1
|
Aloi MS, Poblete GF, Oldham J, Patriquin MA, Nielsen DA, Kosten TR, Salas R. miR-124-3p target genes identify globus pallidus role in suicide ideation recovery in borderline personality disorder. NPJ MENTAL HEALTH RESEARCH 2023; 2:8. [PMID: 37712050 PMCID: PMC10500603 DOI: 10.1038/s44184-023-00027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/11/2023] [Indexed: 09/16/2023]
Abstract
Borderline personality disorder (BPD) is characterized by patterns of unstable affect, unstable interpersonal relationships, and chronic suicidal tendencies. Research on the genetics, epigenetics, and brain function of BPD is lacking. MicroRNA-124-3p (miR-124-3p) was recently identified in a Genome-Wide Association Study as likely associated with BPD. Here, we identified the anatomical brain expression of genes likely modulated by miR-124-3p and compared morphometry in those brain regions in BPD inpatients vs. controls matched for psychiatric comorbidities. We isolated lists of targets likely modulated by miR-124-3p from TargetScan (v 8.0) by their preferentially conserved targeting (Aggregate PCT > 0.99, see Supplementary Table 1). We applied Process Genes List (PGL) to identify regions of interest associated with the co-expression of miR-124-3p target genes. We compared the gray matter volume of the top region of interest co-expressing those genes between BPD inpatients (n = 111, 46% female) and psychiatric controls (n = 111, 54% female) at The Menninger Clinic in Houston, Texas. We then correlated personality measures, suicidal ideation intensity, and recovery from suicidal ideation with volumetrics. Gene targets of miR-124-3p were significantly co-expressed in the left Globus Pallidus (GP), which was smaller in BPD than in psychiatric controls. Smaller GP volume was negatively correlated with agreeableness and with recovery from suicidal ideation post-treatment. In BPD, GP volume may be reduced through miR-124-3p regulation and suppression of its target genes. Importantly, we identified that a reduction of the GP in BPD could serve as a potential biomarker for recovery from suicidal ideation.
Collapse
Affiliation(s)
- Macarena S. Aloi
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- These authors contributed equally: Macarena S. Aloi, Guillermo F. Poblete
| | - Guillermo F. Poblete
- The Menninger Clinic, Baylor College of Medicine, Houston, TX, USA
- These authors contributed equally: Macarena S. Aloi, Guillermo F. Poblete
| | - John Oldham
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Baylor College of Medicine, Houston, TX, USA
| | - Michelle A. Patriquin
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - David A. Nielsen
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Thomas R. Kosten
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
2
|
Zhu T, Wang Z, Zhou C, Fang X, Huang C, Xie C, Ge H, Yan Z, Zhang X, Chen J. Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent negative symptoms using activation likelihood estimation. Front Psychiatry 2022; 13:957685. [PMID: 36238945 PMCID: PMC9552970 DOI: 10.3389/fpsyt.2022.957685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Persistent negative symptoms (PNS) include both primary and secondary negative symptoms that persist after adequate treatment, and represent an unmet therapeutic need. Published magnetic resonance imaging (MRI) evidence of structural and resting-state functional brain abnormalities in schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-analysis is to identify abnormalities in structural and functional brain regions in patients with PNS compared to healthy controls. METHODS We systematically searched PubMed, Web of Science, and Embase for structural and functional imaging studies based on five research methods, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional connectivity (FC), the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-analysis by using the activation likelihood estimation algorithm. RESULTS Twenty-five structural MRI studies and thirty-two functional MRI studies were included in the meta-analyses. Our analysis revealed the presence of structural alterations in patients with PNS in some brain regions including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus, left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate gyrus and middle temporal gyrus, as well as functional differences in some brain regions including the bilateral precuneus, thalamus, left lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and superior frontal gyrus. CONCLUSION Our study suggests that structural brain abnormalities are consistently located in the prefrontal, temporal, limbic and subcortical regions, and functional alterations are concentrated in the thalamo-cortical circuits and the default mode network (DMN). This study provides new insights for targeted treatment and intervention to delay further progression of negative symptoms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022338669].
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Third People's Hospital of Huai'an, Huaian, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
4
|
Wassenaar TM, Yaffe K, van der Werf YD, Sexton CE. Associations between modifiable risk factors and white matter of the aging brain: insights from diffusion tensor imaging studies. Neurobiol Aging 2019; 80:56-70. [PMID: 31103633 PMCID: PMC6683729 DOI: 10.1016/j.neurobiolaging.2019.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Abstract
There is increasing interest in factors that may modulate white matter (WM) breakdown and, consequentially, age-related cognitive and behavioral deficits. Recent diffusion tensor imaging studies have examined the relationship of such factors with WM microstructure. This review summarizes the evidence regarding the relationship between WM microstructure and recognized modifiable factors, including hearing loss, hypertension, diabetes, obesity, smoking, depressive symptoms, physical (in) activity, and social isolation, as well as sleep disturbances, diet, cognitive training, and meditation. Current cross-sectional evidence suggests a clear link between loss of WM integrity (lower fractional anisotropy and higher mean diffusivity) and hypertension, obesity, diabetes, and smoking; a relationship that seems to hold for hearing loss, social isolation, depressive symptoms, and sleep disturbances. Physical activity, cognitive training, diet, and meditation, on the other hand, may protect WM with aging. Preliminary evidence from cross-sectional studies of treated risk factors suggests that modification of factors could slow down negative effects on WM microstructure. Careful intervention studies are needed for this literature to contribute to public health initiatives going forward.
Collapse
Affiliation(s)
- Thomas M Wassenaar
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, John Radcliffe Hospital, UK
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, VU University Medical Center, MC, Amsterdam, the Netherlands
| | - Claire E Sexton
- Department of Neurology, Global Brain Health Institute, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Department of Psychiatry, Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, University of Oxford, John Radcliffe Hospital, UK.
| |
Collapse
|
5
|
Chaarani B, Kan KJ, Mackey S, Spechler PA, Potter A, Orr C, D'Alberto N, Hudson KE, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Cattrell A, Conrod PJ, Desrivières S, Flor H, Frouin V, Gallinat J, Gowland P, Heinz A, Ittermann B, Martinot JL, Nees F, Papadopoulos-Orfanos D, Paus T, Poustka L, Smolka MN, Walter H, Whelan R, Higgins ST, Schumann G, Althoff RR, Stein EA, Garavan H. Low Smoking Exposure, the Adolescent Brain, and the Modulating Role of CHRNA5 Polymorphisms. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:672-679. [PMID: 31072760 DOI: 10.1016/j.bpsc.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Studying the neural consequences of tobacco smoking during adolescence, including those associated with early light use, may help expose the mechanisms that underlie the transition from initial use to nicotine dependence in adulthood. However, only a few studies in adolescents exist, and they include small samples. In addition, the neural mechanism, if one exists, that links nicotinic receptor genes to smoking behavior in adolescents is still unknown. METHODS Structural and diffusion tensor magnetic resonance imaging data were acquired from a large sample of 14-year-old adolescents who completed an extensive battery of neuropsychological, clinical, personality, and drug-use assessments. Additional assessments were conducted at 16 years of age. RESULTS Exposure to smoking in adolescents, even at low doses, is linked to volume changes in the ventromedial prefrontal cortex and to altered neuronal connectivity in the corpus callosum. The longitudinal analyses strongly suggest that these effects are not preexisting conditions in those who progress to smoking. There was a genetic contribution wherein the volume reduction effects were magnified in smokers who were carriers of the high-risk genotype of the alpha 5 nicotinic receptor subunit gene, rs16969968. CONCLUSIONS These findings give insight into a mechanism involving genes, brain structure, and connectivity underlying why some adolescents find nicotine especially addictive.
Collapse
Affiliation(s)
- Bader Chaarani
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont.
| | - Kees-Jan Kan
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Scott Mackey
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Philip A Spechler
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Alexandra Potter
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Catherine Orr
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Nicholas D'Alberto
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Kelsey E Hudson
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Anna Cattrell
- Medical Research Council-Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Patricia J Conrod
- Department of Psychological Medicine and Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Quebec
| | - Sylvane Desrivières
- Medical Research Council-Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique, CEA-Saclay Center, Paris, France
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Hamburg, Germany
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging and Psychiatry," University Paris Sud, University Paris Descartes-Sorbonne Paris Cité and Maison de Solenn, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | | | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Whelan
- Department of Psychology, University College Dublin, Dublin, Ireland
| | - Stephen T Higgins
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Gunter Schumann
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Quebec
| | - Robert R Althoff
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont
| | - Elliot A Stein
- The National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Hugh Garavan
- Vermont Center on Behavior and Health, Departments of Psychiatry and Psychology, University of Vermont, Burlington, Vermont.
| | -
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Quebec
| |
Collapse
|
6
|
McCarthy JM, Dumais KM, Zegel M, Pizzagalli DA, Olson DP, Moran LV, Janes AC. Sex differences in tobacco smokers: Executive control network and frontostriatal connectivity. Drug Alcohol Depend 2019; 195:59-65. [PMID: 30592997 PMCID: PMC6625360 DOI: 10.1016/j.drugalcdep.2018.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Women experience greater difficulty quitting smoking than men, which may be explained by sex differences in brain circuitry underlying cognitive control. Prior work has linked reduced interhemispheric executive control network (ECN) coupling with poor executive function, shorter time to relapse, and greater substance use. Lower structural connectivity between a key ECN hub, the dorsolateral prefrontal cortex (DLPFC), and the dorsal striatum (DS) also contributes to less efficient cognitive control recruitment, and reduced intrahemispheric connectivity between these regions has been associated with smoking relapse. Therefore, sex differences were probed by evaluating interhemispheric ECN and intrahemispheric DLPFC-DS connectivity. To assess the potential sex by nicotine interaction, a pilot sample of non-smokers was evaluated following acute nicotine and placebo administration. METHODS Thirty-five smokers (19 women) completed one resting state functional magnetic resonance imaging scan. Seventeen non-smokers (8 women) were scanned twice using a repeated measures design where they received 2 and 0 mg nicotine. RESULTS In smokers, women had less interhemispheric ECN and DLPFC-DS coupling than men. In non-smokers, there was a drug x sex interaction where women, relative to men, had weaker ECN coupling following nicotine but not placebo administration. CONCLUSIONS The current work indicates that nicotine-dependent women, versus men, have weaker connectivity in brain networks critically implicated in cognitive control. How these connectivity differences contribute to the behavioral aspects of smoking requires more testing. However, building on the literature, it is likely these deficits in functional connectivity contribute to the lower abstinence rates noted in women relative to men.
Collapse
Affiliation(s)
- Julie M McCarthy
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA.
| | - Kelly M Dumais
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Maya Zegel
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA
| | - Diego A Pizzagalli
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - David P Olson
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Lauren V Moran
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| | - Amy C Janes
- McLean Imaging Center, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA
| |
Collapse
|
7
|
Nicotine in action: cigarette smoking modulated homotopic functional connectivity in schizophrenia. Brain Imaging Behav 2018; 13:1612-1623. [DOI: 10.1007/s11682-018-0001-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Wang S, Zhang R, Deng Y, Chen K, Xiao D, Peng P, Jiang T. Discrimination of smoking status by MRI based on deep learning method. Quant Imaging Med Surg 2018; 8:1113-1120. [PMID: 30701165 DOI: 10.21037/qims.2018.12.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background This study aimed to assess the feasibility of deep learning-based magnetic resonance imaging (MRI) in the prediction of smoking status. Methods The head MRI 3D-T1WI images of 127 subjects (61 smokers and 66 non-smokers) were collected, and 176 image slices obtained for each subject. These subjects were 23-45 years old, and the smokers had at least 5 years of smoking experience. Approximate 25% of the subjects were randomly selected as the test set (15 smokers and 16 non-smokers), and the remaining subjects as the training set. Two deep learning models were developed: deep 3D convolutional neural network (Conv3D) and convolution neural network plus a recurrent neural network (RNN) with long short-term memory architecture (ConvLSTM). Results In the prediction of smoking status, Conv3D model achieved an accuracy of 80.6% (25/31), a sensitivity of 80.0% and a specificity of 81.3%, and ConvLSTM model achieved an accuracy of 93.5% (29/31), a sensitivity of 93.33% and a specificity of 93.75%. The accuracy obtained by these methods was significantly higher than that (<70%) obtained with support vector machine (SVM) methods. Conclusions The deep learning-based MRI can accurately predict smoking status. Studies with large sample size are needed to improve the accuracy and to predict the level of nicotine dependence.
Collapse
Affiliation(s)
- Shuangkun Wang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10020, China
| | | | | | | | - Dan Xiao
- Tobacco Medicine and Tobacco Cessation Center, China-Japan Friendship Hospital, Beijing 100029, China.,WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, China-Japan Friendship Hospital, Beijing 100029, China
| | - Peng Peng
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10020, China
| | - Tao Jiang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10020, China
| |
Collapse
|
9
|
Liang H, Chang L, Chen R, Oishi K, Ernst T. Independent and Combined Effects of Chronic HIV-Infection and Tobacco Smoking on Brain Microstructure. J Neuroimmune Pharmacol 2018; 13:509-522. [PMID: 30225549 PMCID: PMC6247419 DOI: 10.1007/s11481-018-9810-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
HIV-infected individuals (HIV+) have 2-3 times higher prevalence of tobacco smoking than the general U.S. population. This study aims to evaluate the independent and combined effects of tobacco-smoking and HIV-infection on brain microstructure and cognition using a 2 × 2 design. 21 HIV + Smokers, 25 HIV + Nonsmokers, 25 Seronegative (SN)-Smokers and 23 SN-Nonsmokers were evaluated using diffusion tensor imaging. Fractional anisotropy (FA), mean (MD), radial (RD) and axial (AD) diffusivity were assessed in 8 major cerebral fiber tracts and 5 subcortical regions. Cognitive performance in 7 neurocognitive domains was also assessed. Compared to SN, HIV+ had higher AD in genu of corpus callosum (GCC, p = 0.002). Smokers also had higher diffusivities in GCC, splenium of corpus callosum (SCC), anterior corona radiata (ACR), sagittal stratum (SS) and superior fronto-occipital fasciculus (SFO), than Nonsmokers (p-values<0.001-0.003). Tobacco-Smoking and HIV-infection showed synergistic effects on AD_SS (p = 0.002) and RD_SFO (p = 0.02), but opposite effects in FA_putamen (p = 0.024). Additive effects from HIV+ and Tobacco-Smoking were observed in 9 other white matter tracts, with highest diffusivities and lowest FA in HIV + Smokers. Higher diffusivities in the GCC, SCC, ACR and SS predicted poorer cognitive performance across all participants (p ≤ 0.001). Higher AD_GCC also predicted slower Speed of information processing and poorer Fluency and Attention only in HIV + Smokers (p = 0.001-0.003). Chronic tobacco smoking and HIV-infection appear to have additive and synergistic adverse effects on brain diffusivities, suggesting greater neuroinflammation, which may contribute to poorer cognition. Therefore, chronic tobacco-smoking may be a risk factor for HIV-associated neurocognitive disorders. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Huajun Liang
- Department of Radiology, University of Maryland Baltimore School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA
| | - Linda Chang
- Department of Radiology, University of Maryland Baltimore School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rong Chen
- Department of Radiology, University of Maryland Baltimore School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Ernst
- Department of Radiology, University of Maryland Baltimore School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Kawagoe T, Onoda K, Yamaguchi S. Different pre-scanning instructions induce distinct psychological and resting brain states during functional magnetic resonance imaging. Eur J Neurosci 2017; 47:77-82. [PMID: 29205574 DOI: 10.1111/ejn.13787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/16/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate functional brain network connectivity during rest or when the subject is not performing an explicit task. In the standard procedure, subjects are instructed to 'let your mind wander' or 'think of nothing'. While these instructions appear appropriate to induce a 'resting-state', they could induce distinct psychological and physiological states during the scan. In this study, we investigated whether different instructions affect mental state and functional connectivity (FC) (i.e. induce distinct 'resting states') during rs-fMRI scanning. Thirty healthy subjects were subjected to two rs-fMRI scans differing only in pre-scan instructions: think of nothing (TN) and mind-wandering (MW) conditions. Self-reports confirmed that subjects spent the majority of the scanning time in the appropriate mental state. Independent component analysis extracted 19 independent components (ICs) of interest and functional network connectivity analyses indicated several conditional differences in FCs among those ICs, especially characterised by stronger FC in the MW condition than in the TN condition, between default mode network and salience/visual/frontal network. Complementary correlation analysis indicated that some of the network FCs were significantly correlated with their self-reported data on how often they had the TN condition during the scans. The present results provide evidence that the pre-scan instruction has a significant influence on resting-state FC and its relationship with mental activities.
Collapse
Affiliation(s)
- Toshikazu Kawagoe
- Faculty of Medicine, Department of Neurology, Shimane University, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Keiichi Onoda
- Faculty of Medicine, Department of Neurology, Shimane University, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Shuhei Yamaguchi
- Faculty of Medicine, Department of Neurology, Shimane University, 89-1, Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
11
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
12
|
Zhang S, Hu S, Fucito LM, Luo X, Mazure CM, Zaborszky L, Li CSR. Resting-State Functional Connectivity of the Basal Nucleus of Meynert in Cigarette Smokers: Dependence Level and Gender Differences. Nicotine Tob Res 2017; 19:452-459. [PMID: 27613921 DOI: 10.1093/ntr/ntw209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/06/2016] [Indexed: 12/13/2022]
Abstract
Introduction Numerous studies have characterized impaired cerebral functioning in nicotine-addicted individuals. Whereas nicotine interacts with multiple neurotransmitters in cortical and subcortical circuits, it directly targets the cholinergic system, sourced primarily from the basal nucleus of Meynert (BNM). However, no studies have examined how this cholinergic system is influenced by cigarette smoking. Here, we addressed this gap of research. Methods Using a dataset from the Functional Connectome Projects, we investigated this issue by contrasting seed-based BNM connectivity of 40 current smokers and 170 age- and gender-matched nonsmokers. We followed our data analytic routines in recent work and examined differences between smokers and nonsmokers in men and women combined as well as separately. Results Compared to nonsmokers, female but not male smokers demonstrated greater positive BNM connectivity to the supplementary motor area, bilateral anterior insula, and right superior temporal/supramarginal gyri as well as greater negative connectivity to the posterior cingulate cortex and precuneus. Further, BNM connectivity to the supplementary motor area is negatively correlated to the Fagerström Test for Nicotine Dependence score in male but not female smokers. Conclusions Along with a previous report of upregulated nicotinic acetylcholine receptor in male but not female smokers, these new findings highlight functional changes of the cholinergic systems in cigarette smokers. The results suggest sex-specific differences in cholinergic dysregulation and a need for multiple imaging modalities to capture the neural markers of nicotine addiction. Implications Nicotine influences cognition via cholinergic projections of the basal forebrain to the cerebral cortex. This study examined changes in resting-state whole-brain functional connectivity of the BNM in cigarette smokers. The new findings elucidate for the first time sex differences in BNM-cerebral connectivity in cigarette smoking.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Lisa M Fucito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carolyn M Mazure
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- Women's Health Research, Yale University School of Medicine, New Haven, CT
| | | | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
| |
Collapse
|
13
|
Wang S, Zuo L, Jiang T, Peng P, Chu S, Xiao D. Abnormal white matter microstructure among early adulthood smokers: a tract-based spatial statistics study. Neurol Res 2017; 39:1094-1102. [PMID: 28934078 DOI: 10.1080/01616412.2017.1379277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives Cigarette smoking is an important risk factor of central nervous system diseases. However, the white matter (WM) integrity of early adulthood chronic smokers has not been attached enough importance to as it deserves, and the relationship between the chronic smoking effect and the WM is still unclear. The purpose of this study was to investigate whole - brain WM microstructure of early adulthood smokers and explore the structural correlates of behaviorally relevant features of the disorder. Methods We compared multiple DTI-derived indices, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), between early adulthood smokers (n = 19) and age-, education- and gender-matched controls (n = 23) using a whole-brain tract-based spatial statistics approach. We also explored the correlations of the mean DTI index values with pack-years and Fagerström Test for Nicotine Dependence. Results The smokers showed increased FA in left superior longitudinal fasciculus (SLF), left anterior corona radiate, left superior corona radiate, left posterior corona radiate, left external capsule (EC), left inferior fronto-occipital fasciculus and sagittal stratum (SS), and decreased RD in left SLF. There were significant negative correlations among the average FA in the left external capsule and pack-years in smokers. In addition, significant positive correlation was found between RD values in the left SLF and pack-years. Discussion These findings indicate that smokers show microstructural changes in several white-matter regions. The correlation between the cumulative effect and microstructural WM alternations suggests that WM properties may become the new biomarkers in practice.
Collapse
Affiliation(s)
- Shuangkun Wang
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Long Zuo
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Tao Jiang
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Peng Peng
- a Department of Radiology, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Shuilian Chu
- b Clinical Research Center, Beijing Chao-Yang Hospital , Capital Medical University , Beijing , China
| | - Dan Xiao
- c Tobacco Medicine and Tobacco Cessation Center , China-Japan Friendship Hospital , Beijing , China.,d WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention , China-Japan Friendship Hospital , Beijing , China
| |
Collapse
|
14
|
Huang P, Shen Z, Wang C, Qian W, Zhang H, Yang Y, Zhang M. Altered White Matter Integrity in Smokers Is Associated with Smoking Cessation Outcomes. Front Hum Neurosci 2017; 11:438. [PMID: 28912702 PMCID: PMC5582085 DOI: 10.3389/fnhum.2017.00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/16/2017] [Indexed: 01/03/2023] Open
Abstract
Smoking is a significant cause of preventable mortality worldwide. Understanding the neural mechanisms of nicotine addiction and smoking cessation may provide effective targets for developing treatment strategies. In the present study, we explored whether smokers have white matter alterations and whether these alterations are related to cessation outcomes and smoking behaviors. Sixty-six smokers and thirty-seven healthy non-smokers were enrolled. The participants underwent magnetic resonance imaging scans and smoking-related behavioral assessments. After a 12-week treatment with varenicline, 28 smokers succeeded in quitting smoking and 38 failed. Diffusion parameter maps were compared among the non-smokers, future quitters, and relapsers to identify white matter differences. We found that the future relapsers had significantly lower fractional anisotropy (FA) in the orbitofrontal area than non-smokers, and higher FA in the cerebellum than non-smokers and future quitters. The future quitters had significantly lower FA in the postcentral gyrus compared to non-smokers and future relapsers. Compared to non-smokers, pooled smokers had lower FA in bilateral orbitofrontal gyrus and left superior frontal gyrus. In addition, regression analysis showed that the left orbitofrontal FA was correlated with smoking-relevant behaviors. These results suggest that white matter alterations in smokers may contribute to the formation of aberrant brain circuits underlying smoking behaviors and are associated with future smoking cessation outcomes.
Collapse
Affiliation(s)
- Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Wei Qian
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| | - Huan Zhang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang UniversityHangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, BaltimoreMD, United States
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhou, China
| |
Collapse
|
15
|
Shen Z, Huang P, Wang C, Qian W, Yang Y, Zhang M. Increased network centrality as markers of relapse risk in nicotine-dependent individuals treated with varenicline. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:142-147. [PMID: 28185963 DOI: 10.1016/j.pnpbp.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/19/2016] [Accepted: 02/03/2017] [Indexed: 02/01/2023]
Abstract
Identifying smokers at high risk of relapse could improve the effectiveness of cessation therapies. Although altered regional brain function in smokers has been reported, whether the whole-brain functional organization differs smokers with relapse vulnerability from others remains unclear. Thus, the goal of this study is to investigate the baseline functional connectivity differences between relapsers and quitters. Using resting-state fMRI, we acquired images from 57 smokers prior to quitting attempts. After 12-week treatment with varenicline, smokers were divided into relapsers (n=36) and quitters (n=21) (quitter: continuously abstinent for weeks 9-12). The smoking cessation outcomes were cross-validated by self-reports and expired carbon monoxide. We then used eigenvector centrality (EC) mapping to identify the functional connectivity differences between relapsers and quitters. When compared to quitters, increased EC in the right dorsolateral prefrontal cortex (DLPFC), left middle temporal gyrus (MTG) and cerebellum anterior lobe was observed in relapsers. In addition, a logistic regression analysis of EC data (with DLPFC, MTG and cerebellum included) predicted relapse with 80.7% accuracy. These findings suggest that the DLPFC, MTG and cerebellum may be important substrates of smoking relapse vulnerability. The data also suggest that relapse-vulnerable smokers can be identified before quit attempts, which could enable personalized treatment and improve smoking cessation outcomes.
Collapse
Affiliation(s)
- Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Froeliger B, McConnell PA, Bell S, Sweitzer M, Kozink RV, Eichberg C, Hallyburton M, Kaiser N, Gray KM, McClernon FJ. Association Between Baseline Corticothalamic-Mediated Inhibitory Control and Smoking Relapse Vulnerability. JAMA Psychiatry 2017; 74:379-386. [PMID: 28249070 PMCID: PMC5562280 DOI: 10.1001/jamapsychiatry.2017.0017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE Tobacco use disorder is associated with dysregulated neurocognitive function in the right inferior frontal gyrus (IFG)-one node in a corticothalamic inhibitory control (IC) network. OBJECTIVE To examine associations between IC neural circuitry structure and function and lapse/relapse vulnerability in 2 independent studies of adult smokers. DESIGN, SETTING, AND PARTICIPANTS In study 1, treatment-seeking smokers (n = 81) completed an IC task during functional magnetic resonance imaging (fMRI) before making a quit attempt and then were followed up for 10 weeks after their quit date. In study 2, a separate group of smokers (n = 26) performed the same IC task during fMRI, followed by completing a laboratory-based smoking relapse analog task. Study 1 was performed at Duke University Medical Center between 2008 and 2012; study 2 was conducted at the Medical University of South Carolina between 2013 and 2016. MAIN OUTCOMES AND MEASURES Associations between corticothalamic-mediated IC, gray-matter volume, and smoking lapse/relapse. RESULTS Of the 81 study participants in study 1 (cessation study), 45 were women (56%), with mean (SD) age, 38.4 (10.2) years. In study 1, smoking relapse was associated with less gray-matter volume (F1,74 = 28.32; familywise error P threshold = 0.03), greater IC task-related blood oxygenation level-dependent (BOLD) response in the right IFG (F1,78 = 14.87) and thalamus (F1,78 = 14.97) (P < .05), and weaker corticothalamic task-based functional connectivity (tbFC) (F1,77 = 5.87; P = .02). Of the 26 participants in study 2 (laboratory study), 15 were women (58%), with mean (SD) age, 34.9 (10.3). Similar to study 1, in study 2, greater IC-BOLD response in the right IFG (t23 = -2.49; β = -0.47; P = .02), and weaker corticothalamic tbFC (t22 = 5.62; β = 0.79; P < .001) were associated with smoking sooner during the smoking relapse-analog task. In both studies, corticothalamic tbFC mediated the association between IC performance and smoking outcomes. CONCLUSIONS AND RELEVANCE In these 2 studies, baseline differences in corticothalamic circuitry function were associated with mediated IC and smoking relapse vulnerability. These findings warrant further examination of interventions for augmenting corticothalamic neurotransmission and enhancing IC during the course of tobacco use disorder treatment.
Collapse
Affiliation(s)
- Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston2Department of Psychiatry, Medical University of South Carolina, Charleston3Hollings Cancer Center, Medical University of South Carolina, Charleston4Center for Biomedical Imaging, Medical University of South Carolina, Charleston
| | | | - Spencer Bell
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | - Maggie Sweitzer
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Rachel V. Kozink
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Christie Eichberg
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | - Matt Hallyburton
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Nicole Kaiser
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Kevin M. Gray
- Department of Psychiatry, Medical University of South Carolina, Charleston
| | - F. Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina6Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
17
|
Wang PW, Lin HC, Liu GC, Yang YHC, Ko CH, Yen CF. Abnormal interhemispheric resting state functional connectivity of the insula in heroin users under methadone maintenance treatment. Psychiatry Res Neuroimaging 2016; 255:9-14. [PMID: 27497215 DOI: 10.1016/j.pscychresns.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022]
Abstract
Abnormal interhemispheric functional connectivity is attracting more and more attention in the field of substance use. This study aimed to examine 1) the differences in interhemispheric functional connections of the insula with the contralateral insula and other brain regions between heroin users under methadone maintenance treatment (MMT) and healthy controls, and 2) the association between heroin users' interhemispheric insular functional connectivity using resting functional magnetic resonance imaging (fMRI) and the results of urine heroin analysis. Sixty male right-handed persons, including 30 with heroin dependence under MMT and 30 healthy controls, were recruited to this study. Resting fMRI experiments and urine heroin analysis were performed. Compared with the controls, the heroin users had a significantly lower interhemispheric insular functional connectivity. They also exhibited lower functional connectivity between insula and contralateral inferior orbital frontal lobe. After controlling for age, educational level and methadone dosage, less deviation of the interhemispheric insula functional connectivity was significantly associated with a lower risk of a positive urine heroin analysis result. Our findings demonstrated that the heroin users under MMT had abnormal long-range and interhemispheric resting functional connections. Those with a less dysfunctional interhemispheric insula functional connectivity had a lower risk of a positive urine heroin test.
Collapse
Affiliation(s)
- Peng-Wei Wang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Chi Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gin-Chung Liu
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Chih-Hung Ko
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Fang Yen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Diffusion Tensor MR Imaging Evaluation of Callosal Abnormalities in Schizophrenia: A Meta-Analysis. PLoS One 2016; 11:e0161406. [PMID: 27536773 PMCID: PMC4990171 DOI: 10.1371/journal.pone.0161406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022] Open
Abstract
Widespread white matter (WM) abnormalities have been found in patients with schizophrenia. Corpus callosum (CC) is the key area that connects the left and right brain hemispheres. However, the results of studies considering different subregions of the CC as regions of interest in patients with schizophrenia have been inconsistent. To obtain a more consistent evaluation of the diffusion characteristics change of the corpus callosum (CC) related to schizophrenia. A meta-analysis involving fractional anisotropy (FA) values in the CC of 729 schizophrenic subjects and 682 healthy controls from 22 studies was conducted. Overall FA values in the CC of the schizophrenic group were less than that of the healthy control group [weighted mean difference (WMD) = -0.021,P< 0.001]. So were the FA values in the genus region (WMD = -0.019, P< 0.001) and the splenium region (WMD = -0.020, P< 0.001) of the CC respectively. The FA reduction was also significant in subjects with chronic schizophrenia (WMD = -0.032, P< 0.001) and first-episode schizophrenia (WMD = -0.014, P = 0.001). In present study, we demonstrated an overall FA decrease in the CC of schizophrenic patients. In the two subgroup analyses of the genu vs splenium region and chronic vs first-episode schizophrenia, the decrease of all groups was significant. Further studies with more homogenous populations and standardized DTI protocols are needed to confirm and extend these findings.
Collapse
|
19
|
Hyper-resting brain entropy within chronic smokers and its moderation by Sex. Sci Rep 2016; 6:29435. [PMID: 27377552 PMCID: PMC4932513 DOI: 10.1038/srep29435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/17/2016] [Indexed: 01/29/2023] Open
Abstract
Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers’ brains, however less is known about the temporal dynamics within smokers’ brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking.
Collapse
|
20
|
Torta DM, Costa T, Luda E, Barisone MG, Palmisano P, Duca S, Geminiani G, Cauda F. Nucleus accumbens functional connectivity discriminates medication-overuse headache. NEUROIMAGE-CLINICAL 2016; 11:686-693. [PMID: 27330969 PMCID: PMC4900511 DOI: 10.1016/j.nicl.2016.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 03/06/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023]
Abstract
Medication-overuse headache (MOH) is a secondary form of headache related to the overuse of triptans, analgesics and other acute headache medications. It is believed that MOH and substance addiction share some similar pathophysiological mechanisms. In this study we examined the whole brain resting state functional connectivity of the dorsal and ventral striatum in 30 patients (15 MOH and 15 non-MOH patients) to investigate if classification algorithms can successfully discriminate between MOH and non-MOH patients on the basis of the spatial pattern of resting state functional connectivity of the dorsal and ventral striatal region of interest. Our results indicated that both nucleus accumbens and dorsal rostral putamen functional connectivity could discriminate between MOH and non-MOH patients, thereby providing possible support to two interpretations. First, that MOH patients show altered reward functionality in line with drug abusers (alterations in functional connectivity of the nucleus accumbens). Second, that MOH patients show inability to break habitual behavior (alterations in functional connectivity of the dorsal striatum). In conclusion, our data showed that MOH patients were characterized by an altered functional connectivity of motivational circuits at rest. These differences could permit the blind discrimination between the two conditions using classification algorithms. Considered overall, our findings might contribute to the development of novel diagnostic measures. Nucleus accumbens functional connectivity could discriminate between MOH and non-MOH patients. Dorsal rostral putamen functional connectivity could also discriminate between MOH and non-MOH patients. Our data provide insights on possible pathophysiological mechanisms of medication abuse.
Collapse
Affiliation(s)
- D M Torta
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy; Institute of Neuroscience, IoNS, Université catholique de Louvain, Brussels, Belgium.
| | - T Costa
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy
| | - E Luda
- Division of Neurology, Rivoli Hospital, Turin, Italy
| | - M G Barisone
- Division of Neurology, Rivoli Hospital, Turin, Italy; Neuropsychology Unit, Division of Neurology, Rivoli Hospital, Turin, Italy
| | - P Palmisano
- Division of Neurology, Rivoli Hospital, Turin, Italy; Neuropsychology Unit, Division of Neurology, Rivoli Hospital, Turin, Italy
| | - S Duca
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy
| | - G Geminiani
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy
| | - F Cauda
- GCS fMRI, Koelliker Hospital and University of Turin, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Gogliettino AR, Potenza MN, Yip SW. White matter development and tobacco smoking in young adults: A systematic review with recommendations for future research. Drug Alcohol Depend 2016; 162:26-33. [PMID: 26948756 PMCID: PMC4833590 DOI: 10.1016/j.drugalcdep.2016.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Adolescence and young adulthood are critical vulnerability periods for initiation of tobacco smoking. White matter development is ongoing during this time and may be influenced by exposure to nicotine. Synthesis of findings from diffusion tensor imaging (DTI) studies of adolescent and young adult smokers may be helpful in understanding the relationship between neurodevelopment and initiation and progression of tobacco-use behaviors and in guiding further research. METHODS A systematic literature review was conducted to identify DTI studies comparing adolescent and young adult (mean age <30 years) smokers versus nonsmokers. A total of 5 studies meeting inclusion criteria were identified. Primary study findings are reviewed and discussed within the context of neurodevelopment and in relation to findings from adult studies. Directions for further research are also discussed. RESULTS All identified studies reported increases in fractional anisotropy (FA) among adolescent/young adult smokers in comparison to non-smokers. Increased FA was most frequently reported in regions of the corpus callosum (genu, body and spenium), internal capsule and superior longitudinal fasciculus. CONCLUSIONS Findings of increased FA among adolescent/young adult smokers are contrary to those from most adult studies and thus raise the possibility of differential effects of nicotine on white matter across the lifespan. Further research including multiple time points is needed to test this hypothesis. Other areas warranting further research include DTI studies of e-cigarette use and studies incorporating measures of pubertal stage.
Collapse
Affiliation(s)
| | - Marc N. Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States, CASAColumbia, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States, Connecticut Mental Health Center, New Haven, CT, United States, Department of Neurobiology, Yale University School of Medicine, New Haven, CT, United States, Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States, CASAColumbia, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States, Corresponding author at: 1 Church Street, 7th Floor, Room 730, New Haven, CT 06510-3330, United States. Fax: +1 203 737 3591. (S.W. Yip)
| |
Collapse
|
22
|
Neuroplasticity and MRI: A perfect match. Neuroimage 2016; 131:13-28. [DOI: 10.1016/j.neuroimage.2015.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
|
23
|
Baeza-Loya S, Velasquez KM, Molfese DL, Viswanath H, Curtis KN, Thompson-Lake DGY, Baldwin PR, Ellmore TM, De La Garza R, Salas R. Anterior cingulum white matter is altered in tobacco smokers. Am J Addict 2016; 25:210-4. [PMID: 27001211 PMCID: PMC11684460 DOI: 10.1111/ajad.12362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/24/2016] [Accepted: 02/27/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The anterior cingulate cortex (ACC) is hypothesized to be involved in decision making and emotion regulation. Previous observations of drug dependent individuals indicate that substance dependence may be associated with cingulum white matter abnormalities. The present study evaluated cingulum white matter in cigarette smokers. METHODS Diffusion tensor imaging (DTI) in adult tobacco smokers and healthy non-smoker controls (total N = 70) was performed in a 3T Siemens Trio MRI scanner. RESULTS Analyses of DTI tractography of the cingulum in tobacco-smoking individuals and controls indicated that tobacco abusers have significantly reduced fractional anisotropy (FA) in the right cingulum. In addition, FA in the left cingulum white matter was negatively associated with the number of cigarettes smoked per day and the Fagerstrom test for nicotine dependence, a self-report measure of tobacco dependence severity. CONCLUSIONS The white matter of the cingulum is altered in a non-symmetrical way in tobacco smokers. An inverse relationship between FA and reported number of cigarettes per day was observed. Previous studies have also noted altered neural connectivity in cigarette smokers using similar methods. Similar white matter differences in the cingulum have been observed in methamphetamine dependent individuals and patients with dementia, which suggests that the cingulum may be altered by mechanisms not specific to tobacco exposure. SCIENTIFIC SIGNIFICANCE By better understanding the effects of tobacco abuse on the brain, we hope to gain insight into how drug dependence influences the neurological foundations of behavior.
Collapse
Affiliation(s)
- Selina Baeza-Loya
- Rice University, Houston, Texas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Kenia Marisela Velasquez
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
- Michael E DeBakey VA Medical Center, Houston, Texas
| | - David Lucas Molfese
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
- Michael E DeBakey VA Medical Center, Houston, Texas
| | - Humsini Viswanath
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Kaylah Nicole Curtis
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
- Michael E DeBakey VA Medical Center, Houston, Texas
| | | | - Philip Rupert Baldwin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Timothy Michael Ellmore
- Department of Psychology, The City College of the City University of New York, New York, New York
| | - Richard De La Garza
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
- Michael E DeBakey VA Medical Center, Houston, Texas
| |
Collapse
|
24
|
Gold MS, Badgaiyan RD, Blum K. A Shared Molecular and Genetic Basis for Food and Drug Addiction: Overcoming Hypodopaminergic Trait/State by Incorporating Dopamine Agonistic Therapy in Psychiatry. Psychiatr Clin North Am 2015; 38:419-62. [PMID: 26300032 DOI: 10.1016/j.psc.2015.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This article focuses on the shared molecular and neurogenetics of food and drug addiction tied to the understanding of reward deficiency syndrome. Reward deficiency syndrome describes a hypodopaminergic trait/state that provides a rationale for commonality in approaches for treating long-term reduced dopamine function across the reward brain regions. The identification of the role of DNA polymorphic associations with reward circuitry has resulted in new understanding of all addictive behaviors.
Collapse
Affiliation(s)
- Mark S Gold
- Departments of Psychiatry & Behavioral Sciences, Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90033, USA; Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Rivermend Health Scientific Advisory Board, 2300 Windy Ridge Parkway South East, Suite 210S, Atlanta, GA 30339, USA; Drug Enforcement Administration (DEA) Educational Foundation, Washington, DC, USA.
| | - Rajendra D Badgaiyan
- Laboratory of Advanced Radiochemistry and Molecular and Functioning Imaging, Department of Psychiatry, College of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kenneth Blum
- Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA; Department of Psychiatry, Center for Clinical & Translational Science, Community Mental Health Institute, University of Vermont College of Medicine, University of Vermont, Burlington, VT, USA; Division of Applied Clinical Research, Dominion Diagnostics, LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA; Rivermend Health Scientific Advisory Board, Atlanta, GA, USA
| |
Collapse
|
25
|
Fedota JR, Stein EA. Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Ann N Y Acad Sci 2015; 1349:64-82. [PMID: 26348486 PMCID: PMC4563817 DOI: 10.1111/nyas.12882] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given conceptual frameworks of addiction as a disease of intercommunicating brain networks, examinations of network interactions may provide a holistic characterization of addiction-related dysfunction. One such methodological approach is the examination of resting-state functional connectivity, which quantifies correlations in low-frequency fluctuations of the blood oxygen level-dependent magnetic resonance imaging signal between disparate brain regions in the absence of task performance. Here, evidence of differentiated effects of chronic nicotine exposure, which reduces the efficiency of network communication across the brain, and acute nicotine exposure, which increases connectivity within specific limbic circuits, is discussed. Several large-scale resting networks, including the salience, default, and executive control networks, have also been implicated in nicotine addiction. The dynamics of connectivity changes among and between these large-scale networks during nicotine withdrawal and satiety provide a heuristic framework with which to characterize the neurobiological mechanism of addiction. The ability to simultaneously quantify effects of both chronic (trait) and acute (state) nicotine exposure provides a platform to develop a neuroimaging-based addiction biomarker. While such development remains in its early stages, evidence of coherent modulations in resting-state functional connectivity at various stages of nicotine addiction suggests potential network interactions on which to focus future addiction biomarker development.
Collapse
Affiliation(s)
- John R Fedota
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
26
|
De Bondt T, Smeets D, Pullens P, Van Hecke W, Jacquemyn Y, Parizel PM. Stability of resting state networks in the female brain during hormonal changes and their relation to premenstrual symptoms. Brain Res 2015; 1624:275-285. [PMID: 26253822 DOI: 10.1016/j.brainres.2015.07.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
Resting-state fMRI is a promising imaging technique to evaluate functions in the human brain in health and disease. Different hormonal stages of the female menstrual cycle and hormonal contraceptives use affect results in task-based fMRI; it is however not yet clarified whether resting state networks are also altered. A population of 18 women with a natural cycle, and 19 women using hormonal contraceptives was examined in a longitudinal study-design. The natural cycle group was scanned at 3 time-points (follicular phase, ovulation, luteal phase), and the contraceptives group was scanned twice (inactive pill-phase, active pill-phase). Blood samples were acquired to evaluate hormonal concentrations, and premenstrual symptoms were assessed through daily record of severity of problems questionnaires. Results show no major alterations in the default mode network and the executive control network between different hormonal phases, across or within groups. A positive correlation of functional connectivity in the posterior part of the default mode network (DMN) was found with premenstrual-like symptoms in the hormonal contraceptives group. Using the current methodology, the studied resting state networks seem to show a decent stability throughout menstrual cycle phases. Also, no effect of hormonal contraceptive use is found. Interestingly, we show for the first time an association of DMN alterations with premenstrual-like symptoms, experienced during the inactive pill-phase by a sub-population of women.
Collapse
Affiliation(s)
- Timo De Bondt
- Department of Radiology, Antwerp University Hospital & University of Antwerp Belgium, Belgium.
| | | | - Pim Pullens
- Department of Radiology, Antwerp University Hospital & University of Antwerp Belgium, Belgium.
| | | | - Yves Jacquemyn
- Department of Obstetrics and Gynaecology, Antwerp University Hospital & University of Antwerp, Belgium.
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp Belgium, Belgium.
| |
Collapse
|