1
|
Fan X, Guo Q, Zhang X, Fei L, He S, Weng X. Top-down modulation and cortical-AMG/HPC interaction in familiar face processing. Cereb Cortex 2022; 33:4677-4687. [PMID: 36156127 DOI: 10.1093/cercor/bhac371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Humans can accurately recognize familiar faces in only a few hundred milliseconds, but the underlying neural mechanism remains unclear. Here, we recorded intracranial electrophysiological signals from ventral temporal cortex (VTC), superior/middle temporal cortex (STC/MTC), medial parietal cortex (MPC), and amygdala/hippocampus (AMG/HPC) in 20 epilepsy patients while they viewed faces of famous people and strangers as well as common objects. In posterior VTC and MPC, familiarity-sensitive responses emerged significantly later than initial face-selective responses, suggesting that familiarity enhances face representations after they are first being extracted. Moreover, viewing famous faces increased the coupling between cortical areas and AMG/HPC in multiple frequency bands. These findings advance our understanding of the neural basis of familiar face perception by identifying the top-down modulation in local face-selective response and interactions between cortical face areas and AMG/HPC.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Department of Psychology, University of Washington, Seattle, WA, 98105, United States
| | - Qiang Guo
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, 510510, China
| | - Xinxin Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education,Guangzhou, Guangdong, 510898, China
| | - Lingxia Fei
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, 510510, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuchu Weng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education,Guangzhou, Guangdong, 510898, China
| |
Collapse
|
2
|
Different patterns of functional and structural alterations of hippocampal sub-regions in subcortical vascular mild cognitive impairment with and without depression symptoms. Brain Imaging Behav 2021; 15:1211-1221. [PMID: 32700254 DOI: 10.1007/s11682-020-00321-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In addition to cognitive impairments, depression symptoms were reported in subcortical vascular mild cognitive impairment. Although hippocampal alterations were associated with cognitive decline in subcortical vascular mild cognitive impairment, the neural mechanism underlying depression symptoms remains unclear. Thus, a cohort of 18 patients with depression symptoms, 17 patients without depression symptoms, and 23 normal controls was used. Functionally, significantly altered resting-state functional connectivity between hippocampal emotional sub-region and right posterior cingulate cortex, between hippocampal cognitive sub-region and right inferior parietal gyrus and between hippocampal perceptual sub-region and left inferior temporal gyrus were identified among three groups. Structurally, significantly altered structural associations between hippocampal emotional sub-region and 6 frontal regions/right pole part of superior temporal gyrus/right inferior occipital gyrus, between hippocampal cognitive sub-region and right orbital part of inferior frontal gyrus /right anterior cingulate cortex, and between hippocampal perceptual and right orbital part of inferior frontal gyrus / left inferior temporal gyrus / left thalamus were identified among the three groups. Further analyses also showed correlations between functional connectivity and depression symptoms and/or cognitive impairments of patients. Together, these results showed different patterns of functional and structural alterations of the hippocampal sub-regions in the subcortical vascular mild cognitive impairment with and without depression, which might be specially associated with the depression symptoms and cognitive impairments in these patients.
Collapse
|
3
|
Tu HW, Diana RA. The interaction of relational encoding and unitization: Effects on medial temporal lobe processing during retrieval. Behav Brain Res 2021; 396:112878. [PMID: 32890598 PMCID: PMC7572763 DOI: 10.1016/j.bbr.2020.112878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
In retrieval of typical episodic memories, recollection leads to retrieval of context details whereas familiarity is only diagnostic for item memory. Unitization is an encoding strategy that allows context details to be processed as item features and therefore increases the involvement of familiarity-based recognition in retrieval of these context details. Relational encoding is a hippocampally-dependent process that stores items and contexts independently. Our previous study Tu and Diana [1] concluded that mixing unitized and non-unitized context details in the same episode reduced the contribution of familiarity to retrieval of any one detail. In the current study, we modified the paradigm by removing visual cues to the context details and the condition-specific blocking during test. Surprisingly, the behavioral data diverged from our 2016 study and indicated that the two manipulated context details in the modified paradigm were processed independently of one another. Neuroimaging data further revealed anterior hippocampal activation was associated with unitization of source information as compared to relational encoding. We also found the predicted increase in bilateral perirhinal cortex activation and decrease in parahippocampal cortex activation during retrieval of unitized color information when compared to relationally-encoded color information. We did not find that same predicted pattern of differences due to unitization of size information.
Collapse
Affiliation(s)
- Hsiao-Wei Tu
- Department of Psychology, Virginia Tech, United States
| | | |
Collapse
|
4
|
Zhang Z, Liu L, Li Y, Tan T, Niki K, Luo J. The function of medial temporal lobe and posterior middle temporal gyrus in forming creative associations. Hippocampus 2020; 30:1257-1267. [DOI: 10.1002/hipo.23253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Ze Zhang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Lulu Liu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
- Graduate School of Chinese Academy of Agricultural Sciences Beijing China
| | - Yue Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Tengteng Tan
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Kazuhisa Niki
- Human Informatics Research Institute, Advanced Industrial Science and Technology Tsukuba Japan
- Keio University Graduate School of Human Relations Keio University Tokyo Japan
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
- Department of Psychology Shaoxing University Shaoxing China
| |
Collapse
|
5
|
Dissociation of the Perirhinal Cortex and Hippocampus During Discriminative Learning of Similar Objects. J Neurosci 2019; 39:6190-6201. [PMID: 31167939 DOI: 10.1523/jneurosci.3181-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022] Open
Abstract
Discriminative learning is a paradigm that has been used in animal studies, in which memory of a stimulus is enhanced when it is presented with a similar stimulus rather than with a different one. Human studies have shown that through discriminative learning of similar objects, both item memory and contextual memories are enhanced. However, the underlying neural mechanisms for it are unclear. The hippocampus and perirhinal cortex (PRC) are two possible regions involved in discriminating similar stimuli and forming distinctive memory representations. In this study, 28 participants (15 males) were scanned using high-resolution fMRI when a picture (e.g., a dog) was paired with the same picture, with a similar picture of the same concept (e.g., another dog), or with a picture of a different concept (e.g., a cat). Then, after intervals of 20 min and 1 week, the participants were asked to perform an old/new recognition task, followed by a contextual judgment. The results showed that during encoding, there was stronger activation in the PRC for the "similar" than for the "same" and "different" conditions and it predicted subsequent item memory for the "similar" condition. The hippocampal activation decreased for the "same" versus the "different" condition and the DG/CA3 activation predicted subsequent contextual memory for the "similar" condition. These results suggested that the PRC and hippocampus are functionally dissociated in encoding simultaneously presented objects and predicting subsequent item and contextual memories after discriminative learning.SIGNIFICANCE STATEMENT How the brain separates similar input into nonoverlapping representations and forms distinct memory for them is a fundamental question for the neuroscience of memory. By discriminative learning of similar (vs different) objects, both item and contextual memories are enhanced. This study found functional dissociations between perirhinal cortex (PRC) and hippocampus in discriminating pairs of similar and different objects and in predicting subsequent memory of similar objects in their item and contextual aspects. The results provided clear evidence on the neural mechanisms of discriminative learning and highlighted the importance of the PRC and hippocampus in processing different types of object information when the objects were simultaneously presented.
Collapse
|
6
|
Martin CB, Douglas D, Newsome RN, Man LLY, Barense MD. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream. eLife 2018; 7:e31873. [PMID: 29393853 PMCID: PMC5832413 DOI: 10.7554/elife.31873] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features.
Collapse
Affiliation(s)
- Chris B Martin
- Department of PsychologyUniversity of TorontoTorontoCanada
| | | | | | - Louisa LY Man
- Department of PsychologyQueen's UniversityKingstonCanada
| | | |
Collapse
|
7
|
Geib BR, Stanley ML, Wing EA, Laurienti PJ, Cabeza R. Hippocampal Contributions to the Large-Scale Episodic Memory Network Predict Vivid Visual Memories. Cereb Cortex 2018; 27:680-693. [PMID: 26523034 DOI: 10.1093/cercor/bhv272] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A common approach in memory research is to isolate the function(s) of individual brain regions, such as the hippocampus, without addressing how those regions interact with the larger network. To investigate the properties of the hippocampus embedded within large-scale networks, we used functional magnetic resonance imaging and graph theory to characterize complex hippocampal interactions during the active retrieval of vivid versus dim visual memories. The study yielded 4 main findings. First, the right hippocampus displayed greater communication efficiency with the network (shorter path length) and became a more convergent structure for information integration (higher centrality measures) for vivid than dim memories. Second, vivid minus dim differences in our graph theory measures of interest were greater in magnitude for the right hippocampus than for any other region in the 90-region network. Moreover, the right hippocampus significantly reorganized its set of direct connections from dim to vivid memory retrieval. Finally, beyond the hippocampus, communication throughout the whole-brain network was more efficient (shorter global path length) for vivid than dim memories. In sum, our findings illustrate how multivariate network analyses can be used to investigate the roles of specific regions within the large-scale network, while also accounting for global network changes.
Collapse
Affiliation(s)
- Benjamin R Geib
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Matthew L Stanley
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Erik A Wing
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Paul J Laurienti
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Roberto Cabeza
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
9
|
Igata R, Katsuki A, Kakeda S, Watanabe K, Igata N, Hori H, Konishi Y, Atake K, Kawasaki Y, Korogi Y, Yoshimura R. PCLO rs2522833-mediated gray matter volume reduction in patients with drug-naive, first-episode major depressive disorder. Transl Psychiatry 2017; 7:e1140. [PMID: 28556829 PMCID: PMC5534936 DOI: 10.1038/tp.2017.100] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/27/2017] [Accepted: 03/16/2017] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder (MDD) has been linked to differences in the volume of certain areas of the brain and to variants in the piccolo presynaptic cytomatrix protein (PCLO), but the relationship between PCLO and brain morphology has not been studied. A single-nucleotide polymorphism (SNP) in PCLO, rs2522833, is thought to affect protein stability and the activity of the hypothalamic-pituitary-adrenal axis. We investigated the relationship between cortical volume and this SNP in first-episode, drug-naive patients with MDD or healthy control subjects. Seventy-eight participants, including 30 patients with MDD and 48 healthy control subjects, were recruited via interview. PCLO rs2522833 genotyping and plasma cortisol assays were performed, and gray matter volume was estimated using structural magnetic resonance images. Among the individuals carrying the C-allele of PCLO rs2522833, the volume of the left temporal pole was significantly smaller in those with MDD than in healthy controls (family-wise error-corrected, P=0.003). No differences were detected in other brain regions. In addition, the C-carriers showed a larger volume reduction in the left temporal pole than those in the individuals with A/A genotype (P=0.0099). Plasma cortisol levels were significantly higher in MDD-affected C-carriers than in the healthy control C-carriers (12.76±6.10 vs 9.31±3.60 nm, P=0.045). We conclude that PCLO SNP rs2522833 is associated with a gray matter volume reduction in the left temporal pole in drug-naive, first-episode patients with MDD carrying the C-allele.
Collapse
Affiliation(s)
- R Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - A Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - S Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - K Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - N Igata
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - H Hori
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Y Konishi
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - K Atake
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Y Kawasaki
- Department of Environmental Oncology, Institute of Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Y Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - R Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan,Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 8078555, Fukuoka, Japan. E-mail:
| |
Collapse
|
10
|
Roberts RP, Hach S, Tippett LJ, Addis DR. The Simpson's paradox and fMRI: Similarities and differences between functional connectivity measures derived from within-subject and across-subject correlations. Neuroimage 2016; 135:1-15. [DOI: 10.1016/j.neuroimage.2016.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022] Open
|
11
|
Collins JA, Koski JE, Olson IR. More Than Meets the Eye: The Merging of Perceptual and Conceptual Knowledge in the Anterior Temporal Face Area. Front Hum Neurosci 2016; 10:189. [PMID: 27199711 PMCID: PMC4852584 DOI: 10.3389/fnhum.2016.00189] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 11/13/2022] Open
Abstract
An emerging body of research has supported the existence of a small face sensitive region in the ventral anterior temporal lobe (ATL), referred to here as the "anterior temporal face area". The contribution of this region in the greater face-processing network remains poorly understood. The goal of the present study was to test the relative sensitivity of this region to perceptual as well as conceptual information about people and objects. We contrasted the sensitivity of this region to that of two highly-studied face-sensitive regions, the fusiform face area (FFA) and the occipital face area (OFA), as well as a control region in early visual cortex (EVC). Our findings revealed that multivoxel activity patterns in the anterior temporal face area contain information about facial identity, as well as conceptual attributes such as one's occupation. The sensitivity of this region to the conceptual attributes of people was greater than that of posterior face processing regions. In addition, the anterior temporal face area overlaps with voxels that contain information about the conceptual attributes of concrete objects, supporting a generalized role of the ventral ATLs in the identification and conceptual processing of multiple stimulus classes.
Collapse
Affiliation(s)
- Jessica A Collins
- Frontotemporal Dementia Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School Charlestown, MA, USA
| | - Jessica E Koski
- Department of Psychology, University of Texas Austin Austin, TX, USA
| | - Ingrid R Olson
- Department of Psychology, Temple University Philadelphia, PA, USA
| |
Collapse
|
12
|
Sheldon S, Levine B. The role of the hippocampus in memory and mental construction. Ann N Y Acad Sci 2016; 1369:76-92. [DOI: 10.1111/nyas.13006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Signy Sheldon
- Department of Psychology; McGill University; Montreal Quebec Canada
| | - Brian Levine
- Rotman Research Institute; Baycrest Centre for Geriatric Care; Toronto Ontario Canada
- Department of Psychology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
13
|
Demblon J, Bahri MA, D'Argembeau A. Neural correlates of event clusters in past and future thoughts: How the brain integrates specific episodes with autobiographical knowledge. Neuroimage 2015; 127:257-266. [PMID: 26658926 DOI: 10.1016/j.neuroimage.2015.11.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022] Open
Abstract
When remembering the past or envisioning the future, events often come to mind in organized sequences or stories rather than in isolation from one another. The aim of the present fMRI study was to investigate the neural correlates of such event clusters. Participants were asked to consider pairs of specific past or future events: in one condition, the two events were part of the same event cluster (i.e., they were thematically and/or causally related to each other), whereas in another condition the two events only shared a surface feature (i.e., their location); a third condition was also included, in which the two events were unrelated to each other. The results showed that the processing of past and future events that were part of a same cluster was associated with higher activation in the medial prefrontal cortex (PFC), rostrolateral PFC, and left lateral temporal and parietal regions, compared to the two other conditions. Furthermore, functional connectivity analyses revealed an increased coupling between these cortical regions. These findings suggest that largely similar processes are involved in organizing events in clusters for the past and the future. The medial and rostrolateral PFC might play a pivotal role in mediating the integration of specific events with conceptual autobiographical knowledge 'stored' in more posterior regions. Through this integrative process, this set of brain regions might contribute to the attribution of an overarching meaning to representations of specific past and future events, by contextualizing them with respect to personal goals and general knowledge about one's life story.
Collapse
Affiliation(s)
- Julie Demblon
- Department of Psychology, University of Liège, Belgium.
| | | | - Arnaud D'Argembeau
- Department of Psychology, University of Liège, Belgium; Cyclotron Research Center, University of Liège, Belgium
| |
Collapse
|
14
|
Bilalić M, Langner R, Campitelli G, Turella L, Grodd W. Editorial: Neural implementation of expertise. Front Hum Neurosci 2015; 9:545. [PMID: 26483662 PMCID: PMC4588099 DOI: 10.3389/fnhum.2015.00545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Merim Bilalić
- Department of Cognitive Psychology, Alps Adria University Klagenfurt Klagenfurt, Austria
| | - Robert Langner
- Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf Düsseldorf, Germany
| | - Guillermo Campitelli
- School of Psychology and Social Science, Edith Cowan University Perth, WA, Australia
| | - Luca Turella
- Center for Mind/Brain Sciences, University of Trento Trento, Italy
| | - Wolfgang Grodd
- Department of Magnetic Resonance, Max Planck Institute for Biological Cybernetics Tuebingen, Germany
| |
Collapse
|
15
|
Ramon M, Vizioli L, Liu-Shuang J, Rossion B. Neural microgenesis of personally familiar face recognition. Proc Natl Acad Sci U S A 2015; 112:E4835-44. [PMID: 26283361 PMCID: PMC4568242 DOI: 10.1073/pnas.1414929112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network.
Collapse
Affiliation(s)
- Meike Ramon
- Psychological Science Research Institute, Institute of Neuroscience, University of Louvain, 1348 Louvain-La-Neuve, Belgium; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, G12 8QB, Glasgow, United Kingdom
| | - Luca Vizioli
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, G12 8QB, Glasgow, United Kingdom
| | - Joan Liu-Shuang
- Psychological Science Research Institute, Institute of Neuroscience, University of Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Bruno Rossion
- Psychological Science Research Institute, Institute of Neuroscience, University of Louvain, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
16
|
O'Neil EB, Watson HC, Dhillon S, Lobaugh NJ, Lee ACH. Multivariate fMRI and Eye Tracking Reveal Differential Effects of Visual Interference on Recognition Memory Judgments for Objects and Scenes. J Cogn Neurosci 2015; 27:1708-22. [DOI: 10.1162/jocn_a_00816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.
Collapse
Affiliation(s)
| | | | | | - Nancy J. Lobaugh
- 1University of Toronto, Ontario, Canada
- 2Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Andy C. H. Lee
- 1University of Toronto, Ontario, Canada
- 3Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
| |
Collapse
|