1
|
de Groot DMG, Linders L, Kayser R, Nederlof R, de Esch C, Slieker RC, Kuper CF, Wolterbeek A, de Groot VJ, Veltien A, Heerschap A, van Waarde A, Dierckx RAJO, de Vries EFJ. Perinatal exposure to the immune-suppressant di-n-octyltin dichloride affects brain development in rats. Toxicol Mech Methods 2024; 34:283-299. [PMID: 37946400 DOI: 10.1080/15376516.2023.2281610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.
Collapse
Affiliation(s)
- Didima M G de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Louisa Linders
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Reinier Kayser
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Rianne Nederlof
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Celine de Esch
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Roderick C Slieker
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - C Frieke Kuper
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andre Wolterbeek
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - V Jeroen de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Stanca S, Rossetti M, Bongioanni P. The Cerebellum's Role in Affective Disorders: The Onset of Its Social Dimension. Metabolites 2023; 13:1113. [PMID: 37999209 PMCID: PMC10672979 DOI: 10.3390/metabo13111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are the most frequent mental disorders whose indeterminate etiopathogenesis spurs to explore new aetiologic scenarios. In light of the neuropsychiatric symptoms characterizing Cerebellar Cognitive Affective Syndrome (CCAS), the objective of this narrative review is to analyze the involvement of the cerebellum (Cbm) in the onset of these conditions. It aims at detecting the repercussions of the Cbm activities on mood disorders based on its functional subdivision in vestibulocerebellum (vCbm), pontocerebellum (pCbm) and spinocerebellum (sCbm). Despite the Cbm having been, for decades, associated with somato-motor functions, the described intercellular pathways, without forgiving the molecular impairment and the alteration in the volumetric relationships, make the Cbm a new important therapeutic target for MDD and BD. Given that numerous studies have showed its activation during mnestic activities and socio-emotional events, this review highlights in the Cbm, in which the altered external space perception (vCbm) is strictly linked to the cognitive-limbic Cbm (pCbm and sCbm), a crucial role in the MDD and BD pathogenesis. Finally, by the analysis of the cerebellar activity, this study aims at underlying not only the Cbm involvement in affective disorders, but also its role in social relationship building.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
3
|
López-Arango G, Deguire F, Agbogba K, Boucher MA, Knoth IS, El-Jalbout R, Côté V, Damphousse A, Kadoury S, Lippé S. Impact of brain overgrowth on sensorial learning processing during the first year of life. Front Hum Neurosci 2022; 16:928543. [PMID: 35927999 PMCID: PMC9344916 DOI: 10.3389/fnhum.2022.928543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Macrocephaly is present in about 2–5% of the general population. It can be found as an isolated benign trait or as part of a syndromic condition. Brain overgrowth has been associated with neurodevelopmental disorders such as autism during the first year of life, however, evidence remains inconclusive. Furthermore, most of the studies have involved pathological or high-risk populations, but little is known about the effects of brain overgrowth on neurodevelopment in otherwise neurotypical infants. We investigated the impact of brain overgrowth on basic perceptual learning processes (repetition effects and change detection response) during the first year of life. We recorded high density electroencephalograms (EEG) in 116 full-term healthy infants aged between 3 and 11 months, 35 macrocephalic (14 girls) and 81 normocephalic (39 girls) classified according to the WHO head circumference norms. We used an adapted oddball paradigm, time-frequency analyses, and auditory event-related brain potentials (ERPs) to investigate differences between groups. We show that brain overgrowth has a significant impact on repetition effects and change detection response in the 10–20 Hz frequency band, and in N450 latency, suggesting that these correlates of sensorial learning processes are sensitive to brain overgrowth during the first year of life.
Collapse
Affiliation(s)
- Gabriela López-Arango
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Neurosciences, Montreal University, Montreal, QC, Canada
- *Correspondence: Gabriela López-Arango,
| | - Florence Deguire
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Psychology, Montreal University, Montreal, QC, Canada
| | - Kristian Agbogba
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Polytechnique Montreal, Montreal, QC, Canada
| | | | - Inga S. Knoth
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
| | - Ramy El-Jalbout
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Medical Imaging, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
| | - Valérie Côté
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
| | - Amélie Damphousse
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Medical Imaging, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
| | | | - Sarah Lippé
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Psychology, Montreal University, Montreal, QC, Canada
- Sarah Lippé,
| |
Collapse
|
4
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Benítez-Burraco A, Ferretti F, Progovac L. Human Self-Domestication and the Evolution of Pragmatics. Cogn Sci 2021; 45:e12987. [PMID: 34170029 DOI: 10.1111/cogs.12987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
As proposed for the emergence of modern languages, we argue that modern uses of languages (pragmatics) also evolved gradually in our species under the effects of human self-domestication, with three key aspects involved in a complex feedback loop: (a) a reduction in reactive aggression, (b) the sophistication of language structure (with emerging grammars initially facilitating the transition from physical aggression to verbal aggression); and (c) the potentiation of pragmatic principles governing conversation, including, but not limited to, turn-taking and inferential abilities. Our core hypothesis is that the reduction in reactive aggression, one of the key factors in self-domestication processes, enabled us to fully exploit our cognitive and interactional potential as applied to linguistic exchanges, and ultimately to evolve a specific form of communication governed by persuasive reciprocity-a trait of human conversation characterized by both competition and cooperation. In turn, both early crude forms of language, well suited for verbal aggression/insult, and later more sophisticated forms of language, well suited for persuasive reciprocity, significantly contributed to the resolution and reduction of (physical) aggression, thus having a return effect on the self-domestication processes. Supporting evidence for our proposal, as well as grounds for further testing, comes mainly from the consideration of cognitive disorders, which typically simultaneously present abnormal features of self-domestication (including aggressive behavior) and problems with pragmatics and social functioning. While various approaches to language evolution typically reduce it to a single factor, our approach considers language evolution as a multifactorial process, with each player acting upon the other, engaging in an intense mutually reinforcing feedback loop. Moreover, we see language evolution as a gradual process, continuous with the pre-linguistic cognitive abilities, which were engaged in a positive feedback loop with linguistic innovations, and where gene-culture co-evolution and cultural niche construction were the main driving forces.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville
| | - Francesco Ferretti
- Department of Philosophy, Communication and Performing Arts. Roma Tre University
| | | |
Collapse
|
6
|
Zamora-Moratalla A, Martínez de Lagrán M, Dierssen M. Neurodevelopmental disorders: 2021 update. FREE NEUROPATHOLOGY 2021; 2:6. [PMID: 37284629 PMCID: PMC10209888 DOI: 10.17879/freeneuropathology-2021-3268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 06/08/2023]
Abstract
One of the current challenges in the field of neurodevelopmental disorders (NDDs) is still to determine their underlying aetiology and risk factors. NDDs comprise a diverse group of disorders primarily related to neurodevelopmental dysfunction including autism spectrum disorder (ASD), developmental delay, intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD) that may present with a certain degree of cognitive dysfunction and high prevalence of neuropsychiatric outcomes. Last year, advances in human genomics have begun to shed light on the genetic architecture of these disorders and large-scale sequencing studies are starting to reveal mechanisms that range from unique genomic DNA methylation patterns (i.e. "episignatures") to highly polygenic conditions. In addition, the contribution of de novo somatic mutations to neurodevelopmental diseases is being recognized. However, progressing from genetic findings to underlying neuropathological mechanisms has proved challenging, due to the increased resolution of the molecular and genetic assays. Advancement in modelling tools is likely to improve our understanding of the origin of neurodevelopmental disorders and provide insight into their developmental mechanisms. Also, combined in vivo editing of multiple genes and single-cell RNA-sequencing (scRNA-seq) are bringing us into a new era of understanding the molecular neuropathology of NDDs.
Collapse
Affiliation(s)
- Alfonsa Zamora-Moratalla
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Martínez de Lagrán
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
7
|
Henry TR, Duffy KA, Rudolph MD, Nebel MB, Mostofsky SH, Cohen JR. Bridging global and local topology in whole-brain networks using the network statistic jackknife. Netw Neurosci 2020; 4:70-88. [PMID: 32043044 PMCID: PMC7006875 DOI: 10.1162/netn_a_00109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 12/02/2022] Open
Abstract
Whole-brain network analysis is commonly used to investigate the topology of the brain using a variety of neuroimaging modalities. This approach is notable for its applicability to a large number of domains, such as understanding how brain network organization relates to cognition and behavior and examining disrupted brain network organization in disease. A benefit to this approach is the ability to summarize overall brain network organization with a single metric (e.g., global efficiency). However, important local differences in network structure might exist without any corresponding observable differences in global topology, making a whole-brain analysis strategy unlikely to detect relevant local findings. Conversely, using local network metrics can identify local differences, but are not directly informative of differences in global topology. Here, we propose the network statistic (NS) jackknife framework, a simulated lesioning method that combines the utility of global network analysis strategies with the ability to detect relevant local differences in network structure. We evaluate the NS jackknife framework with a simulation study and an empirical example comparing global efficiency in children with attention-deficit/hyperactivity disorder (ADHD) and typically developing (TD) children. The NS jackknife framework has been implemented in a public, open-source R package, netjack, available at https://cran.r-project.org/package=netjack.
Collapse
Affiliation(s)
- Teague R Henry
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelly A Duffy
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marc D Rudolph
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Hartman RE, Patel D. Dietary Approaches to the Management of Autism Spectrum Disorders. ADVANCES IN NEUROBIOLOGY 2020; 24:547-571. [PMID: 32006373 DOI: 10.1007/978-3-030-30402-7_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter reviews the literature surrounding autism spectrum disorders (ASD) and their relation to gastrointestinal (GI), behavioral, neurological, and immunological functioning. Individuals with ASD often have poor GI health, including bowel motility issues, autoimmune and/or other adverse responses to certain foods, and lack of necessary nutrient absorption. These issues may be caused or exacerbated by restrictive behavioral patterns (e.g., preference for sweet and salty foods and/or refusal of healthy foods). Those individuals with GI issues tend to demonstrate more behavioral deficits (e.g., irritability, agitation, hyperactivity) and also tend to have an imbalance in overall gut microbiome composition, thus corroborating several studies that have implicated brain-gut pathways as potential mediators of behavioral dysfunction.We examine the literature regarding dietary approaches to managing ASDs, including elimination diets for gluten, casein, or complex carbohydrates, a ketogenic diet, and a low oxalate diet. We also explore the research examining dietary supplements such as fatty acids, pro- and prebiotics, vitamins, minerals, glutathione, phytochemicals, and hormones. The research on dietary approaches to managing ASDs is limited and the results are mixed. However, a few approaches, such as the gluten-free/casein-free diet, fatty acid supplementation, and pre/probiotics have generally demonstrated improved GI and associated behavioral symptoms. Given that GI issues seem to be overrepresented in ASD populations, and that GI issues have been associated with a number behavioral and neurological deficits, dietary manipulation may offer a cheap and easily implemented approach to improve the lives of those with ASD.
Collapse
Affiliation(s)
- Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA.
| | - Dhira Patel
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
9
|
Tang L, Mostafa S, Liao B, Wu FX. A network clustering based feature selection strategy for classifying autism spectrum disorder. BMC Med Genomics 2019; 12:153. [PMID: 31888621 PMCID: PMC6936069 DOI: 10.1186/s12920-019-0598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Advanced non-invasive neuroimaging techniques offer new approaches to study functions and structures of human brains. Whole-brain functional networks obtained from resting state functional magnetic resonance imaging has been widely used to study brain diseases like autism spectrum disorder (ASD). Auto-classification of ASD has become an important issue. Existing classification methods for ASD are based on features extracted from the whole-brain functional networks, which may be not discriminant enough for good performance. METHODS In this study, we propose a network clustering based feature selection strategy for classifying ASD. In our proposed method, we first apply symmetric non-negative matrix factorization to divide brain networks into four modules. Then we extract features from one of four modules called default mode network (DMN) and use them to train several classifiers for ASD classification. RESULTS The computational experiments show that our proposed method achieves better performances than those trained with features extracted from the whole brain network. CONCLUSION It is a good strategy to train the classifiers for ASD based on features from the default mode subnetwork.
Collapse
Affiliation(s)
- Lingkai Tang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
| | - Sakib Mostafa
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158 China
| | - Fang-Xiang Wu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
| |
Collapse
|
10
|
Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, Hayden DS, Fisher JW, Jiang M, Menegas W, Aida T, Yan T, Zou Y, Xu D, Parmar S, Hyman JB, Fanucci-Kiss A, Meisner O, Wang D, Huang Y, Li Y, Bai Y, Ji W, Lai X, Li W, Huang L, Lu Z, Wang L, Anteraper SA, Sur M, Zhou H, Xiang AP, Desimone R, Feng G, Yang S. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 2019; 570:326-331. [DOI: 10.1038/s41586-019-1278-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
|
11
|
Maussion G, Rocha C, Bernard G, Beitel LK, Durcan TM. Patient-Derived Stem Cells, Another in vitro Model, or the Missing Link Toward Novel Therapies for Autism Spectrum Disorders? Front Pediatr 2019; 7:225. [PMID: 31245336 PMCID: PMC6562499 DOI: 10.3389/fped.2019.00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/20/2019] [Indexed: 12/28/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) is a multigenic and multifactorial neurodevelopmental group of disorders diagnosed in early childhood, leading to deficits in social interaction, verbal and non-verbal communication and characterized by restricted and repetitive behaviors and interests. To date, genetic, descriptive and mechanistic aspects of the ASDs have been investigated using mouse models and post-mortem brain tissue. More recently, the technology to generate stem cells from patients' samples has brought a new avenue for modeling ASD through 2D and 3D neuronal models that are derived from a patient's own cells, with the goal of building new therapeutic strategies for treating ASDs. This review analyses how studies performed on mouse models and human samples can complement each other, advancing our current knowledge into the pathophysiology of the ASDs. Regardless of the genetic and phenotypic heterogeneities of ASDs, convergent information regarding the molecular and cellular mechanisms involved in these disorders can be extracted from these models. Thus, considering the complexities of these disorders, patient-derived models have immense potential to elucidate molecular deregulations that contributed to the different autistic phenotypes. Through these direct investigations with the human in vitro models, they offer the potential for opening new therapeutic avenues that can be translated into the clinic.
Collapse
Affiliation(s)
- Gilles Maussion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Cecilia Rocha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Division of Medical Genetics, Department of Internal Medicine, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- MyeliNeuroGene Laboratory, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Lenore K. Beitel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M. Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Brain Network Organization Correlates with Autistic Features in Preschoolers with Autism Spectrum Disorders and in Their Fathers: Preliminary Data from a DWI Analysis. J Clin Med 2019; 8:jcm8040487. [PMID: 30974902 PMCID: PMC6518033 DOI: 10.3390/jcm8040487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 11/17/2022] Open
Abstract
Autism Spectrum Disorders (ASD) is a group of neurodevelopmental disorders that is characterized by an altered brain connectivity organization. Autistic traits below the clinical threshold (i.e., the broad autism phenotype; BAP) are frequent among first-degree relatives of subjects with ASD; however, little is known regarding whether subthreshold behavioral manifestations of ASD mirror also at the neuroanatomical level in parents of ASD probands. To this aim, we applied advanced diffusion network analysis to MRI of 16 dyads consisting of a child with ASD and his father in order to investigate: (i) the correlation between structural network organization and autistic features in preschoolers with ASD (all males; age range 1.5-5.2 years); (ii) the correlation between structural network organization and BAP features in the fathers of individuals with ASD (fath-ASD). Local network measures significantly correlated with autism severity in ASD children and with BAP traits in fath-ASD, while no significant association emerged when considering the global measures of brain connectivity. Notably, an overlap of some brain regions that are crucial for social functioning (cingulum, superior temporal gyrus, inferior temporal gyrus, middle frontal gyrus, frontal pole, and amygdala) in patients with ASD and fath-ASD was detected, suggesting an intergenerational transmission of these neural substrates. Overall, the results of this study may help in elucidating the neurostructural endophenotype of ASD, paving the way for bridging connections between underlying genetic and ASD symptomatology.
Collapse
|
13
|
Dai X, Müller HG, Wang JL, Deoni SCL. Age-dynamic networks and functional correlation for early white matter myelination. Brain Struct Funct 2019; 224:535-551. [PMID: 30392094 PMCID: PMC6420858 DOI: 10.1007/s00429-018-1785-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/26/2018] [Indexed: 12/24/2022]
Abstract
The maturation of the myelinated white matter throughout childhood is a critical developmental process that underlies emerging connectivity and brain function. In response to genetic influences and neuronal activities, myelination helps establish the mature neural networks that support cognitive and behavioral skills. The emergence and refinement of brain networks, traditionally investigated using functional imaging data, can also be interrogated using longitudinal structural imaging data. However, few studies of structural network development throughout infancy and early childhood have been presented, likely owing to the sparse and irregular nature of most longitudinal neuroimaging data, which complicates dynamic analysis. Here, we overcome this limitation and investigate through concurrent correlation the co-development of white matter myelination and volume, and structural network development of white matter myelination between brain regions as a function of age, using statistically well-supported methods. We show that the concurrent correlation of white matter myelination and volume is overall positive and reaches a peak at 580 days. Brain regions are found to differ in overall magnitudes and patterns of time-varying association throughout early childhood. We introduce time-dynamic developmental networks based on temporal similarity of association patterns in the levels of myelination across brain regions. These networks reflect groups of brain regions that share similar patterns of evolving intra-regional connectivity, as evidenced by levels of myelination, are biologically interpretable and provide novel visualizations of brain development. Comparing the constructed networks between different maternal education groups, we found that children with higher and lower maternal education differ significantly in the overall magnitude of the time-dynamic correlations.
Collapse
Affiliation(s)
- Xiongtao Dai
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA.
| | - Hans-Georg Müller
- Department of Statistics, University of California Davis, Davis, CA, 95616, USA
| | - Jane-Ling Wang
- Department of Statistics, University of California Davis, Davis, CA, 95616, USA
| | - Sean C L Deoni
- Advanced Baby Imaging Lab, Brown University School of Engineering, Providence, RI, 02912, USA
| |
Collapse
|
14
|
Morgan SE, White SR, Bullmore ET, Vértes PE. A Network Neuroscience Approach to Typical and Atypical Brain Development. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:754-766. [PMID: 29703679 PMCID: PMC6986924 DOI: 10.1016/j.bpsc.2018.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Abstract
Human brain networks based on neuroimaging data have already proven useful in characterizing both normal and abnormal brain structure and function. However, many brain disorders are neurodevelopmental in origin, highlighting the need to go beyond characterizing brain organization in terms of static networks. Here, we review the fast-growing literature shedding light on developmental changes in network phenotypes. We begin with an overview of recent large-scale efforts to map healthy brain development, and we describe the key role played by longitudinal data including repeated measurements over a long period of follow-up. We also discuss the subtle ways in which healthy brain network development can inform our understanding of disorders, including work bridging the gap between macroscopic neuroimaging results and the microscopic level. Finally, we turn to studies of three specific neurodevelopmental disorders that first manifest primarily in childhood and adolescence/early adulthood, namely psychotic disorders, attention-deficit/hyperactivity disorder, and autism spectrum disorder. In each case we discuss recent progress in understanding the atypical features of brain network development associated with the disorder, and we conclude the review with some suggestions for future directions.
Collapse
Affiliation(s)
- Sarah E Morgan
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Simon R White
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Edward T Bullmore
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Huntingdon, United Kingdom; ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Petra E Vértes
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Mateos-Pérez JM, Dadar M, Lacalle-Aurioles M, Iturria-Medina Y, Zeighami Y, Evans AC. Structural neuroimaging as clinical predictor: A review of machine learning applications. NEUROIMAGE-CLINICAL 2018; 20:506-522. [PMID: 30167371 PMCID: PMC6108077 DOI: 10.1016/j.nicl.2018.08.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 01/22/2018] [Accepted: 08/09/2018] [Indexed: 11/26/2022]
Abstract
In this paper, we provide an extensive overview of machine learning techniques applied to structural magnetic resonance imaging (MRI) data to obtain clinical classifiers. We specifically address practical problems commonly encountered in the literature, with the aim of helping researchers improve the application of these techniques in future works. Additionally, we survey how these algorithms are applied to a wide range of diseases and disorders (e.g. Alzheimer's disease (AD), Parkinson's disease (PD), autism, multiple sclerosis, traumatic brain injury, etc.) in order to provide a comprehensive view of the state of the art in different fields.
Collapse
Affiliation(s)
| | - Mahsa Dadar
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | | - Yashar Zeighami
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Li Y, Yu D. Variations of the Functional Brain Network Efficiency in a Young Clinical Sample within the Autism Spectrum: A fNIRS Investigation. Front Physiol 2018; 9:67. [PMID: 29459832 PMCID: PMC5807729 DOI: 10.3389/fphys.2018.00067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/18/2018] [Indexed: 01/16/2023] Open
Abstract
Autism is a neurodevelopmental disorder with dimensional behavioral symptoms and various damages in the structural and functional brain. Previous neuroimaging studies focused on exploring the differences of brain development between individuals with and without autism spectrum disorders (ASD). However, few of them have attempted to investigate the individual differences of the brain features among subjects within the Autism spectrum. Our main goal was to explore the individual differences of neurodevelopment in young children with Autism by testing for the association between the functional network efficiency and levels of autistic behaviors, as well as the association between the functional network efficiency and age. Forty-six children with Autism (ages 2.0-8.9 years old) participated in the current study, with levels of autistic behaviors evaluated by their parents. The network efficiency (global and local network efficiency) were obtained from the functional networks based on the oxy-, deoxy-, and total-Hemoglobin series, respectively. Results indicated that the network efficiency decreased with age in young children with Autism in the deoxy- and total-Hemoglobin-based-networks, and children with a relatively higher level of autistic behaviors showed decreased network efficiency in the oxy-hemoglobin-based network. Results suggest individual differences of brain development in young children within the Autism spectrum, providing new insights into the psychopathology of ASD.
Collapse
Affiliation(s)
- Yanwei Li
- College of Preschool Education, Nanjing Xiaozhuang University, Nanjing, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat Rev Neurosci 2017; 18:658-670. [PMID: 28931944 DOI: 10.1038/nrn.2017.110] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The final stage of brain development is associated with the generation and maturation of neuronal synapses. However, the same period is also associated with a peak in synapse elimination - a process known as synaptic pruning - that has been proposed to be crucial for the maturation of remaining synaptic connections. Recent studies have pointed to a key role for glial cells in synaptic pruning in various parts of the nervous system and have identified a set of critical signalling pathways between glia and neurons. At the same time, brain imaging and post-mortem anatomical studies suggest that insufficient or excessive synaptic pruning may underlie several neurodevelopmental disorders, including autism, schizophrenia and epilepsy. Here, we review current data on the cellular, physiological and molecular mechanisms of glial-cell-dependent synaptic pruning and outline their potential contribution to neurodevelopmental disorders.
Collapse
|
18
|
Lewis JD, Evans AC, Pruett JR, Botteron KN, McKinstry RC, Zwaigenbaum L, Estes AM, Collins DL, Kostopoulos P, Gerig G, Dager SR, Paterson S, Schultz RT, Styner MA, Hazlett HC, Piven J. The Emergence of Network Inefficiencies in Infants With Autism Spectrum Disorder. Biol Psychiatry 2017; 82:176-185. [PMID: 28460842 PMCID: PMC5524449 DOI: 10.1016/j.biopsych.2017.03.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a developmental disorder defined by behavioral features that emerge during the first years of life. Research indicates that abnormalities in brain connectivity are associated with these behavioral features. However, the inclusion of individuals past the age of onset of the defining behaviors complicates interpretation of the observed abnormalities: they may be cascade effects of earlier neuropathology and behavioral abnormalities. Our recent study of network efficiency in a cohort of 24-month-olds at high and low familial risk for ASD reduced this confound; we reported reduced network efficiencies in toddlers classified with ASD. The current study maps the emergence of these inefficiencies in the first year of life. METHODS This study uses data from 260 infants at 6 and 12 months of age, including 116 infants with longitudinal data. As in our earlier study, we use diffusion data to obtain measures of the length and strength of connections between brain regions to compute network efficiency. We assess group differences in efficiency within linear mixed-effects models determined by the Akaike information criterion. RESULTS Inefficiencies in high-risk infants later classified with ASD were detected from 6 months onward in regions involved in low-level sensory processing. In addition, within the high-risk infants, these inefficiencies predicted 24-month symptom severity. CONCLUSIONS These results suggest that infants with ASD, even before 6 months of age, have deficits in connectivity related to low-level processing, which contribute to a developmental cascade affecting brain organization and eventually higher-level cognitive processes and social behavior.
Collapse
Affiliation(s)
- John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Alan C Evans
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri; Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri; Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Robert C McKinstry
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Annette M Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - D Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Guido Gerig
- Tandon School of Engineering, New York University, Brooklyn, New York
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, Washington
| | - Sarah Paterson
- Center for Autism Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T Schultz
- Center for Autism Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin A Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Caligiuri ME, Arabia G, Barbagallo G, Lupo A, Morelli M, Nisticò R, Novellino F, Quattrone A, Salsone M, Vescio B, Cherubini A, Quattrone A. Structural connectivity differences in essential tremor with and without resting tremor. J Neurol 2017; 264:1865-1874. [DOI: 10.1007/s00415-017-8553-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
20
|
O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS One 2017; 12:e0175870. [PMID: 28467487 PMCID: PMC5414938 DOI: 10.1371/journal.pone.0175870] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/31/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although it is well recognized that autism is associated with altered patterns of over- and under-connectivity, specifics are still a matter of debate. Little has been done so far to synthesize available literature using whole-brain electroencephalography (EEG) and magnetoencephalography (MEG) recordings. OBJECTIVES 1) To systematically review the literature on EEG/MEG functional and effective connectivity in autism spectrum disorder (ASD), 2) to synthesize and critically appraise findings related with the hypothesis that ASD is characterized by long-range underconnectivity and local overconnectivity, and 3) to provide, based on the literature, an analysis of tentative factors that are likely to mediate association between ASD and atypical connectivity (e.g., development, topography, lateralization). METHODS Literature reviews were done using PubMed and PsychInfo databases. Abstracts were screened, and only relevant articles were analyzed based on the objectives of this paper. Special attention was paid to the methodological characteristics that could have created variability in outcomes reported between studies. RESULTS Our synthesis provides relatively strong support for long-range underconnectivity in ASD, whereas the status of local connectivity remains unclear. This observation was also mirrored by a similar relationship with lower frequencies being often associated with underconnectivity and higher frequencies being associated with both under- and over-connectivity. Putting together these observations, we propose that ASD is characterized by a general trend toward an under-expression of lower-band wide-spread integrative processes compensated by more focal, higher-frequency, locally specialized, and segregated processes. Further investigation is, however, needed to corroborate the conclusion and its generalizability across different tasks. Of note, abnormal lateralization in ASD, specifically an elevated left-over-right EEG and MEG functional connectivity ratio, has been also reported consistently across studies. CONCLUSIONS The large variability in study samples and methodology makes a systematic quantitative analysis (i.e. meta-analysis) of this body of research impossible. Nevertheless, a general trend supporting the hypothesis of long-range functional underconnectivity can be observed. Further research is necessary to more confidently determine the status of the hypothesis of short-range overconnectivity. Frequency-band specific patterns and their relationships with known symptoms of autism also need to be further clarified.
Collapse
Affiliation(s)
- Christian O’Reilly
- Douglas Mental Health University Institute, 6875 Boulevard Lasalle, Verdun, Canada
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC, Canada
| | - John D. Lewis
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, Canada
| | - Mayada Elsabbagh
- Douglas Mental Health University Institute, 6875 Boulevard Lasalle, Verdun, Canada
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, QC, Canada
| |
Collapse
|
21
|
Li Y, Yu D. Weak network efficiency in young children with Autism Spectrum Disorder: Evidence from a functional near-infrared spectroscopy study. Brain Cogn 2016; 108:47-55. [DOI: 10.1016/j.bandc.2016.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 07/15/2016] [Accepted: 07/17/2016] [Indexed: 12/15/2022]
|
22
|
Moradi E, Khundrakpam B, Lewis JD, Evans AC, Tohka J. Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data. Neuroimage 2016; 144:128-141. [PMID: 27664827 DOI: 10.1016/j.neuroimage.2016.09.049] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Machine learning approaches have been widely used for the identification of neuropathology from neuroimaging data. However, these approaches require large samples and suffer from the challenges associated with multi-site, multi-protocol data. We propose a novel approach to address these challenges, and demonstrate its usefulness with the Autism Brain Imaging Data Exchange (ABIDE) database. We predict symptom severity based on cortical thickness measurements from 156 individuals with autism spectrum disorder (ASD) from four different sites. The proposed approach consists of two main stages: a domain adaptation stage using partial least squares regression to maximize the consistency of imaging data across sites; and a learning stage combining support vector regression for regional prediction of severity with elastic-net penalized linear regression for integrating regional predictions into a whole-brain severity prediction. The proposed method performed markedly better than simpler alternatives, better with multi-site than single-site data, and resulted in a considerably higher cross-validated correlation score than has previously been reported in the literature for multi-site data. This demonstration of the utility of the proposed approach for detecting structural brain abnormalities in ASD from the multi-site, multi-protocol ABIDE dataset indicates the potential of designing machine learning methods to meet the challenges of agglomerative data.
Collapse
Affiliation(s)
- Elaheh Moradi
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Budhachandra Khundrakpam
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - John D Lewis
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jussi Tohka
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Avd. de la Universidad, 30, 28911, Leganes, Spain; Instituto de Investigacion Sanitaria Gregorio Marañon, Madrid, Spain.
| |
Collapse
|
23
|
Brain connectivity in normally developing children and adolescents. Neuroimage 2016; 134:192-203. [DOI: 10.1016/j.neuroimage.2016.03.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 02/02/2016] [Accepted: 03/23/2016] [Indexed: 11/21/2022] Open
|
24
|
Abstract
Epilepsy and autistic spectrum disorder frequently coexist in the same individual. Electroencephalogram (EEG) epileptiform activity is also present at a substantially higher rate in children with autism than normally developing children. As with epilepsy, there are a multitude of genetic and environmental factors that can result in autistic spectrum disorder. There is growing consensus from both animal and clinical studies that autism is a disorder of aberrant connectivity. As measured with functional magnetic resonance imaging (MRI) and EEG, the brain in autistic spectrum disorder may be under- or overconnected or have a mixture of over- and underconnectivity. In the case of comorbid epilepsy and autism, an imbalance of the excitatory/inhibitory (E/I) ratio in selected regions of the brain may drive overconnectivity. Understanding the mechanism by which altered connectivity in individuals with comorbid epilepsy and autistic spectrum disorder results in the behaviors specific to the autistic spectrum disorder remains a challenge.
Collapse
Affiliation(s)
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
25
|
Roine U, Roine T, Salmi J, Nieminen-von Wendt T, Tani P, Leppämäki S, Rintahaka P, Caeyenberghs K, Leemans A, Sams M. Abnormal wiring of the connectome in adults with high-functioning autism spectrum disorder. Mol Autism 2015; 6:65. [PMID: 26677408 PMCID: PMC4681075 DOI: 10.1186/s13229-015-0058-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/24/2015] [Indexed: 01/13/2023] Open
Abstract
Background Recent brain imaging findings suggest that there are widely distributed abnormalities affecting the brain connectivity in individuals with autism spectrum disorder (ASD). Using graph theoretical analysis, it is possible to investigate both global and local properties of brain’s wiring diagram, i.e., the connectome. Methods We acquired diffusion-weighted magnetic resonance imaging data from 14 adult males with high-functioning ASD and 19 age-, gender-, and IQ-matched controls. As with diffusion tensor imaging-based tractography, it is not possible to detect complex (e.g., crossing) fiber configurations, present in 60–90 % of white matter voxels; we performed constrained spherical deconvolution-based whole brain tractography. Unweighted and weighted structural brain networks were then reconstructed from these tractography data and analyzed with graph theoretical measures. Results In subjects with ASD, global efficiency was significantly decreased both in the unweighted and the weighted networks, normalized characteristic path length was significantly increased in the unweighted networks, and strength was significantly decreased in the weighted networks. In the local analyses, betweenness centrality of the right caudate was significantly increased in the weighted networks, and the strength of the right superior temporal pole was significantly decreased in the unweighted networks in subjects with ASD. Conclusions Our findings provide new insights into understanding ASD by showing that the integration of structural brain networks is decreased and that there are abnormalities in the connectivity of the right caudate and right superior temporal pole in subjects with ASD. Electronic supplementary material The online version of this article (doi:10.1186/s13229-015-0058-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrika Roine
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Rakentajanaukio 2 C, FI-02150 Espoo, Finland ; Advanced Magnetic Imaging Centre, Aalto University, Otakaari 5, FI-02150 Espoo, Finland
| | - Timo Roine
- iMinds-Vision Lab, Department of Physics, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | - Juha Salmi
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Rakentajanaukio 2 C, FI-02150 Espoo, Finland ; Faculty of Arts, Psychology and Theology, Åbo Akademi University, Fabriksgatan 2, FI-20500 Turku, Finland
| | - Taina Nieminen-von Wendt
- Neuropsychiatric Rehabilitation and Medical Centre Neuromental, Kaupintie 11 A, FI-00440 Helsinki, Finland
| | - Pekka Tani
- Clinic for Neuropsychiatry, Department of Psychiatry, Helsinki University Central Hospital, Tukholmankatu 8 F, FI-00290 Helsinki, Finland
| | - Sami Leppämäki
- Clinic for Neuropsychiatry, Department of Psychiatry, Helsinki University Central Hospital, Tukholmankatu 8 F, FI-00290 Helsinki, Finland ; Finnish Institute of Occupational Health, Topeliuksenkatu 41, FI-00290 Helsinki, Finland
| | - Pertti Rintahaka
- Clinic for Neuropsychiatry, Department of Psychiatry, Helsinki University Central Hospital, Tukholmankatu 8 F, FI-00290 Helsinki, Finland
| | - Karen Caeyenberghs
- School of Psychology, Australian Catholic University, Locked Bag 4115, Fitzroy MDC, VIC 3065 Melbourne, Australia
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Mikko Sams
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Rakentajanaukio 2 C, FI-02150 Espoo, Finland ; Advanced Magnetic Imaging Centre, Aalto University, Otakaari 5, FI-02150 Espoo, Finland
| |
Collapse
|
26
|
Trontel HG, Duffield TC, Bigler ED, Abildskov TJ, Froehlich A, Prigge MBD, Travers BG, Anderson JS, Zielinski BA, Alexander AL, Lange N, Lainhart JE. Mesial temporal lobe and memory function in autism spectrum disorder: an exploration of volumetric findings. J Clin Exp Neuropsychol 2015; 37:178-92. [PMID: 25749302 DOI: 10.1080/13803395.2014.997677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typical developing individuals on standardized measures of memory, even when not significantly different on measures of IQ. The current study sought to examine within ASD whether anatomical correlates of memory performance differed between those with average-to-above-average IQ (AIQ group) and those with low-average to borderline ability (LIQ group) as well as in relations to typically developing comparisons (TDC). Using automated volumetric analyses, we examined regional volume of classic memory areas including the hippocampus, parahippocampal gyrus, entorhinal cortex, and amygdala in an all-male sample AIQ (n = 38) and LIQ (n = 18) individuals with ASD along with 30 typically developing comparisons (TDC). Memory performance was assessed using the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences on almost all facets of memory and learning as assessed by the various subtests of the TOMAL. The three groups did not differ on any region of interest (ROI) memory-related brain volumes. However, significant size-memory function interactions were observed. Negative correlations were found between the volume of the amygdala and composite, verbal, and delayed memory indices for the LIQ ASD group, indicating larger volume related to poorer performance. Implications for general memory functioning and dysfunctional neural connectivity in ASD are discussed.
Collapse
Affiliation(s)
- Haley G Trontel
- a Department of Psychology , Brigham Young University , Provo , UT , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Buckley AW, Scott R, Tyler A, Mahoney JM, Thurm A, Farmer C, Swedo S, Burroughs SA, Holmes GL. State-Dependent Differences in Functional Connectivity in Young Children With Autism Spectrum Disorder. EBioMedicine 2015; 2:1905-15. [PMID: 26844269 PMCID: PMC4703709 DOI: 10.1016/j.ebiom.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022] Open
Abstract
Background While there is increasing evidence of altered brain connectivity in autism, the degree and direction of these alterations in connectivity and their uniqueness to autism has not been established. The aim of the present study was to compare connectivity in children with autism to that of typically developing controls and children with developmental delay without autism. Methods We assessed EEG spectral power, coherence, phase lag, Pearson and partial correlations, and epileptiform activity during the awake, slow wave sleep, and REM sleep states in 137 children aged 2 to 6 years with autism (n = 87), developmental delay without autism (n = 21), or typical development (n = 29). Findings We found that brain connectivity, as measured by coherence, phase lag, and Pearson and partial correlations distinguished children with autism from both neurotypical and developmentally delayed children. In general, children with autism had increased coherence which was most prominent during slow wave sleep. Interpretation Functional connectivity is distinctly different in children with autism compared to samples with typical development and developmental delay without autism. Differences in connectivity in autism are state and region related. In this study, children with autism were characterized by a dynamically evolving pattern of altered connectivity. We used EEG to examine the connectivity in young children in awake, rapid eye movement, and slow wave sleep (SWS) states. Differences in coherence between the autism group and the other groups were maximal during SWS. Sleep may be the most sensitive time to measure differences in neuro-development before they are observable in behavior.
Shared mechanisms underlie normal healthy sleep and normal brain development. Therefore, we suspect that differences in the way that the brain is behaving during sleep have the potential to tell us about what might be developing incorrectly in people with neurodevelopmental disorders. In addition, sleep evaluations of children allow us to filter out waking distractions, so that we are truly measuring the brain working offline. For instance, the differences in the way the brain was connected that we observed between our three study groups were by far the most notable during slow wave sleep. This finding highlights the importance of taking the state of the brain into account when commenting on the ‘connectedness’ of the brain as a potential biomarker for neurodevelopmental disorders. Future attempts to classify developmental disorders by using differences in connectivity must take into account brain state, whether awake or asleep as well as developmental stage.
Collapse
Affiliation(s)
- Ashura W Buckley
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| | - Rod Scott
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Anna Tyler
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - J Matthew Mahoney
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Audrey Thurm
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| | - Cristan Farmer
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| | - Susan Swedo
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| | - Scott A Burroughs
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Gregory L Holmes
- National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room 1C250, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Nair A, Carper RA, Abbott AE, Chen CP, Solders S, Nakutin S, Datko MC, Fishman I, Müller R. Regional specificity of aberrant thalamocortical connectivity in autism. Hum Brain Mapp 2015; 36:4497-511. [PMID: 26493162 PMCID: PMC4768761 DOI: 10.1002/hbm.22938] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 01/27/2023] Open
Abstract
Preliminary evidence suggests aberrant (mostly reduced) thalamocortical (TC) connectivity in autism spectrum disorder (ASD), but despite the crucial role of thalamus in sensorimotor functions and its extensive connectivity with cerebral cortex, relevant evidence remains limited. We performed a comprehensive investigation of region-specific TC connectivity in ASD. Resting-state functional MRI and diffusion tensor imaging (DTI) data were acquired for 60 children and adolescents with ASD (ages 7-17 years) and 45 age, sex, and IQ-matched typically developing (TD) participants. We examined intrinsic functional connectivity (iFC) and anatomical connectivity (probabilistic tractography) with thalamus, using 68 unilateral cerebral cortical regions of interest (ROIs). For frontal and parietal lobes, iFC was atypically reduced in the ASD group for supramodal association cortices, but was increased for cingulate gyri and motor cortex. Temporal iFC was characterized by overconnectivity for auditory cortices, but underconnectivity for amygdalae. Occipital iFC was broadly reduced in the ASD group. DTI indices (such as increased radial diffusion) for regions with group differences in iFC further indicated compromised anatomical connectivity, especially for frontal ROIs, in the ASD group. Our findings highlight the regional specificity of aberrant TC connectivity in ASD. Their overall pattern can be largely accounted for by functional overconnectivity with limbic and sensorimotor regions, but underconnectivity with supramodal association cortices. This could be related to comparatively early maturation of limbic and sensorimotor regions in the context of early overgrowth in ASD, at the expense of TC connectivity with later maturing cortical regions.
Collapse
Affiliation(s)
- Aarti Nair
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of CaliforniaSan DiegoCalifornia
| | - Ruth A. Carper
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
- Department of NeuroscienceUniversity of CaliforniaSan DiegoCalifornia
| | - Angela E. Abbott
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Colleen P. Chen
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Seraphina Solders
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Sarah Nakutin
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Michael C. Datko
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
- Department of Cognitive ScienceUniversity of CaliforniaSan DiegoCalifornia
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| | - Ralph‐Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State UniversitySan DiegoCalifornia
| |
Collapse
|
29
|
Doyle-Thomas KAR, Lee W, Foster NEV, Tryfon A, Ouimet T, Hyde KL, Evans AC, Lewis J, Zwaigenbaum L, Anagnostou E. Atypical functional brain connectivity during rest in autism spectrum disorders. Ann Neurol 2015; 77:866-76. [PMID: 25707715 DOI: 10.1002/ana.24391] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Connectivity atypicalities in autism spectrum disorders (ASD) have been extensively proposed. The default mode network (DMN) is critical in this study, given the insight it provides for long-distance connectivity, and the importance of regions in this network for introspection and social emotion processing, areas affected in ASD. However, study of this network has largely been limited to adults; research earlier in development is lacking. The objective of this study was to examine DMN connectivity in children/adolescents with ASD. METHODS A total of 115 children/adolescents, aged 6 to 17 years (71 males with ASD and 44 group age-matched TD males) were included in these analyses. We examined group differences in (1) functional connectivity between the posterior cingulate cortex and regions across the brain, (2) connectivity within the DMN as a function of age and intelligence quotient (IQ), and (3) the association between DMN connectivity and empathic accuracy. RESULTS Individuals with ASD, relative to controls, showed either stronger or weaker connectivity between the posterior cingulate cortex (PCC) and DMN regions, depending on the region, but also showed stronger connectivity with non-DMN regions. A significant group-by-age interaction was observed in functional connectivity between the PCC and medial prefrontal cortex; connectivity increased with age in controls, but decreased in individuals with ASD. No effects of IQ were found. There was a significant group difference in the relation between DMN connectivity and empathic accuracy. INTERPRETATION Differences in functional connectivity may suggest the presence of neural atypicalities that impact the development of typical connectivity in ASD. In addition to affecting DMN dynamics, these atypicalities may also impact social-cognitive abilities.
Collapse
Affiliation(s)
- Krissy A R Doyle-Thomas
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario; Department of Pediatrics, University of Toronto, Toronto, Ontario
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Miller M, Chukoskie L, Zinni M, Townsend J, Trauner D. Dyspraxia, motor function and visual-motor integration in autism. Behav Brain Res 2014; 269:95-102. [PMID: 24742861 PMCID: PMC4072207 DOI: 10.1016/j.bbr.2014.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 11/28/2022]
Abstract
This project assessed dyspraxia in high-functioning school aged children with autism with a focus on Ideational Praxis. We examined the association of specific underlying motor function including eye movement with ideational dyspraxia (sequences of skilled movements) as well as the possible role of visual-motor integration in dyspraxia. We found that compared to IQ-, sex- and age-matched typically developing children, the children with autism performed significantly worse on: Ideational and Buccofacial praxis; a broad range of motor tests, including measures of simple motor skill, timing and accuracy of saccadic eye movements and motor coordination; and tests of visual-motor integration. Impairments in individual children with autism were heterogeneous in nature, although when we examined the praxis data as a function of a qualitative measure representing motor timing, we found that children with poor motor timing performed worse on all praxis categories and had slower and less accurate eye movements while those with regular timing performed as well as typical children on those same tasks. Our data provide evidence that both motor function and visual-motor integration contribute to dyspraxia. We suggest that dyspraxia in autism involves cerebellar mechanisms of movement control and the integration of these mechanisms with cortical networks implicated in praxis.
Collapse
Affiliation(s)
- M Miller
- School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - L Chukoskie
- Institute for Neural Computation, University of California, San Diego, La Jolla, CA, USA
| | - M Zinni
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA
| | - J Townsend
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA.
| | - D Trauner
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, MC-0959, La Jolla, CA 92093-0959, USA
| |
Collapse
|
31
|
Kana RK, Uddin LQ, Kenet T, Chugani D, Müller RA. Brain connectivity in autism. Front Hum Neurosci 2014; 8:349. [PMID: 24917800 PMCID: PMC4041005 DOI: 10.3389/fnhum.2014.00349] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/08/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Rajesh K Kana
- Psychology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital Boston, MA, USA
| | - Diane Chugani
- Departments of Pediatrics and Neurology, Wayne State University Detroit, MI, USA
| | - Ralph-Axel Müller
- Department of Psychology, San Diego State University San Diego, CA, USA
| |
Collapse
|
32
|
Lewis JD, Evans AC, Pruett JR, Botteron K, Zwaigenbaum L, Estes A, Gerig G, Collins L, Kostopoulos P, McKinstry R, Dager S, Paterson S, Schultz RT, Styner M, Hazlett H, Piven J. Network inefficiencies in autism spectrum disorder at 24 months. Transl Psychiatry 2014; 4:e388. [PMID: 24802306 PMCID: PMC4035719 DOI: 10.1038/tp.2014.24] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 03/03/2014] [Accepted: 03/08/2014] [Indexed: 02/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disorder defined by behavioral symptoms that emerge during the first years of life. Associated with these symptoms are differences in the structure of a wide array of brain regions, and in the connectivity between these regions. However, the use of cohorts with large age variability and participants past the generally recognized age of onset of the defining behaviors means that many of the reported abnormalities may be a result of cascade effects of developmentally earlier deviations. This study assessed differences in connectivity in ASD at the age at which the defining behaviors first become clear. There were 113 24-month-old participants at high risk for ASD, 31 of whom were classified as ASD, and 23 typically developing 24-month-old participants at low risk for ASD. Utilizing diffusion data to obtain measures of the length and strength of connections between anatomical regions, we performed an analysis of network efficiency. Our results showed significantly decreased local and global efficiency over temporal, parietal and occipital lobes in high-risk infants classified as ASD, relative to both low- and high-risk infants not classified as ASD. The frontal lobes showed only a reduction in global efficiency in Broca's area. In addition, these same regions showed an inverse relation between efficiency and symptom severity across the high-risk infants. The results suggest delay or deficits in infants with ASD in the optimization of both local and global aspects of network structure in regions involved in processing auditory and visual stimuli, language and nonlinguistic social stimuli.
Collapse
Affiliation(s)
- J D Lewis
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - A C Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J R Pruett
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - K Botteron
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - L Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - A Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - G Gerig
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - L Collins
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - P Kostopoulos
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - R McKinstry
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - S Dager
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - S Paterson
- Center for Autism Research, University of Pennsylvania, Philadelphia, PA, USA
| | - R T Schultz
- Center for Autism Research, University of Pennsylvania, Philadelphia, PA, USA
| | - M Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - H Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| | - J Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|