mukherjee P, Scheinost D, Constable RT, Ment L, Payabvash S. Autism spectrum disorder-specific changes in white matter connectome edge density based on functionally defined nodes. Front Neurosci 2023; 17:1285396. [PMID: 38075286 PMCID: PMC10702224 DOI: 10.3389/fnins.2023.1285396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is associated with both functional and microstructural connectome disruptions. We deployed a novel methodology using functionally defined nodes to guide white matter (WM) tractography and identify ASD-related microstructural connectome changes across the lifespan. Methods We used diffusion tensor imaging and clinical data from four studies in the national database for autism research (NDAR) including 155 infants, 102 toddlers, 230 adolescents, and 96 young adults - of whom 264 (45%) were diagnosed with ASD. We applied cortical nodes from a prior fMRI study identifying regions related to symptom severity scores and used these seeds to construct WM fiber tracts as connectome Edge Density (ED) maps. Resulting ED maps were assessed for between-group differences using voxel-wise and tract-based analysis. We then examined the association of ASD diagnosis with ED driven from functional nodes generated from different sensitivity thresholds. Results In ED derived from functionally guided tractography, we identified ASD-related changes in infants (pFDR ≤ 0.001-0.483). Overall, more wide-spread ASD-related differences were detectable in ED based on functional nodes with positive symptom correlation than negative correlation to ASD, and stricter thresholds for functional nodes resulted in stronger correlation with ASD among infants (z = -6.413 to 6.666, pFDR ≤ 0.001-0.968). Voxel-wise analysis revealed wide-spread ED reductions in central WM tracts of toddlers, adolescents, and adults. Discussion We detected early changes of aberrant WM development in infants developing ASD when generating microstructural connectome ED map with cortical nodes defined by functional imaging. These were not evident when applying structurally defined nodes, suggesting that functionally guided DTI-based tractography can help identify early ASD-related WM disruptions between cortical regions exhibiting abnormal connectivity patterns later in life. Furthermore, our results suggest a benefit of involving functionally informed nodes in diffusion imaging-based probabilistic tractography, and underline that different age cohorts can benefit from age- and brain development-adapted image processing protocols.
Collapse
Affiliation(s)
- Clara F Weber
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), Lübeck University, Lübeck, Germany
| | - Evelyn M R Lake
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stefan P Haider
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
- Department of Otorhinolaryngology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Mozayan
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Pratheek S Bobba
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Dustin Scheinost
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Robert T Constable
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Laura Ment
- Yale University School of Medicine, Department of Pediatrics and Neurology, New Haven, CT, United States
| | - Seyedmehdi Payabvash
- Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| |
Collapse
|
26
|
Han YM, Chan MM, Shea CK, Mo FY, Yiu KW, Chung RC, Cheung MC, Chan AS. Effects of prefrontal transcranial direct current stimulation on social functioning in autism spectrum disorder: A randomized clinical trial. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2023; 27:2465-2482. [PMID: 37151094 DOI: 10.1177/13623613231169547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
LAY ABSTRACT Currently available pharmacological and behavioral interventions for adolescents and young adults with autism spectrum disorder (ASD) yield only modest effect in alleviating their core behavioral and cognitive symptoms, and some of these treatment options are associated with undesirable side effects. Hence, developing effective treatment protocols is urgently needed. Given emerging evidence shows that the abnormal connections of the frontal brain regions contribute to the manifestations of ASD behavioral and cognitive impairments, noninvasive treatment modalities that are capable in modulating brain connections, such as transcranial direct current stimulation (tDCS), have been postulated to be potentially promising for alleviating core symptoms in ASD. However, whether tDCS can reduce behavioral symptoms and enhance cognitive performance in ASD remains unclear. This randomized controlled trial involving 105 adolescents and young adults with ASD showed that multiple sessions of a tDCS protocol, which was paired up with computerized cognitive training, was effective in improving social functioning in adolescents and young adults with ASD. No prolonged and serious side effects were observed. With more future studies conducted in different clinical settings that recruit participants from a wider age range, this tDCS protocol may be potentially beneficial to a broad spectrum of individuals with autism.
Collapse
Affiliation(s)
| | - Melody My Chan
- The Hong Kong Polytechnic University, Hong Kong
- The University of Queensland, Australia
| | - Caroline Ks Shea
- Hospital Authority, Hong Kong
- The Chinese University of Hong Kong, Hong Kong
| | - Flora Ym Mo
- Hospital Authority, Hong Kong
- The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
27
|
Mount RA, Athif M, O’Connor M, Saligrama A, Tseng HA, Sridhar S, Zhou C, Bortz E, San Antonio E, Kramer MA, Man HY, Han X. The autism spectrum disorder risk gene NEXMIF over-synchronizes hippocampal CA1 network and alters neuronal coding. Front Neurosci 2023; 17:1277501. [PMID: 37965217 PMCID: PMC10641898 DOI: 10.3389/fnins.2023.1277501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Mutations in autism spectrum disorder (ASD) risk genes disrupt neural network dynamics that ultimately lead to abnormal behavior. To understand how ASD-risk genes influence neural circuit computation during behavior, we analyzed the hippocampal network by performing large-scale cellular calcium imaging from hundreds of individual CA1 neurons simultaneously in transgenic mice with total knockout of the X-linked ASD-risk gene NEXMIF (neurite extension and migration factor). As NEXMIF knockout in mice led to profound learning and memory deficits, we examined the CA1 network during voluntary locomotion, a fundamental component of spatial memory. We found that NEXMIF knockout does not alter the overall excitability of individual neurons but exaggerates movement-related neuronal responses. To quantify network functional connectivity changes, we applied closeness centrality analysis from graph theory to our large-scale calcium imaging datasets, in addition to using the conventional pairwise correlation analysis. Closeness centrality analysis considers both the number of connections and the connection strength between neurons within a network. We found that in wild-type mice the CA1 network desynchronizes during locomotion, consistent with increased network information coding during active behavior. Upon NEXMIF knockout, CA1 network is over-synchronized regardless of behavioral state and fails to desynchronize during locomotion, highlighting how perturbations in ASD-implicated genes create abnormal network synchronization that could contribute to ASD-related behaviors.
Collapse
Affiliation(s)
- Rebecca A. Mount
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Mohamed Athif
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | | | - Amith Saligrama
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Commonwealth School, Boston, MA, United States
| | - Hua-an Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sudiksha Sridhar
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Chengqian Zhou
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Emma Bortz
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Erynne San Antonio
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Mark A. Kramer
- Department of Mathematics, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
28
|
Sokol DK, Lahiri DK. Neurodevelopmental disorders and microcephaly: how apoptosis, the cell cycle, tau and amyloid-β precursor protein APPly. Front Mol Neurosci 2023; 16:1201723. [PMID: 37808474 PMCID: PMC10556256 DOI: 10.3389/fnmol.2023.1201723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023] Open
Abstract
Recent studies promote new interest in the intersectionality between autism spectrum disorder (ASD) and Alzheimer's Disease. We have reported high levels of Amyloid-β Precursor Protein (APP) and secreted APP-alpha (sAPPa ) and low levels of amyloid-beta (Aβ) peptides 1-40 and 1-42 (Aβ40, Aβ42) in plasma and brain tissue from children with ASD. A higher incidence of microcephaly (head circumference less than the 3rd percentile) associates with ASD compared to head size in individuals with typical development. The role of Aβ peptides as contributors to acquired microcephaly in ASD is proposed. Aβ may lead to microcephaly via disruption of neurogenesis, elongation of the G1/S cell cycle, and arrested cell cycle promoting apoptosis. As the APP gene exists on Chromosome 21, excess Aβ peptides occur in Trisomy 21-T21 (Down's Syndrome). Microcephaly and some forms of ASD associate with T21, and therefore potential mechanisms underlying these associations will be examined in this review. Aβ peptides' role in other neurodevelopmental disorders that feature ASD and acquired microcephaly are reviewed, including dup 15q11.2-q13, Angelman and Rett syndrome.
Collapse
Affiliation(s)
- Deborah K. Sokol
- Section of Pediatrics, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
29
|
Karnecki K, Świerczyński J, Steiner J, Krzyżanowska M, Kaliszan M, Gos T. The left-lateralisation of citrate synthase activity in the anterior cingulate cortex of male violent suicide victims. Eur Arch Psychiatry Clin Neurosci 2023; 273:1225-1232. [PMID: 36350374 PMCID: PMC10449962 DOI: 10.1007/s00406-022-01509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
The anterior cingulate cortex (AC) as a part of prefrontal cortex plays a crucial role in behavioural regulation, which is profoundly disturbed in suicide. Citrate synthase (CS) is a key enzyme of tricarboxylic acid cycle fundamental for brain energetics and neurotransmitter synthesis, which are deteriorated in suicidal behaviour. However, CS activity has not been yet studied in brain structures of suicide victims. CS activity assay was performed bilaterally on frozen samples of the rostral part of the AC of 24 violent suicide completers (21 males and 3 females) with unknown psychiatric diagnosis and 24 non-suicidal controls (20 males and 4 females). Compared to controls, suicide victims revealed decreased CS activity in the right AC, however, insignificant. Further statistical analysis of laterality index revealed the left-lateralisation of CS activity in the AC in male suicides compared to male controls (U-test P = 0.0003, corrected for multiple comparisons). The results were not confounded by postmortem interval, blood alcohol concentration, age, and brain weight. Our findings suggest that disturbed CS activity in the AC plays a role in suicide pathogenesis and correspond with our previous morphological and molecular studies of prefrontal regions in suicide.
Collapse
Affiliation(s)
- Karol Karnecki
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | | | - Johann Steiner
- Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany
| | - Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Ul. Dębowa 23, 80-204, Gdańsk, Poland.
| |
Collapse
|
30
|
Mohapatra AN, Wagner S. The role of the prefrontal cortex in social interactions of animal models and the implications for autism spectrum disorder. Front Psychiatry 2023; 14:1205199. [PMID: 37409155 PMCID: PMC10318347 DOI: 10.3389/fpsyt.2023.1205199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Social interaction is a complex behavior which requires the individual to integrate various internal processes, such as social motivation, social recognition, salience, reward, and emotional state, as well as external cues informing the individual of others' behavior, emotional state and social rank. This complex phenotype is susceptible to disruption in humans affected by neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD). Multiple pieces of convergent evidence collected from studies of humans and rodents suggest that the prefrontal cortex (PFC) plays a pivotal role in social interactions, serving as a hub for motivation, affiliation, empathy, and social hierarchy. Indeed, disruption of the PFC circuitry results in social behavior deficits symptomatic of ASD. Here, we review this evidence and describe various ethologically relevant social behavior tasks which could be employed with rodent models to study the role of the PFC in social interactions. We also discuss the evidence linking the PFC to pathologies associated with ASD. Finally, we address specific questions regarding mechanisms employed by the PFC circuitry that may result in atypical social interactions in rodent models, which future studies should address.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
31
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
32
|
Perdikaris P, Dermon CR. Altered GABAergic, glutamatergic and endocannabinoid signaling is accompanied by neuroinflammatory response in a zebrafish model of social withdrawal behavior. Front Mol Neurosci 2023; 16:1120993. [PMID: 37284463 PMCID: PMC10239971 DOI: 10.3389/fnmol.2023.1120993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Deficits in social communication are in the core of clinical symptoms characterizing many neuropsychiatric disorders such as schizophrenia and autism spectrum disorder. The occurrence of anxiety-related behavior, a common co-morbid condition in individuals with impairments in social domain, suggests the presence of overlapping neurobiological mechanisms between these two pathologies. Dysregulated excitation/inhibition balance and excessive neuroinflammation, in specific neural circuits, are proposed as common etiological mechanisms implicated in both pathologies. Methods and Results In the present study we evaluated changes in glutamatergic/GABAergic neurotransmission as well as the presence of neuroinflammation within the regions of the Social Decision-Making Network (SDMN) using a zebrafish model of NMDA receptor hypofunction, following sub-chronic MK-801 administration. MK-801-treated zebrafish are characterized by impaired social communication together with increased anxiety levels. At the molecular level, the behavioral phenotype was accompanied by increased mGluR5 and GAD67 but decreased PSD-95 protein expression levels in telencephalon and midbrain. In parallel, MK-801-treated zebrafish exhibited altered endocannabinoid signaling as indicated by the upregulation of cannabinoid receptor 1 (CB1R) in the telencephalon. Interestingly, glutamatergic dysfunction was positively correlated with social withdrawal behavior whereas defective GABAergic and endocannabinoid activity were positively associated with anxiety-like behavior. Moreover, neuronal and astrocytic IL-1β expression was increased in regions of the SDMN, supporting the role of neuroinflammatory responses in the manifestation of MK-801 behavioral phenotype. Colocalization of interleukin-1β (IL-1β) with β2-adrenergic receptors (β2-ARs) underlies the possible influence of noradrenergic neurotransmission to increased IL-1β expression in comorbidity between social deficits and elevated anxiety comorbidity. Discussion Overall, our results indicate the contribution of altered excitatory and inhibitory synaptic transmission as well as excessive neuroinflammatory responses in the manifestation of social deficits and anxiety-like behavior of MK-801-treated fish, identifying possible novel targets for amelioration of these symptoms.
Collapse
|
33
|
Hoffman T, Bar-Shalita T, Granovsky Y, Gal E, Kalingel-Levi M, Dori Y, Buxbaum C, Yarovinsky N, Weissman-Fogel I. Indifference or hypersensitivity? Solving the riddle of the pain profile in individuals with autism. Pain 2023; 164:791-803. [PMID: 36730631 DOI: 10.1097/j.pain.0000000000002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Excitatory-inhibitory (E/I) imbalance is a mechanism that underlies autism spectrum disorder, but it is not systematically tested for pain processing. We hypothesized that the pain modulation profile (PMP) in autistic individuals is characterized by less efficient inhibitory processes together with a facilitative state, indicative of a pronociceptive PMP. Fifty-two adults diagnosed with autism and 52 healthy subjects, age matched and sex matched, underwent quantitative sensory testing to assess the function of the (1) pain facilitatory responses to phasic, repetitive, and tonic heat pain stimuli and (2) pain inhibitory processes of habituation and conditioned pain modulation. Anxiety, pain catastrophizing, sensory, and pain sensitivity were self-reported. The autistic group reported significantly higher pain ratings of suprathreshold single ( P = 0.001), repetitive (46°C- P = 0.018; 49°C- P = 0.003; 52°C- P < 0.001), and tonic ( P = 0.013) heat stimuli that were cross correlated ( r = 0.48-0.83; P < 0.001) and associated with sensitivity to daily life pain situations ( r = 0.39-0.45; P < 0.005) but not with psychological distress levels. Hypersensitivity to experimental pain was attributed to greater autism severity and sensory hypersensitivity to daily stimuli. Subjects with autism efficiently inhibited phasic but not tonic heat stimuli during conditioned pain modulation. In conclusion, in line with the E/I imbalance mechanism, autism is associated with a pronociceptive PMP expressed by hypersensitivity to daily stimuli and experimental pain and less-efficient inhibition of tonic pain. The latter is an experimental pain model resembling clinical pain. These results challenge the widely held belief that individuals with autism are indifferent to pain and should raise caregivers' awareness of pain sensitivity in autism.
Collapse
Affiliation(s)
- Tseela Hoffman
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Center, Haifa, Israel
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Eynat Gal
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Merry Kalingel-Levi
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Yael Dori
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Chen Buxbaum
- Department of Neurology, Rambam Health Care Center, Haifa, Israel
| | - Natalya Yarovinsky
- Department of Cognitive Neurology, Rambam Health Care Center, Haifa, Israel
| | - Irit Weissman-Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
34
|
Buch AM, Vértes PE, Seidlitz J, Kim SH, Grosenick L, Liston C. Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder. Nat Neurosci 2023; 26:650-663. [PMID: 36894656 PMCID: PMC11446249 DOI: 10.1038/s41593-023-01259-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/17/2023] [Indexed: 03/11/2023]
Abstract
The mechanisms underlying phenotypic heterogeneity in autism spectrum disorder (ASD) are not well understood. Using a large neuroimaging dataset, we identified three latent dimensions of functional brain network connectivity that predicted individual differences in ASD behaviors and were stable in cross-validation. Clustering along these three dimensions revealed four reproducible ASD subgroups with distinct functional connectivity alterations in ASD-related networks and clinical symptom profiles that were reproducible in an independent sample. By integrating neuroimaging data with normative gene expression data from two independent transcriptomic atlases, we found that within each subgroup, ASD-related functional connectivity was explained by regional differences in the expression of distinct ASD-related gene sets. These gene sets were differentially associated with distinct molecular signaling pathways involving immune and synapse function, G-protein-coupled receptor signaling, protein synthesis and other processes. Collectively, our findings delineate atypical connectivity patterns underlying different forms of ASD that implicate distinct molecular signaling mechanisms.
Collapse
Affiliation(s)
- Amanda M Buch
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - So Hyun Kim
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Autism and the Developing Brain, Weill Cornell Medicine, White Plains, NY, USA
- School of Psychology, Korea University, Seoul, South Korea
| | - Logan Grosenick
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Arutiunian V, Arcara G, Buyanova I, Davydova E, Pereverzeva D, Sorokin A, Tyushkevich S, Mamokhina U, Danilina K, Dragoy O. Neuromagnetic 40 Hz Auditory Steady-State Response in the left auditory cortex is related to language comprehension in children with Autism Spectrum Disorder. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110690. [PMID: 36470421 DOI: 10.1016/j.pnpbp.2022.110690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 12/08/2022]
Abstract
Language impairment is comorbid in most children with Autism Spectrum Disorder (ASD), but its neural mechanisms are still poorly understood. Some studies hypothesize that the atypical low-level sensory perception in the auditory cortex accounts for the abnormal language development in these children. One of the potential non-invasive measures of such low-level perception can be the cortical gamma-band oscillations registered with magnetoencephalography (MEG), and 40 Hz Auditory Steady-State Response (40 Hz ASSR) is a reliable paradigm for eliciting auditory gamma response. Although there is research in children with and without ASD using 40 Hz ASSR, nothing is known about the relationship between this auditory response in children with ASD and their language abilities measured directly in formal assessment. In the present study, we used MEG and individual brain models to investigate 40 Hz ASSR in primary-school-aged children with and without ASD. It was also used to assess how the strength of the auditory response is related to language abilities of children with ASD, their non-verbal IQ, and social functioning. A total of 40 children were included in the study. The results demonstrated that 40 Hz ASSR was reduced in the right auditory cortex in children with ASD when comparing them to typically developing controls. Importantly, our study provides the first evidence of the association between 40 Hz ASSR in the language-dominant left auditory cortex and language comprehension in children with ASD. This link was domain-specific because the other brain-behavior correlations were non-significant.
Collapse
Affiliation(s)
| | | | - Irina Buyanova
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Elizaveta Davydova
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Chair of Differential Psychology and Psychophysiology, Moscow State University of Psychology and Education, Moscow, Russia
| | - Darya Pereverzeva
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Alexander Sorokin
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia; Haskins Laboratories, New Haven, CT, United States of America
| | - Svetlana Tyushkevich
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Uliana Mamokhina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Kamilla Danilina
- Federal Resource Center for ASD, Moscow State University of Psychology and Education, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia; Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Petanjek Z, Banovac I, Sedmak D, Hladnik A. Dendritic Spines: Synaptogenesis and Synaptic Pruning for the Developmental Organization of Brain Circuits. ADVANCES IN NEUROBIOLOGY 2023; 34:143-221. [PMID: 37962796 DOI: 10.1007/978-3-031-36159-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synaptic overproduction and elimination is a regular developmental event in the mammalian brain. In the cerebral cortex, synaptic overproduction is almost exclusively correlated with glutamatergic synapses located on dendritic spines. Therefore, analysis of changes in spine density on different parts of the dendritic tree in identified classes of principal neurons could provide insight into developmental reorganization of specific microcircuits.The activity-dependent stabilization and selective elimination of the initially overproduced synapses is a major mechanism for generating diversity of neural connections beyond their genetic determination. The largest number of overproduced synapses was found in the monkey and human cerebral cortex. The highest (exceeding adult values by two- to threefold) and most protracted overproduction (up to third decade of life) was described for associative layer IIIC pyramidal neurons in the human dorsolateral prefrontal cortex.Therefore, the highest proportion and extraordinarily extended phase of synaptic spine overproduction is a hallmark of neural circuitry in human higher-order associative areas. This indicates that microcircuits processing the most complex human cognitive functions have the highest level of developmental plasticity. This finding is the backbone for understanding the effect of environmental impact on the development of the most complex, human-specific cognitive and emotional capacities, and on the late onset of human-specific neuropsychiatric disorders, such as autism and schizophrenia.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Ivan Banovac
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
37
|
Maisterrena A, Matas E, Mirfendereski H, Balbous A, Marchand S, Jaber M. The State of the Dopaminergic and Glutamatergic Systems in the Valproic Acid Mouse Model of Autism Spectrum Disorder. Biomolecules 2022; 12:1691. [PMID: 36421705 PMCID: PMC9688008 DOI: 10.3390/biom12111691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/23/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a progressive neurodevelopmental disorder mainly characterized by deficits in social communication and stereotyped behaviors and interests. Here, we aimed to investigate the state of several key players in the dopamine and glutamate neurotransmission systems in the valproic acid (VPA) animal model that was administered to E12.5 pregnant females as a single dose (450 mg/kg). We report no alterations in the number of mesencephalic dopamine neurons or in protein levels of tyrosine hydroxylase in either the striatum or the nucleus accumbens. In females prenatally exposed to VPA, levels of dopamine were slightly decreased while the ratio of DOPAC/dopamine was increased in the dorsal striatum, suggesting increased turn-over of dopamine tone. In turn, levels of D1 and D2 dopamine receptor mRNAs were increased in the nucleus accumbens of VPA mice suggesting upregulation of the corresponding receptors. We also report decreased protein levels of striatal parvalbumin and increased levels of p-mTOR in the cerebellum and the motor cortex of VPA mice. mRNA levels of mGluR1, mGluR4, and mGluR5 and the glutamate receptor subunits NR1, NR2A, and NR2B were not altered by VPA, nor were protein levels of NR1, NR2A, and NR2B and those of BDNF and TrkB. These findings are of interest as clinical trials aiming at the dopamine and glutamate systems are being considered.
Collapse
Affiliation(s)
- Alexandre Maisterrena
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
| | - Emmanuel Matas
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
| | - Helene Mirfendereski
- Pharmacologie des Agents Anti-Infectieux et Antibiorésistance, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Anais Balbous
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Sandrine Marchand
- Pharmacologie des Agents Anti-Infectieux et Antibiorésistance, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| | - Mohamed Jaber
- Laboratoire de Neurosciences Expérimentales et Cliniques, Inserm, Université de Poitiers, 86000 Poitiers, France
- CHU de Poitiers, 86000 Poitiers, France
| |
Collapse
|
38
|
Shamir I, Assaf Y. Modelling Cortical Laminar Connectivity in the Macaque Brain. Neuroinformatics 2022; 20:559-573. [PMID: 34392433 DOI: 10.1007/s12021-021-09539-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 12/31/2022]
Abstract
In 1991, Felleman and Van Essen published their seminal study regarding hierarchical processing in the primate cerebral cortex. Their work encompassed a widescale analysis of connections reported through tracing between 35 regions in the macaque visual cortex, extending from cortical regions to the laminar level. In this work, we revisit laminar-level connectivity in the macaque brain using a whole-brain MRI-based approach. We use multimodal ex-vivo MRI imaging of the macaque brain in both white and grey matter, which are then integrated via a simple model of laminar connectivity. This model uses a granularity-based approach to define a set of rules that expands cortical connections to the laminar level. Different fiber tracking routines are then examined in order to explore the ability of our model to infer laminar connectivity. The network of macaque cortical laminar connectivity resulting from the chosen routine is then validated in the visual cortex by comparison to findings from Felleman and Van Essen with an 83% accuracy level. By using a more comprehensive definition of the cortex that addresses its heterogenous laminar composition, we can explore a new avenue of structural connectivity on the laminar level.
Collapse
Affiliation(s)
- Ittai Shamir
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Yi T, Wei W, Ma D, Wu Y, Cai Q, Jin K, Gao X. Individual Brain Morphological Connectome Indicator Based on Jensen-Shannon Divergence Similarity Estimation for Autism Spectrum Disorder Identification. Front Neurosci 2022; 16:952067. [PMID: 35837129 PMCID: PMC9275791 DOI: 10.3389/fnins.2022.952067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background Structural magnetic resonance imaging (sMRI) reveals abnormalities in patients with autism spectrum syndrome (ASD). Previous connectome studies of ASD have failed to identify the individual neuroanatomical details in preschool-age individuals. This paper aims to establish an individual morphological connectome method to characterize the connectivity patterns and topological alterations of the individual-level brain connectome and their diagnostic value in patients with ASD. Methods Brain sMRI data from 24 patients with ASD and 17 normal controls (NCs) were collected; participants in both groups were aged 24-47 months. By using the Jensen-Shannon Divergence Similarity Estimation (JSSE) method, all participants's morphological brain network were ascertained. Student's t-tests were used to extract the most significant features in morphological connection values, global graph measurement, and node graph measurement. Results The results of global metrics' analysis showed no statistical significance in the difference between two groups. Brain regions with meaningful properties for consensus connections and nodal metric features are mostly distributed in are predominantly distributed in the basal ganglia, thalamus, and cortical regions spanning the frontal, temporal, and parietal lobes. Consensus connectivity results showed an increase in most of the consensus connections in the frontal, parietal, and thalamic regions of patients with ASD, while there was a decrease in consensus connectivity in the occipital, prefrontal lobe, temporal lobe, and pale regions. The model that combined morphological connectivity, global metrics, and node metric features had optimal performance in identifying patients with ASD, with an accuracy rate of 94.59%. Conclusion The individual brain network indicator based on the JSSE method is an effective indicator for identifying individual-level brain network abnormalities in patients with ASD. The proposed classification method can contribute to the early clinical diagnosis of ASD.
Collapse
Affiliation(s)
- Ting Yi
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Weian Wei
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Di Ma
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Yali Wu
- Department of Child Health Care Centre, Hunan Children’s Hospital, Changsha, China
| | - Qifang Cai
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| |
Collapse
|
40
|
Park S, Zikopoulos B, Yazdanbakhsh A. Visual illusion susceptibility in autism: A neural model. Eur J Neurosci 2022; 56:4246-4265. [PMID: 35701859 PMCID: PMC9541695 DOI: 10.1111/ejn.15739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
While atypical sensory perception is reported among individuals with autism spectrum disorder (ASD), the underlying neural mechanisms of autism that give rise to disruptions in sensory perception remain unclear. We developed a neural model with key physiological, functional and neuroanatomical parameters to investigate mechanisms underlying the range of representations of visual illusions related to orientation perception in typically developed subjects compared to individuals with ASD. Our results showed that two theorized autistic traits, excitation/inhibition imbalance and weakening of top‐down modulation, could be potential candidates for reduced susceptibility to some visual illusions. Parametric correlation between cortical suppression, balance of excitation/inhibition, feedback from higher visual areas on one hand and susceptibility to a class of visual illusions related to orientation perception on the other hand provide the opportunity to investigate the contribution and complex interactions of distinct sensory processing mechanisms in ASD. The novel approach used in this study can be used to link behavioural, functional and neuropathological studies; estimate and predict perceptual and cognitive heterogeneity in ASD; and form a basis for the development of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sangwook Park
- Computational Neuroscience and Vision Laboratory, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Arash Yazdanbakhsh
- Computational Neuroscience and Vision Laboratory, Boston University, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Zhuang W, Liu H, He Z, Ju J, Gao Q, Shan Z, Lei L. miR-92a-2-5p Regulates the Proliferation and Differentiation of ASD-Derived Neural Progenitor Cells. Curr Issues Mol Biol 2022; 44:2431-2442. [PMID: 35735607 PMCID: PMC9222067 DOI: 10.3390/cimb44060166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental disorders with abnormal behavior. However, the pathogenesis of ASD remains to be clarified. It has been demonstrated that miRNAs are essential regulators of ASD. However, it is still unclear how miR-92a-2-5p acts on the developing brain and the cell types directly. In this study, we used neural progenitor cells (NPCs) derived from ASD-hiPSCs as well as from neurotypical controls to examine the effects of miR-92a-2-5p on ASD-NPCs proliferation and neuronal differentiation, and whether miR-92a-2-5p could interact with genetic risk factor, DLG3 for ASD. We observed that miR-92a-2-5p upregulated in ASD-NPCs results in decreased proliferation and neuronal differentiation. Inhibition of miR-92a-2-5p could promote proliferation and neuronal differentiation of ASD-NPCs. DLG3 was negatively regulated by miR-92a-2-5p in NPCs. Our results suggest that miR-92a-2-5p is a strong risk factor for ASD and potentially contributes to neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Lei
- Correspondence: (Z.S.); (L.L.)
| |
Collapse
|
42
|
Scholtens LH, Pijnenburg R, de Lange SC, Huitinga I, van den Heuvel MP. Common Microscale and Macroscale Principles of Connectivity in the Human Brain. J Neurosci 2022; 42:4147-4163. [PMID: 35422441 PMCID: PMC9121834 DOI: 10.1523/jneurosci.1572-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
The brain requires efficient information transfer between neurons and large-scale brain regions. Brain connectivity follows predictable organizational principles. At the cellular level, larger supragranular pyramidal neurons have larger, more branched dendritic trees, more synapses, and perform more complex computations; at the macroscale, region-to-region connections display a diverse architecture with highly connected hub areas facilitating complex information integration and computation. Here, we explore the hypothesis that the branching structure of large-scale region-to-region connectivity follows similar organizational principles as the neuronal scale. We examine microscale connectivity of basal dendritic trees of supragranular pyramidal neurons (300+) across 10 cortical areas in five human donor brains (1 male, 4 female). Dendritic complexity was quantified as the number of branch points, tree length, spine count, spine density, and overall branching complexity. High-resolution diffusion-weighted MRI was used to construct white matter trees of corticocortical wiring. Examining complexity of the resulting white matter trees using the same measures as for dendritic trees shows heteromodal association areas to have larger, more complex white matter trees than primary areas (p < 0.0001) and macroscale complexity to run in parallel with microscale measures, in terms of number of inputs (r = 0.677, p = 0.032), branch points (r = 0.797, p = 0.006), tree length (r = 0.664, p = 0.036), and branching complexity (r = 0.724, p = 0.018). Our findings support the integrative theory that brain connectivity follows similar principles of connectivity at neuronal and macroscale levels and provide a framework to study connectivity changes in brain conditions at multiple levels of organization.SIGNIFICANCE STATEMENT Within the human brain, cortical areas are involved in a wide range of processes, requiring different levels of information integration and local computation. At the cellular level, these regional differences reflect a predictable organizational principle with larger, more complexly branched supragranular pyramidal neurons in higher order regions. We hypothesized that the 3D branching structure of macroscale corticocortical connections follows the same organizational principles as the cellular scale. Comparing branching complexity of dendritic trees of supragranular pyramidal neurons and of MRI-based regional white matter trees of macroscale connectivity, we show that macroscale branching complexity is larger in higher order areas and that microscale and macroscale complexity go hand in hand. Our findings contribute to a multiscale integrative theory of brain connectivity.
Collapse
Affiliation(s)
- Lianne H Scholtens
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Rory Pijnenburg
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Siemon C de Lange
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Complex Traits Genetics Department, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Child Psychiatry, Amsterdam Neuroscience, Amsterdam University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
43
|
Perdikaris P, Dermon CR. Behavioral and neurochemical profile of MK-801 adult zebrafish model: Forebrain β 2-adrenoceptors contribute to social withdrawal and anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110494. [PMID: 34896197 DOI: 10.1016/j.pnpbp.2021.110494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/29/2023]
Abstract
Deficits in social communication and interaction are core clinical symptoms characterizing multiple neuropsychiatric conditions, including autism spectrum disorder (ASD) and schizophrenia. Interestingly, elevated anxiety levels are a common comorbid psychopathology characterizing individuals with aberrant social behavior. Despite recent progress, the underlying neurobiological mechanisms that link anxiety with social withdrawal remain poorly understood. The present study developed a zebrafish pharmacological model displaying social withdrawal behavior, following a 3-h exposure to 4 μΜ (+)-MK-801, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, for 7 days. Interestingly, MK-801-treated zebrafish displayed elevated anxiety levels along with higher frequency of stereotypical behaviors, rendering this zebrafish model appropriate to unravel a possible link of catecholaminergic and ASD-like phenotypes. MK-801-treated zebrafish showed increased telencephalic protein expression of metabotropic glutamate 5 receptor (mGluR5), dopamine transporter (DAT) and β2-adrenergic receptors (β2-ARs), supporting the presence of excitation/inhibition imbalance along with altered dopaminergic and noradrenergic activity. Interestingly, β2-ARs expression, was differentially regulated across the Social Decision-Making (SDM) network nodes, exhibiting increased levels in ventral telencephalic area (Vv), a key-area integrating reward and social circuits but decreased expression in dorso-medial telencephalic area (Dm) and anterior tuberal nucleus (ATN). Moreover, the co-localization of β2-ARs with elements of GABAergic and glutamatergic systems, as well as with GAP-43, a protein indicating increased brain plasticity potential, support the key-role of β2-ARs in the MK-801 zebrafish social dysfunctions. Our results highlight the importance of the catecholaminergic neurotransmission in the manifestation of ASD-like behavior, representing a site of potential interventions for amelioration of ASD-like symptoms.
Collapse
Affiliation(s)
- Panagiotis Perdikaris
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece
| | - Catherine R Dermon
- Human and Animal Physiology Laboratory, Department of Biology, University of Patras, Rio, 26500 Patras, Greece.
| |
Collapse
|
44
|
Mapelli L, Soda T, D’Angelo E, Prestori F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022; 23:ijms23073894. [PMID: 35409253 PMCID: PMC8998980 DOI: 10.3390/ijms23073894] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called “social brain”, and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Brain Connectivity Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.S.); (E.D.)
- Correspondence: (L.M.); (F.P.)
| |
Collapse
|
45
|
Lawrence KE, Hernandez LM, Fuster E, Padgaonkar NT, Patterson G, Jung J, Okada NJ, Lowe JK, Hoekstra JN, Jack A, Aylward E, Gaab N, Van Horn JD, Bernier RA, McPartland JC, Webb SJ, Pelphrey KA, Green SA, Bookheimer SY, Geschwind DH, Dapretto M. Impact of autism genetic risk on brain connectivity: a mechanism for the female protective effect. Brain 2022; 145:378-387. [PMID: 34050743 PMCID: PMC8967090 DOI: 10.1093/brain/awab204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 01/27/2023] Open
Abstract
The biological mechanisms underlying the greater prevalence of autism spectrum disorder in males than females remain poorly understood. One hypothesis posits that this female protective effect arises from genetic load for autism spectrum disorder differentially impacting male and female brains. To test this hypothesis, we investigated the impact of cumulative genetic risk for autism spectrum disorder on functional brain connectivity in a balanced sample of boys and girls with autism spectrum disorder and typically developing boys and girls (127 youth, ages 8-17). Brain connectivity analyses focused on the salience network, a core intrinsic functional connectivity network which has previously been implicated in autism spectrum disorder. The effects of polygenic risk on salience network functional connectivity were significantly modulated by participant sex, with genetic load for autism spectrum disorder influencing functional connectivity in boys with and without autism spectrum disorder but not girls. These findings support the hypothesis that autism spectrum disorder risk genes interact with sex differential processes, thereby contributing to the male bias in autism prevalence and proposing an underlying neurobiological mechanism for the female protective effect.
Collapse
Affiliation(s)
- Katherine E Lawrence
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leanna M Hernandez
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Emily Fuster
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Namita T Padgaonkar
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Genevieve Patterson
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jiwon Jung
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nana J Okada
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K Lowe
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jackson N Hoekstra
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA 22030, USA
| | - Elizabeth Aylward
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Nadine Gaab
- Harvard Graduate School of Education, Cambridge, MA 02138, USA
| | - John D Van Horn
- Department of Psychology and School of Data Science, University of Virginia, Charlottesville, VA 22904, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Sara J Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Center on Child Health, Behavior, and Development, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA 22904, USA
| | - Shulamite A Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
Cruz-Santos M, Cardo LF, Li M. A Novel LHX6 Reporter Cell Line for Tracking Human iPSC-Derived Cortical Interneurons. Cells 2022; 11:cells11050853. [PMID: 35269475 PMCID: PMC8909769 DOI: 10.3390/cells11050853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
GABAergic interneurons control the neural circuitry and network activity in the brain. The dysfunction of cortical interneurons, especially those derived from the medial ganglionic eminence, contributes to neurological disease states. Pluripotent stem cell-derived interneurons provide a powerful tool for understanding the etiology of neuropsychiatric disorders, as well as having the potential to be used as medicine in cell therapy for neurological conditions such as epilepsy. Although large numbers of interneuron progenitors can be readily induced in vitro, the generation of defined interneuron subtypes remains inefficient. Using CRISPR/Cas9-assisted homologous recombination in hPSCs, we inserted the coding sequence of mEmerald and mCherry fluorescence protein, respectively, downstream that of the LHX6, a gene required for, and a marker of medial ganglionic eminence (MGE)-derived cortical interneurons. Upon differentiation of the LHX6-mEmerald and LHX6-mCherry hPSCs towards the MGE fate, both reporters exhibited restricted expression in LHX6+ MGE derivatives of hPSCs. Moreover, the reporter expression responded to changes of interneuron inductive cues. Thus, the LHX6-reporter lines represent a valuable tool to identify molecules controlling human interneuron development and design better interneuron differentiation protocols as well as for studying risk genes associated with interneuronopathies.
Collapse
Affiliation(s)
- Maria Cruz-Santos
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.C.-S.); (L.F.C.)
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Lucia Fernandez Cardo
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.C.-S.); (L.F.C.)
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.C.-S.); (L.F.C.)
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence:
| |
Collapse
|
47
|
The time-locked neurodynamics of semantic processing in autism spectrum disorder: an EEG study. Cogn Neurodyn 2022; 16:43-72. [PMID: 35126770 PMCID: PMC8807749 DOI: 10.1007/s11571-021-09697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/03/2023] Open
Abstract
Language processing is often an area of difficulty in Autism Spectrum Disorder (ASD). Semantic processing-the ability to add meaning to a stimulus-is thought to be especially affected in ASD. However, the neurological origin of these deficits, both structurally and temporally, have yet to be discovered. To further previous behavioral findings on language differences in ASD, the present study used an implicit semantic priming paradigm and electroencephalography (EEG) to compare the level of theta coherence throughout semantic processing, between typically developing (TD) and ASD participants. Theta coherence is an indication of synchronous EEG oscillations and was of particular interest due to its previous links with semantic processing. Theta coherence was analyzed in response to semantically related or unrelated pairs of words and pictures across bilateral short, medium, and long electrode connections. We found significant results across a variety of conditions, but most notably, we observed reduced coherence for language stimuli in the ASD group at a left fronto-parietal connection from 100 to 300 ms. This replicates previous findings of underconnectivity in left fronto-parietal language networks in ASD. Critically, the early time window of this underconnectivity, from 100 to 300 ms, suggests that impaired semantic processing of language in ASD may arise during pre-semantic processing, during the initial communication between lower-level linguistic processing and higher-level semantic processing. Our results suggest that language processing functions are unique in ASD compared to TD, and that subjects with ASD might rely on a temporally different language processing loop altogether.
Collapse
|
48
|
Wang CG, Feng C, Zhou ZR, Cao WY, He DJ, Jiang ZL, Lin F. Imbalanced Gamma-band Functional Brain Networks of Autism Spectrum Disorders. Neuroscience 2022; 498:19-30. [PMID: 35121079 DOI: 10.1016/j.neuroscience.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
Abstract
Resting gamma-band brain networks are known as an inhibitory component in functional brain networks. Although autism spectrum disorder (ASD) is considered as with imbalanced brain networks, the inhibitory component remains not fully explored. The study reported 10 children with ASD and 10 typically-developing (TD) controls. The power spectral density analysis of the gamma-band signal in the cerebral cortex was performed at the source level. The normalized phase transfer entropy values (nPTEs) were calculated to construct brain connectivity. Gamma-band activity of the ASD group was lower than the TD children. The significantly inhibited brain regions were mainly distributed in the bilateral frontal and temporal lobes. Connectivity analysis showed alterations in the connections from key nodes of the social brain network. The behavior assessments in the ASD group revealed a significantly positive correlation between the total score of Childhood Autism Rating Scale and the regional nPTEs of the right transverse temporal gyrus. Our results provide strong evidence that the gamma-band brain networks of ASD children have a lower level of brain activities and different distribution of information flows. Clinical meanings of such imbalances of both activity and connectivity were also worthy of further explorations.
Collapse
Affiliation(s)
- Chen-Guang Wang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Chun Feng
- The Center of Rehabilitation Therapy, The First Rehabilitation Hospital of Shanghai, Rehabilitation Hospital Affiliated to Tongji University, Shanghai 200090, China
| | - Zheng-Rong Zhou
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Funing Grace Rehabilitation Hospital, Yancheng, Jiangsu 224400, China
| | - Wen-Yue Cao
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dan-Jun He
- Department of Clinical Psychology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhong-Li Jiang
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Feng Lin
- Department of Rehabilitation Medicine, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
49
|
Rayff da Silva P, do Nascimento Gonzaga TKS, Maia RE, Araújo da Silva B. Ionic Channels as Potential Targets for the Treatment of Autism Spectrum Disorder: A Review. Curr Neuropharmacol 2022; 20:1834-1849. [PMID: 34370640 PMCID: PMC9886809 DOI: 10.2174/1570159x19666210809102547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/23/2021] [Accepted: 07/24/2021] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurological condition that directly affects brain functions and can culminate in delayed intellectual development, problems in verbal communication, difficulties in social interaction, and stereotyped behaviors. Its etiology reveals a genetic basis that can be strongly influenced by socio-environmental factors. Ion channels controlled by ligand voltage-activated calcium, sodium, and potassium channels may play important roles in modulating sensory and cognitive responses, and their dysfunctions may be closely associated with neurodevelopmental disorders such as ASD. This is due to ionic flow, which is of paramount importance to maintaining physiological conditions in the central nervous system and triggers action potentials, gene expression, and cell signaling. However, since ASD is a multifactorial disease, treatment is directed only to secondary symptoms. Therefore, this research aims to gather evidence concerning the principal pathophysiological mechanisms involving ion channels in order to recognize their importance as therapeutic targets for the treatment of central and secondary ASD symptoms.
Collapse
Affiliation(s)
| | | | | | - Bagnólia Araújo da Silva
- Address correspondence to this author at the Postgraduate Program in Natural Synthetic and Bioactive Products, Heath Sciences Center, Federal University of Paraíba - Campus I, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil; Tel: ++55-83-99352-5595; E-mail:
| |
Collapse
|
50
|
Juarez P, Martínez Cerdeño V. Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Front Psychiatry 2022; 13:913550. [PMID: 36311505 PMCID: PMC9597886 DOI: 10.3389/fpsyt.2022.913550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin (PV) is a calcium binding protein expressed by inhibitory fast-spiking interneurons in the cerebral cortex. By generating a fast stream of action potentials, PV+ interneurons provide a quick and stable inhibitory input to pyramidal neurons and contribute to the generation of gamma oscillations in the cortex. Their fast-firing rates, while advantageous for regulating cortical signaling, also leave them vulnerable to metabolic stress. Chandelier (Ch) cells are a type of PV+ interneuron that modulate the output of pyramidal neurons and synchronize spikes within neuron populations by directly innervating the pyramidal axon initial segment. Changes in the morphology and/or function of PV+ interneurons, mostly of Ch cells, are linked to neurological disorders. In ASD, the number of PV+ Ch cells is decreased across several cortical areas. Changes in the morphology and/or function of PV+ interneurons have also been linked to schizophrenia, epilepsy, and bipolar disorder. Herein, we review the role of PV and PV+ Ch cell alterations in ASD and other psychiatric disorders.
Collapse
Affiliation(s)
- Pablo Juarez
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Verónica Martínez Cerdeño
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States.,MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|