1
|
Nakashima A, Okamura R, Moriuchi T, Fujiwara K, Higashi T, Tomori K. Exploring Methodological Issues in Mental Practice for Upper-Extremity Function Following Stroke-Related Paralysis: A Scoping Review. Brain Sci 2024; 14:202. [PMID: 38539591 PMCID: PMC10968322 DOI: 10.3390/brainsci14030202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 01/31/2025] Open
Abstract
In this scoping review, we aimed to comprehensively clarify the methodology of Mental practice (MP) by systematically mapping studies documenting the application of MP to post-stroke paralytic upper-extremity function. Specifically, when is an MP intervention most commonly applied after stroke onset? What is the corresponding MP load (intervention time, number of intervention days, and intervention period)? What are the most common methods of Motor Imagery (MI) recall and MI tasks used during the application of MP? Is MP often used in conjunction with individual rehabilitation? What are the paralyzed side's upper-limb and cognitive function levels at the start of an MP intervention? The research questions were identified according to PRISMA-ScR. The PubMed, Scopus, Medline, and Cochrane Library databases were used to screen articles published until 19 July 2022. In total, 694 English-language articles were identified, of which 61 were finally included. Most of the studies were conducted in the chronic phase after stroke onset, with limited interventions in the acute or subacute phase. The most common intervention time was ≤30 min and intervention frequency was 5 times/week in MP. An audio guide was most commonly used to recall MI during MP, and 50 studies examined the effects of MP in combination with individual rehabilitation. The Fugl-Meyer Assessment mean for the 38 studies, determined using the Fugl-Meyer Assessment, was 30.3 ± 11.5. Additional research with the aim of unifying the widely varying MP methodologies identified herein is warranted.
Collapse
Affiliation(s)
- Akira Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - Ryohei Okamura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - Takefumi Moriuchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - Kengo Fujiwara
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - Toshio Higashi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8520, Japan
| | - Kounosuke Tomori
- Major of Occupational Therapy, Department of Rehabilitation, School of Health Science, Tokyo University of Technology, Tokyo 144-8535, Japan
| |
Collapse
|
2
|
Tanamachi K, Kuwahara W, Okawada M, Sasaki S, Kaneko F. Relationship between resting-state functional connectivity and change in motor function after motor imagery intervention in patients with stroke: a scoping review. J Neuroeng Rehabil 2023; 20:159. [PMID: 37980496 PMCID: PMC10657492 DOI: 10.1186/s12984-023-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND In clinical practice, motor imagery has been proposed as a treatment modality for stroke owing to its feasibility in patients with severe motor impairment. Motor imagery-based interventions can be categorized as open- or closed-loop. Closed-loop intervention is based on voluntary motor imagery and induced peripheral sensory afferent (e.g., Brain Computer Interface (BCI)-based interventions). Meanwhile, open-loop interventions include methods without voluntary motor imagery or sensory afferent. Resting-state functional connectivity (rs-FC) is defined as a significant temporal correlated signal among functionally related brain regions without any stimulus. rs-FC is a powerful tool for exploring the baseline characteristics of brain connectivity. Previous studies reported changes in rs-FC after motor imagery interventions. Systematic reviews also reported the effects of motor imagery-based interventions at the behavioral level. This study aimed to review and describe the relationship between the improvement in motor function and changes in rs-FC after motor imagery in patients with stroke. REVIEW PROCESS The literature review was based on Arksey and O'Malley's framework. PubMed, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, and Web of Science were searched up to September 30, 2023. The included studies covered the following topics: illusion without voluntary action, motor imagery, action imitation, and BCI-based interventions. The correlation between rs-FC and motor function before and after the intervention was analyzed. After screening by two independent researchers, 13 studies on BCI-based intervention, motor imagery intervention, and kinesthetic illusion induced by visual stimulation therapy were included. CONCLUSION All studies relating to motor imagery in this review reported improvement in motor function post-intervention. Furthermore, all those studies demonstrated a significant relationship between the change in motor function and rs-FC (e.g., sensorimotor network and parietal cortex).
Collapse
Affiliation(s)
- Kenya Tanamachi
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Wataru Kuwahara
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Megumi Okawada
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Shun Sasaki
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Fuminari Kaneko
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-Ku, Tokyo, Japan.
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Lin D, Gao J, Lu M, Han X, Tan Z, Zou Y, Cui F. Scalp acupuncture regulates functional connectivity of cerebral hemispheres in patients with hemiplegia after stroke. Front Neurol 2023; 14:1083066. [PMID: 37305743 PMCID: PMC10248137 DOI: 10.3389/fneur.2023.1083066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Background Stroke is a common cause of acquired disability on a global scale. Patients with motor dysfunction after a stroke have a reduced quality of life and suffer from an economic burden. Scalp acupuncture has been proven to be an effective treatment for motor recovery after a stroke. However, the neural mechanism of scalp acupuncture for motor function recovery remains to be researched. This study aimed to investigate functional connectivity (FC) changes in region of interest (ROI) and other brain regions to interpret the neural mechanism of scalp acupuncture. Methods Twenty-one patients were included and randomly divided into patient control (PCs) and scalp acupuncture (SAs) groups with left hemiplegia due to ischemic stroke, and we also selected 20 matched healthy controls (HCs). The PCs were treated with conventional Western medicine, while the SAs were treated with scalp acupuncture (acupuncture at the right anterior oblique line of vertex temporal). All subjects received whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) scan before treatment, and the patients received a second scan after 14 days of treatment. We use the National Institutes of Health Stroke Scale (NIHSS) scores and the analyses of resting-state functional connectivity (RSFC) as the observational indicators. Results The contralateral and ipsilateral cortex of hemiplegic patients with cerebral infarction were associated with an abnormal increase and decrease in basal internode function. An abnormal increase in functional connectivity mainly exists in the ipsilateral hemisphere between the cortex and basal ganglia and reduces the abnormal functional connectivity in the cortex and contralateral basal ganglia. Increased RSFC was observed in the bilateral BA6 area and bilateral basal ganglia and the connectivity between bilateral basal ganglia nuclei improved. However, the RSFC of the conventional treatment group only improved in the unilateral basal ganglia and contralateral BA6 area. The RSFC in the left middle frontal gyrus, superior temporal gyrus, precuneus, and other healthy brain regions were enhanced in SAs after treatment. Conclusion The changes in functional connectivity between the cerebral cortex and basal ganglia in patients with cerebral infarction showed a weakening of the bilateral hemispheres and the enhancement of the connections between the hemispheres. Scalp acupuncture has the function of bidirectional regulation, which makes the unbalanced abnormal brain function state restore balance.
Collapse
Affiliation(s)
- Dan Lin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyang Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxin Lu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Han
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangyuan Cui
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Dobbertin M, Blair KS, Carollo E, Blair JR, Dominguez A, Bajaj S. Neuroimaging alterations of the suicidal brain and its relevance to practice: an updated review of MRI studies. Front Psychiatry 2023; 14:1083244. [PMID: 37181903 PMCID: PMC10174251 DOI: 10.3389/fpsyt.2023.1083244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Suicide is a leading cause of death in the United States. Historically, scientific inquiry has focused on psychological theory. However, more recent studies have started to shed light on complex biosignatures using MRI techniques, including task-based and resting-state functional MRI, brain morphometry, and diffusion tensor imaging. Here, we review recent research across these modalities, with a focus on participants with depression and Suicidal Thoughts and Behavior (STB). A PubMed search identified 149 articles specific to our population of study, and this was further refined to rule out more diffuse pathologies such as psychotic disorders and organic brain injury and illness. This left 69 articles which are reviewed in the current study. The collated articles reviewed point to a complex impairment showing atypical functional activation in areas associated with perception of reward, social/affective stimuli, top-down control, and reward-based learning. This is broadly supported by the atypical morphometric and diffusion-weighted alterations and, most significantly, in the network-based resting-state functional connectivity data that extrapolates network functions from well validated psychological paradigms using functional MRI analysis. We see an emerging picture of cognitive dysfunction evident in task-based and resting state fMRI and network neuroscience studies, likely preceded by structural changes best demonstrated in morphometric and diffusion-weighted studies. We propose a clinically-oriented chronology of the diathesis-stress model of suicide and link other areas of research that may be useful to the practicing clinician, while helping to advance the translational study of the neurobiology of suicide.
Collapse
Affiliation(s)
- Matthew Dobbertin
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
- Child and Adolescent Psychiatric Inpatient Center, Boys Town National Research Hospital, Boys Town, NE, United States
- *Correspondence: Matthew Dobbertin,
| | - Karina S. Blair
- Program for Trauma and Anxiety in Children (PTAC), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Erin Carollo
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL, United States
| | - James R. Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Copenhagen, Denmark
| | - Ahria Dominguez
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Sahil Bajaj
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, United States
| |
Collapse
|
5
|
Hao Z, Song Y, Shi Y, Xi H, Zhang H, Zhao M, Yu J, Huang L, Li H. Altered Effective Connectivity of the Primary Motor Cortex in Transient Ischemic Attack. Neural Plast 2022; 2022:2219993. [PMID: 36437903 PMCID: PMC9699783 DOI: 10.1155/2022/2219993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective This study is aimed at exploring alteration in motor-related effective connectivity in individuals with transient ischemic attack (TIA). Methods A total of 48 individuals with TIA and 41 age-matched and sex-matched healthy controls (HCs) were recruited for this study. The participants were scanned using MRI, and their clinical characteristics were collected. To investigate motor-related effective connectivity differences between individuals with TIA and HCs, the bilateral primary motor cortex (M1) was used as the regions of interest (ROIs) to perform a whole-brain Granger causality analysis (GCA). Furthermore, partial correlation was used to evaluate the relationship between GCA values and the clinical characteristics of individuals with TIA. Results Compared with HCs, individuals with TIA demonstrated alterations in the effective connectivity between M1 and widely distributed brain regions involved in motor, visual, auditory, and sensory integration. In addition, GCA values were significantly correlated with high- and low-density lipoprotein cholesterols in individuals with TIA. Conclusion This study provides important evidence for the alteration of motor-related effective connectivity in TIA, which reflects the abnormal information flow between different brain regions. This could help further elucidate the pathological mechanisms of motor impairment in individuals with TIA and provide a new perspective for future early diagnosis and intervention for TIA.
Collapse
Affiliation(s)
- Zeqi Hao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Yuyu Shi
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Hongyu Xi
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Hongqiang Zhang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Mengqi Zhao
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Jiahao Yu
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
6
|
Li Y, Yu Z, Zhou X, Wu P, Chen J. Aberrant interhemispheric functional reciprocities of the default mode network and motor network in subcortical ischemic stroke patients with motor impairment: A longitudinal study. Front Neurol 2022; 13:996621. [PMID: 36267883 PMCID: PMC9577250 DOI: 10.3389/fneur.2022.996621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of the present study was to explore the longitudinal changes in functional homotopy in the default mode network (DMN) and motor network and its relationships with clinical characteristics in patients with stroke. Methods Resting-state functional magnetic resonance imaging was performed in stroke patients with subcortical ischemic lesions and healthy controls. The voxel-mirrored homotopic connectivity (VMHC) method was used to examine the differences in functional homotopy in patients with stroke between the two time points. Support vector machine (SVM) and correlation analyses were also applied to investigate whether the detected significant changes in VMHC were the specific feature in patients with stroke. Results The patients with stroke had significantly lower VMHC in the DMN and motor-related regions than the controls, including in the precuneus, parahippocampus, precentral gyrus, supplementary motor area, and middle frontal gyrus. Longitudinal analysis revealed that the impaired VMHC of the superior precuneus showed a significant increase at the second time point, which was no longer significantly different from the controls. Between the two time points, the changes in VMHC in the superior precuneus were significantly correlated with the changes in clinical scores. SVM analysis revealed that the VMHC of the superior precuneus could be used to correctly identify the patients with stroke from the controls with a statistically significant accuracy of 81.25% (P ≤ 0.003). Conclusions Our findings indicated that the increased VMHC in the superior precuneus could be regarded as the neuroimaging manifestation of functional recovery. The significant correlation and the discriminative power in classification results might provide novel evidence to understand the neural mechanisms responsible for brain reorganization after stroke.
Collapse
Affiliation(s)
- Yongxin Li
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
- *Correspondence: Yongxin Li
| | - Zeyun Yu
- Acupuncture and Tuina School/Tird Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Zhou
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
| | - Ping Wu
- Acupuncture and Tuina School/Tird Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ping Wu
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Min Y, Liu C, Zuo L, Wang Y, Li Z. The Relationship between Altered Degree Centrality and Cognitive Function in Mild Subcortical Stroke: A Resting-State fMRI Study. Brain Res 2022; 1798:148125. [DOI: 10.1016/j.brainres.2022.148125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
8
|
Li Y, Yu Z, Wu P, Chen J. Ability of an altered functional coupling between resting-state networks to predict behavioral outcomes in subcortical ischemic stroke: A longitudinal study. Front Aging Neurosci 2022; 14:933567. [PMID: 36185473 PMCID: PMC9520312 DOI: 10.3389/fnagi.2022.933567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Stroke can be viewed as an acute disruption of an individual's connectome caused by a focal or widespread loss of blood flow. Although individuals exhibit connectivity changes in multiple functional networks after stroke, the neural mechanisms that underlie the longitudinal reorganization of the connectivity patterns are still unclear. The study aimed to determine whether brain network connectivity patterns after stroke can predict longitudinal behavioral outcomes. Nineteen patients with stroke with subcortical lesions underwent two sessions of resting-state functional magnetic resonance imaging scanning at a 1-month interval. By independent component analysis, the functional connectivity within and between multiple brain networks (including the default mode network, the dorsal attention network, the limbic network, the visual network, and the frontoparietal network) was disrupted after stroke and partial recovery at the second time point. Additionally, regression analyses revealed that the connectivity between the limbic and dorsal attention networks at the first time point showed sufficient reliability in predicting the clinical scores (Fugl-Meyer Assessment and Neurological Deficit Scores) at the second time point. The overall findings suggest that functional coupling between the dorsal attention and limbic networks after stroke can be regarded as a biomarker to predict longitudinal clinical outcomes in motor function and the degree of neurological functional deficit. Overall, the present study provided a novel opportunity to improve prognostic ability after subcortical strokes.
Collapse
Affiliation(s)
- Yongxin Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zeyun Yu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Pirovano I, Mastropietro A, Antonacci Y, Barà C, Guanziroli E, Molteni F, Faes L, Rizzo G. Resting State EEG Directed Functional Connectivity Unveils Changes in Motor Network Organization in Subacute Stroke Patients After Rehabilitation. Front Physiol 2022; 13:862207. [PMID: 35450158 PMCID: PMC9016279 DOI: 10.3389/fphys.2022.862207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 01/01/2023] Open
Abstract
Brain plasticity and functional reorganization are mechanisms behind functional motor recovery of patients after an ischemic stroke. The study of resting-state motor network functional connectivity by means of EEG proved to be useful in investigating changes occurring in the information flow and find correlation with motor function recovery. In the literature, most studies applying EEG to post-stroke patients investigated the undirected functional connectivity of interacting brain regions. Quite recently, works started to investigate the directionality of the connections and many approaches or features have been proposed, each of them being more suitable to describe different aspects, e.g., direct or indirect information flow between network nodes, the coupling strength or its characteristic oscillation frequency. Each work chose one specific measure, despite in literature there is not an agreed consensus, and the selection of the most appropriate measure is still an open issue. In an attempt to shed light on this methodological aspect, we propose here to combine the information of direct and indirect coupling provided by two frequency-domain measures based on Granger’s causality, i.e., the directed coherence (DC) and the generalized partial directed coherence (gPDC), to investigate the longitudinal changes of resting-state directed connectivity associated with sensorimotor rhythms α and β, occurring in 18 sub-acute ischemic stroke patients who followed a rehabilitation treatment. Our results showed a relevant role of the information flow through the pre-motor regions in the reorganization of the motor network after the rehabilitation in the sub-acute stage. In particular, DC highlighted an increase in intra-hemispheric coupling strength between pre-motor and primary motor areas, especially in ipsi-lesional hemisphere in both α and β frequency bands, whereas gPDC was more sensitive in the detection of those connection whose variation was mostly represented within the population. A decreased causal flow from contra-lesional premotor cortex towards supplementary motor area was detected in both α and β frequency bands and a significant reinforced inter-hemispheric connection from ipsi to contra-lesional pre-motor cortex was observed in β frequency. Interestingly, the connection from contra towards ipsilesional pre-motor area correlated with upper limb motor recovery in α band. The usage of two different measures of directed connectivity allowed a better comprehension of those coupling changes between brain motor regions, either direct or mediated, which mostly were influenced by the rehabilitation, revealing a particular involvement of the pre-motor areas in the cerebral functional reorganization.
Collapse
Affiliation(s)
- Ileana Pirovano
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| | - Alfonso Mastropietro
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
- *Correspondence: Alfonso Mastropietro,
| | - Yuri Antonacci
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | - Chiara Barà
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | | | - Franco Molteni
- Centro Riabilitativo Villa Beretta, Ospedale Valduce, Costa Masnaga, Italy
| | - Luca Faes
- Dipartimento di Ingegneria, Università di Palermo, Palermo, Italy
| | - Giovanna Rizzo
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy
| |
Collapse
|
10
|
Tabard-Fougère A, Rutz D, Pouliot-Laforte A, De Coulon G, Newman CJ, Armand S, Wegrzyk J. Are Clinical Impairments Related to Kinematic Gait Variability in Children and Young Adults With Cerebral Palsy? Front Hum Neurosci 2022; 16:816088. [PMID: 35308609 PMCID: PMC8926298 DOI: 10.3389/fnhum.2022.816088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Intrinsic gait variability (GV), i.e., fluctuations in the regularity of gait patterns between repetitive cycles, is inherent to the sensorimotor system and influenced by factors such as age and pathology. Increased GV is associated with gait impairments in individuals with cerebral palsy (CP) and has been mainly studied based on spatiotemporal parameters. The present study aimed to describe kinematic GV in young people with CP and its associations with clinical impairments [i.e., passive range of motion (pROM), muscle weakness, reduced selective motor control (selectivity), and spasticity]. This retrospective study included 177 participants with CP (age range 5-25 years; Gross Motor Function Classification System I-III) representing 289 clinical gait analyses [n = 172 for unilateral CP (uCP) vs. 117 for bilateral CP (bCP)]. As variability metrics, Root Mean Square Deviation (RMSD) for nine lower-limb kinematic parameters and Gait Standard Deviation (GaitSD) - as composite score of the kinematic parameters - were computed for the affected (unilateral = uCP) and most affected side (bilateral = bCP), respectively, as defined by clinical scores. GaitSD was then computed for the non/less-affected side for between leg comparisons. Uni- and multivariate linear regressions were subsequently performed on GaitSD of the affected/most affected side with all clinical impairments (composite scores) as independent variables. Highest RMSD were found in the transverse plane (hip, pelvis), for distal joints in the sagittal plane (knee, ankle) and for foot progression. GaitSD was not different between uCP and bCP (affected/most affected side) but higher in the non-affected vs. affected side in uCP. GaitSD was associated with age (p < 0.001), gait deviation index (GDI) (p < 0.05), muscle weakness (p < 0.001), selectivity (p < 0.05), and pROM (p < 0.001). After adjustment for age and GDI, GaitSD remained associated with muscle weakness (uCP: p = 0.003, bCP: p < 0.001) and selectivity (bCP: p = 0.024). Kinematic GV can be expressed as global indicator of variability (GaitSD) in young people with CP given the strong correlation of RMSD for lower-limb kinematic parameters. In terms of asymmetry, increased variability of the non-affected vs. affected side may indicate contralateral compensation mechanisms in uCP. Notably muscle weakness (uCP, bCP) and selectivity (bCP) - but not spasticity - were associated with GaitSD. Further studies need to explore the clinical relevance of kinematic GV in CP to support the interpretation of clinical gait analyses and therapeutic decision-making.
Collapse
Affiliation(s)
- Anne Tabard-Fougère
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Dionys Rutz
- Physical Therapy Unit, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Annie Pouliot-Laforte
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Geraldo De Coulon
- Pediatric Orthopaedic Surgery Unit, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Christopher J. Newman
- Pediatric Neurology and Neurorehabilitation Unit, Department of Pediatrics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stéphane Armand
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Jennifer Wegrzyk
- School of Health Sciences (HESAV), University of Applied Sciences and Arts Western Switzerland (HES-SO), Lausanne, Switzerland
| |
Collapse
|
11
|
Qiu Y, Zheng Y, Liu Y, Luo W, Du R, Liang J, Yilifate A, You Y, Jiang Y, Zhang J, Chen A, Zhang Y, Huang S, Wang B, Ou H, Lin Q. Synergistic Immediate Cortical Activation on Mirror Visual Feedback Combined With a Soft Robotic Bilateral Hand Rehabilitation System: A Functional Near Infrared Spectroscopy Study. Front Neurosci 2022; 16:807045. [PMID: 35185457 PMCID: PMC8855034 DOI: 10.3389/fnins.2022.807045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mirror visual feedback (MVF) has been widely used in neurological rehabilitation. Due to the potential gain effect of the MVF combination therapy, the related mechanisms still need be further analyzed. Methods Our self-controlled study recruited 20 healthy subjects (age 22.150 ± 2.661 years) were asked to perform four different visual feedback tasks with simultaneous functional near infrared spectroscopy (fNIRS) monitoring. The right hand of the subjects was set as the active hand (performing active movement), and the left hand was set as the observation hand (static or performing passive movement under soft robotic bilateral hand rehabilitation system). The four VF tasks were designed as RVF Task (real visual feedback task), MVF task (mirror visual feedback task), BRM task (bilateral robotic movement task), and MVF + BRM task (Mirror visual feedback combined with bilateral robotic movement task). Results The beta value of the right pre-motor cortex (PMC) of MVF task was significantly higher than the RVF task (RVF task: -0.015 ± 0.029, MVF task: 0.011 ± 0.033, P = 0.033). The beta value right primary sensorimotor cortex (SM1) in MVF + BRM task was significantly higher than MVF task (MVF task: 0.006 ± 0.040, MVF + BRM task: 0.037 ± 0.036, P = 0.016). Conclusion Our study used the synchronous fNIRS to compare the immediate hemodynamics cortical activation of four visual feedback tasks in healthy subjects. The results showed the synergistic gain effect on cortical activation from MVF combined with a soft robotic bilateral hand rehabilitation system for the first time, which could be used to guide the clinical application and the future studies.
Collapse
Affiliation(s)
- Yaxian Qiu
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuxin Zheng
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yawen Liu
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Wenxi Luo
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Rongwei Du
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Junjie Liang
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anniwaer Yilifate
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyao You
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongchun Jiang
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Jiahui Zhang
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Aijia Chen
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Yanni Zhang
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siqi Huang
- Department of Rehabilitation, Guangzhou Medical University, Guangzhou, China
| | - Benguo Wang
- Department of Rehabilitation, Longgang District People’s Hospital of Shenzhen, Shenzhen, China
- Department of Rehabilitation, The Third Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Haining Ou
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Haining Ou,
| | - Qiang Lin
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qiang Lin,
| |
Collapse
|
12
|
Ogawa T, Shimobayashi H, Hirayama JI, Kawanabe M. Asymmetric directed functional connectivity within the frontoparietal motor network during motor imagery and execution. Neuroimage 2021; 247:118794. [PMID: 34906713 DOI: 10.1016/j.neuroimage.2021.118794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022] Open
Abstract
Both imagery and execution of motor control consist of interactions within a neuronal network, including frontal motor-related and posterior parietal regions. To reveal neural representation in the frontoparietal motor network, two approaches have been proposed thus far: one is decoding of actions/modes related to motor control from the spatial pattern of brain activity; and the other is estimating directed functional connectivity (a directed association between two brain regions within motor areas). However, directed connectivity among multiple regions of the frontoparietal motor network during motor imagery (MI) or motor execution (ME) has not been investigated. Here, we attempted to characterize the directed functional connectivity representing the MI and ME conditions. We developed a delayed sequential movement and imagery task to evoke brain activity associated with ME and MI, which can be recorded by functional magnetic resonance imaging. We applied a causal discovery approach, a linear non-Gaussian acyclic causal model, to identify directed functional connectivity among the frontoparietal motor-related brain regions for each condition. We demonstrated higher directed functional connectivity from the contralateral dorsal premotor cortex (dPMC) to the primary motor cortex (M1) in ME than in MI. We further identified significant direct effects of the dPMC and ventral premotor cortex (vPMC) to the parietal regions. In particular, connectivity from the dPMC to the superior parietal lobule (SPL) in the same hemisphere showed significant positive effects across all conditions, while interlateral connectivities from the vPMC to the SPL showed significantly negative effects across all conditions. Finally, we found positive effects from A1 to M1, that is, the audio-motor pathway, in the same hemisphere. These results indicate that the sources of motor command originating in the d/vPMC influenced the M1 and parietal regions for achieving ME and MI. Additionally, sequential sounds may functionally facilitate temporal motor processes.
Collapse
Affiliation(s)
- Takeshi Ogawa
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 618-0288, Japan.
| | - Hideki Shimobayashi
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 618-0288, Japan; Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Jun-Ichiro Hirayama
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan; RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 618-0288, Japan.
| | - Motoaki Kawanabe
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 618-0288, Japan; RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 618-0288, Japan.
| |
Collapse
|
13
|
Intermittent Sequential Pneumatic Compression Improves Coupling between Cerebral Oxyhaemoglobin and Arterial Blood Pressure in Patients with Cerebral Infarction. BIOLOGY 2021; 10:biology10090869. [PMID: 34571746 PMCID: PMC8470335 DOI: 10.3390/biology10090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
This study aims to explore the effect of intermittent sequential pneumatic compression (ISPC) intervention on the coupling relationship between arterial blood pressure (ABP) and changes in oxyhaemoglobin (Δ [O2Hb]). The coupling strength between the two physiological systems was estimated using a coupling function based on dynamic Bayesian inference. The participants were 22 cerebral infarction patients and 20 age- and sex-matched healthy controls. Compared with resting state, the coupling strength from ABP to Δ [O2Hb] oscillations was significantly lower in the bilateral prefrontal cortex (PFC), sensorimotor cortex (SMC), and temporal lobe cortex (TLC) during the ISPC intervention in cerebral infarction patients in interval II. Additionally, the coupling strength was significantly lower in the bilateral SMC in both groups in interval III. These findings indicate that ISPC intervention may facilitate cerebral circulation in the bilateral PFC, SMC, and TLC in cerebral infarction patients. ISPC may promote motor function recovery through its positive influences on motor-related networks. Furthermore, the coupling between Δ [O2Hb] and ABP allows non-invasive assessments of autoregulatory function to quantitatively assess the effect of rehabilitation tasks and to guide therapy in clinical situations.
Collapse
|
14
|
Li Y, Yu Z, Wu P, Chen J. The disrupted topological properties of structural networks showed recovery in ischemic stroke patients: a longitudinal design study. BMC Neurosci 2021; 22:47. [PMID: 34340655 PMCID: PMC8330082 DOI: 10.1186/s12868-021-00652-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Stroke is one of the leading causes of substantial disability worldwide. Previous studies have shown brain functional and structural alterations in adults with stroke. However, few studies have examined the longitudinal reorganization in whole-brain structural networks in stroke. METHODS Here, we applied graph theoretical analysis to investigate the longitudinal topological organization of white matter networks in 20 ischemic stroke patients with a one-month interval between two timepoints. Two sets of clinical scores, Fugl-Meyer motor assessment (FMA) and neurological deficit scores (NDS), were assessed for all patients on the day the image data were collected. RESULTS The stroke patients exhibited significant increases in FMA scores and significant reductions in DNS between the two timepoints. All groups exhibited small-world organization (σ > 1) in the brain structural network, including a high clustering coefficient (γ > 1) and a low normalized characteristic path length (λ ≈ 1). However, compared to healthy controls, stroke patients showed significant decrease in nodal characteristics at the first timepoint, primarily in the right supplementary motor area, right middle temporal gyrus, right inferior parietal lobe, right postcentral gyrus and left posterior cingulate gyrus. Longitudinal results demonstrated that altered nodal characteristics were partially restored one month later. Additionally, significant correlations between the nodal characteristics of the right supplementary motor area and the clinical scale scores (FMA and NDS) were observed in stroke patients. Similar behavioral-neuroimaging correlations were found in the right inferior parietal lobe. CONCLUSION Altered topological properties may be an effect of stroke, which can be modulated during recovery. The longitudinal results and the neuroimaging-behavioral relationship may provide information for understanding brain recovery from stroke. Future studies should detect whether observed changes in structural topological properties can predict the recovery of daily cognitive function in stroke.
Collapse
Affiliation(s)
- Yongxin Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zeyun Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Ping Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| | - Jiaxu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Hortobágyi T, Granacher U, Fernandez-Del-Olmo M, Howatson G, Manca A, Deriu F, Taube W, Gruber M, Márquez G, Lundbye-Jensen J, Colomer-Poveda D. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci Biobehav Rev 2020; 122:79-91. [PMID: 33383071 DOI: 10.1016/j.neubiorev.2020.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/13/2023]
Abstract
Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical CenterGroningen, Groningen, Netherlands.
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Miguel Fernandez-Del-Olmo
- Area of Sport Sciences, Faculty of Sports Sciences and Physical Education, Center for Sport Studies, King Juan Carlos University, Madrid, Spain
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK; Water Research Group, North West University, Potchefstroom, South Africa
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports Department of Neuroscience, University of Copenhagenk, Faculty of Health Science, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
16
|
Binder E, Leimbach M, Pool EM, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Cortical reorganization after motor stroke: A pilot study on differences between the upper and lower limbs. Hum Brain Mapp 2020; 42:1013-1033. [PMID: 33165996 PMCID: PMC7856649 DOI: 10.1002/hbm.25275] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 11/11/2022] Open
Abstract
Stroke patients suffering from hemiparesis may show substantial recovery in the first months poststroke due to neural reorganization. While reorganization driving improvement of upper hand motor function has been frequently investigated, much less is known about the changes underlying recovery of lower limb function. We, therefore, investigated neural network dynamics giving rise to movements of both the hands and feet in 12 well-recovered left-hemispheric chronic stroke patients and 12 healthy participants using a functional magnetic resonance imaging sparse sampling design and dynamic causal modeling (DCM). We found that the level of neural activity underlying movements of the affected right hand and foot positively correlated with residual motor impairment, in both ipsilesional and contralesional premotor as well as left primary motor (M1) regions. Furthermore, M1 representations of the affected limb showed significantly stronger increase in BOLD activity compared to healthy controls and compared to the respective other limb. DCM revealed reduced endogenous connectivity of M1 of both limbs in patients compared to controls. However, when testing for the specific effect of movement on interregional connectivity, interhemispheric inhibition of the contralesional M1 during movements of the affected hand was not detected in patients whereas no differences in condition-dependent connectivity were found for foot movements compared to controls. In contrast, both groups featured positive interhemispheric M1 coupling, that is, facilitation of neural activity, mediating movements of the affected foot. These exploratory findings help to explain why functional recovery of the upper and lower limbs often develops differently after stroke, supporting limb-specific rehabilitative strategies.
Collapse
Affiliation(s)
- Ellen Binder
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Martha Leimbach
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva-Maria Pool
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany.,Institute for Clinical Neuroscience, Heinrich-Heine-University, Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Christian Grefkes
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
17
|
Longo E, Nishiyori R, Cruz T, Alter K, Damiano DL. Obstetric Brachial Plexus Palsy: Can a Unilateral Birth Onset Peripheral Injury Significantly Affect Brain Development? Dev Neurorehabil 2020; 23:375-382. [PMID: 31906763 PMCID: PMC7550966 DOI: 10.1080/17518423.2019.1689437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/02/2019] [Indexed: 01/15/2023]
Abstract
Purpose: Examine brain structure and function in OBPP and relate to clinical outcomes to better understand the effects of decreased motor activity on early brain development. Methods: 9 OBPP, 7 controls underwent structural MRI scans. OBPP group completed evaluations of upper-limb function and functional near-infrared spectroscopy (fNIRS) during motor tasks. Results: Mean primary motor area volume was lower in both OBPP hemispheres. No volume differences across sides seen within groups; however, Asymmetry Ratio in supplementary motor area differed between groups. Greater asymmetry in primary somatosensory area correlated with lower ABILHAND-Kids scores. fNIRS revealed more cortical activity in both hemispheres during affected arm reach. Conclusion: Cortical volume differences or asymmetry were found in motor and sensory regions in OBPP that related to clinical outcomes. Widespread cortical activity in fNIRS during affected arm reach suggests reorganization in both hemispheres and is relevant to rehabilitation of those with developmental peripheral and brain injuries.
Collapse
Affiliation(s)
- Egmar Longo
- Federal University of Rio Grande do Norte/Faculty of Health Sciences of Trairi - UFRN/FACISA, Health of Children, Santa Cruz, Brazil
| | - Ryota Nishiyori
- Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, US
| | - Theresa Cruz
- National Center for Medical Rehabilitation Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, US
| | - Katharine Alter
- Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, US
| | - Diane L. Damiano
- Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, US
| |
Collapse
|
18
|
Wu CW, Lin SHN, Hsu LM, Yeh SC, Guu SF, Lee SH, Chen CC. Synchrony Between Default-Mode and Sensorimotor Networks Facilitates Motor Function in Stroke Rehabilitation: A Pilot fMRI Study. Front Neurosci 2020; 14:548. [PMID: 32655349 PMCID: PMC7325875 DOI: 10.3389/fnins.2020.00548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/04/2020] [Indexed: 11/22/2022] Open
Abstract
Stroke is the most common cause of complex disability in Taiwan. After stroke onset, persistent physical practice or exercise in the rehabilitation procedure reorganizes neural assembly for reducing motor deficits, known as neuroplasticity. Neuroimaging literature showed rehabilitative effects specific to the brain networks of the sensorimotor network (SMN) and default-mode network (DMN). However, whether between-network interactions facilitate the neuroplasticity after stroke rehabilitation remains a mystery. Therefore, we conducted the longitudinal assessment protocol of stroke rehabilitation, including three types of clinical evaluations and two types of functional magnetic resonance imaging (fMRI) techniques (resting state and grasp task). Twelve chronic stroke patients completed the rehabilitation protocol for at least 24 h and finished the three-time assessments: before, after rehabilitation, and 1 month after the cessation of rehabilitation. For comparison, age-matched normal controls (NC) underwent the same fMRI evaluation once without repeated measure. Increasing scores of the Fugl–Meyer assessment (FMA) and upper extremity performance test reflected the enhanced motor performances after the stroke rehabilitation process. Analysis of covariance (ANCOVA) results showed that the connections between posterior cingulate cortex (PCC) and iM1 were persistently enhanced in contrast to the pre-rehabilitation condition. The interactions between PCC and SMN were positively associated with motor performances. The enhanced cross-network connectivity facilitates the motor recovery after stroke rehabilitation, but the cross-network interaction was low before the rehabilitation process, similar to the level of NCs. Our findings suggested that cross-network connectivity plays a facilitatory role following the stroke rehabilitation, which can serve as a neurorehabilitative biomarker for future intervention evaluations.
Collapse
Affiliation(s)
- Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, College of Humanities and Social Sciences, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shang-Hua N Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Li-Ming Hsu
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan.,Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shih-Ching Yeh
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Shiao-Fei Guu
- Graduate Institute of Mind, Brain and Consciousness, College of Humanities and Social Sciences, Taipei Medical University, Taipei, Taiwan
| | - Si-Huei Lee
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Chun-Chuan Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
19
|
Bovonsunthonchai S, Aung N, Hiengkaew V, Tretriluxana J. A randomized controlled trial of motor imagery combined with structured progressive circuit class therapy on gait in stroke survivors. Sci Rep 2020; 10:6945. [PMID: 32332810 PMCID: PMC7181781 DOI: 10.1038/s41598-020-63914-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
Structured Progressive Circuit Class Therapy (SPCCT) was developed based on task-oriented therapy, providing benefits to patients’ motivation and motor function. Training with Motor Imagery (MI) alone can improve gait performance in stroke survivors, but a greater effect may be observed when combined with SPCCT. Health education (HE) is a basic component of stroke rehabilitation and can reduce depression and emotional distress. Thus, this study aimed to investigate the effect of MI with SPCCT against HE with SPCCT on gait in stroke survivors. Two hundred and ninety stroke survivors from 3 hospitals in Yangon, Myanmar enrolled in the study. Of these, 40 stroke survivors who passed the selection criteria were randomized into an experimental (n = 20) or control (n = 20) group. The experimental group received MI training whereas the control group received HE for 25 minutes prior to having the same 65 minutes SPCCT program, with both groups receiving training 3 times a week over 4 weeks. Temporo-spatial gait variables and lower limb muscle strength of the affected side were assessed at baseline, 2 weeks, and 4 weeks after intervention. After 4 weeks of training, the experimental group showed greater improvement than the control group in all temporospatial gait variables, except for the unaffected step length and step time symmetry which showed no difference. In addition, greater improvements of the affected hip flexor and knee extensor muscle strength were found in the experimental group. In conclusion, a combination of MI with SPCCT provided a greater therapeutic effect on gait and lower limb muscle strengths in stroke survivors.
Collapse
Affiliation(s)
| | - Nilar Aung
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand.,Department of Physiotherapy, University of Medical Technology, Mandalay, Myanmar
| | - Vimonwan Hiengkaew
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
20
|
Adhikari BM, Jahanshad N, Shukla D, Turner J, Grotegerd D, Dannlowski U, Kugel H, Engelen J, Dietsche B, Krug A, Kircher T, Fieremans E, Veraart J, Novikov DS, Boedhoe PSW, van der Werf YD, van den Heuvel OA, Ipser J, Uhlmann A, Stein DJ, Dickie E, Voineskos AN, Malhotra AK, Pizzagalli F, Calhoun VD, Waller L, Veer IM, Walter H, Buchanan RW, Glahn DC, Hong LE, Thompson PM, Kochunov P. A resting state fMRI analysis pipeline for pooling inference across diverse cohorts: an ENIGMA rs-fMRI protocol. Brain Imaging Behav 2020; 13:1453-1467. [PMID: 30191514 DOI: 10.1007/s11682-018-9941-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Large-scale consortium efforts such as Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) and other collaborative efforts show that combining statistical data from multiple independent studies can boost statistical power and achieve more accurate estimates of effect sizes, contributing to more reliable and reproducible research. A meta- analysis would pool effects from studies conducted in a similar manner, yet to date, no such harmonized protocol exists for resting state fMRI (rsfMRI) data. Here, we propose an initial pipeline for multi-site rsfMRI analysis to allow research groups around the world to analyze scans in a harmonized way, and to perform coordinated statistical tests. The challenge lies in the fact that resting state fMRI measurements collected by researchers over the last decade vary widely, with variable quality and differing spatial or temporal signal-to-noise ratio (tSNR). An effective harmonization must provide optimal measures for all quality data. Here we used rsfMRI data from twenty-two independent studies with approximately fifty corresponding T1-weighted and rsfMRI datasets each, to (A) review and aggregate the state of existing rsfMRI data, (B) demonstrate utility of principal component analysis (PCA)-based denoising and (C) develop a deformable ENIGMA EPI template based on the representative anatomy that incorporates spatial distortion patterns from various protocols and populations.
Collapse
Affiliation(s)
- Bhim M Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Neda Jahanshad
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Dinesh Shukla
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Jennifer Engelen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Premika S W Boedhoe
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Ysbrand D van der Werf
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, Netherlands
| | - Jonathan Ipser
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Erin Dickie
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Anil K Malhotra
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, New York, NY, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Vince D Calhoun
- The Mind Research Network & The University of New Mexico, Albuquerque, NM, USA
| | - Lea Waller
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Ilja M Veer
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Hernik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Campus Matte, Berlin, Germany
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Allart E, Viard R, Lopes R, Devanne H, Delval A. Influence of Motor Deficiency and Spatial Neglect on the Contralesional Posterior Parietal Cortex Functional and Structural Connectivity in Stroke Patients. Brain Topogr 2019; 33:176-190. [PMID: 31832813 DOI: 10.1007/s10548-019-00749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
The posterior parietal cortex (PPC) is a key structure for visual attention and upper limb function, two features that could be impaired after stroke, and could be implied in their recovery. If it is well established that stroke is responsible for intra- and interhemispheric connectivity troubles, little is known about those existing for the contralesional PPC. In this study, we aimed at mapping the functional (using resting state fMRI) and structural (using diffusion tensor imagery) networks from 3 subparts of the PPC of the contralesional hemisphere (the anterior intraparietal sulcus), the posterior intraparietal sulcus and the superior parieto-occipital cortex to bilateral frontal areas and ipsilesional homologous PPC parts in 11 chronic stroke patients compared to 13 healthy controls. We also aimed at assessing the relationship between connectivity and the severity of visuospatial and motor deficiencies. We showed that interhemispheric functional and structural connectivity between PPCs was altered in stroke patients compared to controls, without any specificity among seeds. Alterations of parieto-frontal intra- and interhemispheric connectivity were less observed. Neglect severity was associated with several alterations in intra- and interhemispheric connectivity, whereas we did not find any behavioral/connectivity correlations for motor deficiency. The results of this exploratory study shed a new light on the influence of the contralesional PPC in post-stroke patients, they have to be confirmed and refined in further larger studies.
Collapse
Affiliation(s)
- Etienne Allart
- Neurorehabilitation Unit, Lille University Medical Center, 59000, Lille, France. .,Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.
| | - Romain Viard
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Renaud Lopes
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Clinical Imaging Core FaCility, Lille University Medical Center, 59000, Lille, France
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France.,URePSSS Unité de Recherche Pluridisciplinaire Sport Santé Société (EA7369), ULCO, 62228, Calais, France
| | - Arnaud Delval
- Inserm U1171-Degenerative and Vascular Cognitive Disorders, University Lille, 59000, Lille, France.,Department of Clinical Neurophysiology, Lille University Medical Center, 59000, Lille, France
| |
Collapse
|
22
|
Wang L, Zhang Y, Zhang J, Sang L, Li P, Yan R, Qiu M, Liu C. Aging Changes Effective Connectivity of Motor Networks During Motor Execution and Motor Imagery. Front Aging Neurosci 2019; 11:312. [PMID: 31824297 PMCID: PMC6881270 DOI: 10.3389/fnagi.2019.00312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
Age-related neurodegenerative and neurochemical changes are considered to be the basis for the decline of motor function; however, the change of effective connections in cortical motor networks that come with aging remains unclear. Here, we investigated the age-related changes of the dynamic interaction between cortical motor regions. Twenty young subjects and 20 older subjects underwent both right hand motor execution (ME) and right hand motor imagery (MI) tasks by using functional magnetic resonance imaging. Conditional Granger causality analysis (CGCA) was used to compare young and older adults’ effective connectivity among regions of the motor network during the tasks. The more effective connections among motor regions in older adults were found during ME; however, effective within-domain hemisphere connections were reduced, and the blood oxygenation level dependent (BOLD) signal was significantly delayed in older adults during MI. Supplementary motor area (SMA) had a significantly higher In+Out degree within the network during ME and MI in older adults. Our results revealed a dynamic interaction within the motor network altered with aging during ME and MI, which suggested that the interaction with cortical motor neurons caused by the mental task was more difficult with aging. The age-related effects on the motor cortical network provide a new insight into our understanding of neurodegeneration in older individuals.
Collapse
Affiliation(s)
- Li Wang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Ye Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Jingna Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Linqiong Sang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Pengyue Li
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Rubing Yan
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mingguo Qiu
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
23
|
Narayanamurthy R, Jayakumar S, Elango S, Muralidharan V, Chakravarthy VS. A Cortico- Basal Ganglia Model for choosing an optimal rehabilitation strategy in Hemiparetic Stroke. Sci Rep 2019; 9:13472. [PMID: 31530821 PMCID: PMC6748960 DOI: 10.1038/s41598-019-49670-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
To facilitate the selection of an optimal therapy for a stroke patient with upper extremity hemiparesis, we propose a cortico-basal ganglia model capable of performing reaching tasks under normal and stroke conditions. The model contains two hemispherical systems, each organized into an outer sensory-motor cortical loop and an inner basal ganglia (BG) loop, controlling their respective hands. The model is trained to simulate two therapeutic approaches: the constraint induced movement therapy (CIMT) in which the intact is arrested, and Bimanual Reaching in which the movements of the intact arm are found to aid the affected arm. Which of these apparently mutually conflicting approaches is right for a given patient? Based on our study on the effect of lesion size on arm performance, we hypothesize that the choice of the therapy depends on the lesion size. Whereas bimanual reaching is more suitable for smaller lesion size, CIMT is preferred in case of larger lesion sizes. By virtue of the model's ability to capture the experimental results effectively, we believe that it can serve as a benchmark for the development and testing of various rehabilitation strategies for stroke.
Collapse
Affiliation(s)
- Rukhmani Narayanamurthy
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Samyukta Jayakumar
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Sundari Elango
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | | - V Srinivasa Chakravarthy
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
24
|
Dynamics of brain connectivity after stroke. Rev Neurosci 2019; 30:605-623. [DOI: 10.1515/revneuro-2018-0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/18/2018] [Indexed: 01/04/2023]
Abstract
Abstract
Recovery from a stroke is a dynamic time-dependent process, in which the central nervous system reorganises to accommodate for the impact of the injury. The purpose of this paper is to review recent longitudinal studies of changes in brain connectivity after stroke. A systematic review of research papers reporting functional or effective connectivity at two or more time points in stroke patients was conducted. Stroke leads to an early reduction of connectivity in the motor network. With recovery time, the connectivity increases and can reach the same levels as in healthy participants. The increase in connectivity is correlated with functional motor gains. A new, more randomised pattern of connectivity may then emerge in the longer term. In some instances, a pattern of increased connectivity even higher than in healthy controls can be observed, and is related either to a specific time point or to a specific neural structure. Rehabilitation interventions can help improve connectivity between specific regions. Moreover, motor network connectivity undergoes reorganisation during recovery from a stroke and can be related to behavioural recovery. A detailed analysis of changes in connectivity pattern may enable a better understanding of adaptation to a stroke and how compensatory mechanisms in the brain may be supported by rehabilitation.
Collapse
|
25
|
Mehler DMA, Williams AN, Krause F, Lührs M, Wise RG, Turner DL, Linden DEJ, Whittaker JR. The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback. Neuroimage 2019; 184:36-44. [PMID: 30205210 PMCID: PMC6264383 DOI: 10.1016/j.neuroimage.2018.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 01/28/2023] Open
Abstract
There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.
Collapse
Affiliation(s)
- David M A Mehler
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Angharad N Williams
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Florian Krause
- Donders Institute for Brain, Cognition and Behaviour Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Michael Lührs
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands; Brain Innovation B.V, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
| | - Duncan L Turner
- Neurorehabilitation Unit, School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, United Kingdom
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom; School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom.
| |
Collapse
|
26
|
Pagnotta MF, Dhamala M, Plomp G. Benchmarking nonparametric Granger causality: Robustness against downsampling and influence of spectral decomposition parameters. Neuroimage 2018; 183:478-494. [DOI: 10.1016/j.neuroimage.2018.07.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
|
27
|
Chen J, Sun D, Shi Y, Jin W, Wang Y, Xi Q, Ren C. Alterations of static functional connectivity and dynamic functional connectivity in motor execution regions after stroke. Neurosci Lett 2018; 686:112-121. [DOI: 10.1016/j.neulet.2018.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 01/14/2023]
|
28
|
Mohanty R, Sinha AM, Remsik AB, Dodd KC, Young BM, Jacobson T, McMillan M, Thoma J, Advani H, Nair VA, Kang TJ, Caldera K, Edwards DF, Williams JC, Prabhakaran V. Early Findings on Functional Connectivity Correlates of Behavioral Outcomes of Brain-Computer Interface Stroke Rehabilitation Using Machine Learning. Front Neurosci 2018; 12:624. [PMID: 30271318 PMCID: PMC6142044 DOI: 10.3389/fnins.2018.00624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/20/2018] [Indexed: 01/05/2023] Open
Abstract
The primary goal of this work was to apply data-driven machine learning regression to assess if resting state functional connectivity (rs-FC) could estimate measures of behavioral domains in stroke subjects who completed brain-computer interface (BCI) intervention for motor rehabilitation. The study cohort consisted of 20 chronic-stage stroke subjects exhibiting persistent upper-extremity motor deficits who received the intervention using a closed-loop neurofeedback BCI device. Over the course of this intervention, resting state functional MRI scans were collected at four distinct time points: namely, pre-intervention, mid-intervention, post-intervention and 1-month after completion of intervention. Behavioral assessments were administered outside the scanner at each time-point to collect objective measures such as the Action Research Arm Test, Nine-Hole Peg Test, and Barthel Index as well as subjective measures including the Stroke Impact Scale. The present analysis focused on neuroplasticity and behavioral outcomes measured across pre-intervention, post-intervention and 1-month post-intervention to study immediate and carry-over effects. Rs-FC, changes in rs-FC within the motor network and the behavioral measures at preceding stages were used as input features and behavioral measures and associated changes at succeeding stages were used as outcomes for machine-learning-based support vector regression (SVR) models. Potential clinical confounding factors such as age, gender, lesion hemisphere, and stroke severity were included as additional features in each of the regression models. Sequential forward feature selection procedure narrowed the search for important correlates. Behavioral outcomes at preceding time-points outperformed rs-FC-based correlates. Rs-FC and changes associated with bilateral primary motor areas were found to be important correlates of across several behavioral outcomes and were stable upon inclusion of clinical variables as well. NIH Stroke Scale and motor impairment severity were the most influential clinical variables. Comparatively, linear SVR models aided in evaluation of contribution of individual correlates and seed regions while non-linear SVR models achieved higher performance in prediction of behavioral outcomes.
Collapse
Affiliation(s)
- Rosaleena Mohanty
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Electrical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Anita M Sinha
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander B Remsik
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Keith C Dodd
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany M Young
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler Jacobson
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Matthew McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jaclyn Thoma
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Hemali Advani
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Theresa J Kang
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristin Caldera
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, United States
| | - Dorothy F Edwards
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
29
|
Mohanty R, Sinha AM, Remsik AB, Dodd KC, Young BM, Jacobson T, McMillan M, Thoma J, Advani H, Nair VA, Kang TJ, Caldera K, Edwards DF, Williams JC, Prabhakaran V. Machine Learning Classification to Identify the Stage of Brain-Computer Interface Therapy for Stroke Rehabilitation Using Functional Connectivity. Front Neurosci 2018; 12:353. [PMID: 29896082 PMCID: PMC5986965 DOI: 10.3389/fnins.2018.00353] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/07/2018] [Indexed: 01/19/2023] Open
Abstract
Interventional therapy using brain-computer interface (BCI) technology has shown promise in facilitating motor recovery in stroke survivors; however, the impact of this form of intervention on functional networks outside of the motor network specifically is not well-understood. Here, we investigated resting-state functional connectivity (rs-FC) in stroke participants undergoing BCI therapy across stages, namely pre- and post-intervention, to identify discriminative functional changes using a machine learning classifier with the goal of categorizing participants into one of the two therapy stages. Twenty chronic stroke participants with persistent upper-extremity motor impairment received neuromodulatory training using a closed-loop neurofeedback BCI device, and rs-functional MRI (rs-fMRI) scans were collected at four time points: pre-, mid-, post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-FC was analyzed from two specific stages, namely pre- and post-therapy. In total, 236 seeds spanning both motor and non-motor regions of the brain were computed at each stage. A univariate feature selection was applied to reduce the number of features followed by a principal component-based data transformation used by a linear binary support vector machine (SVM) classifier to classify each participant into a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5% using a leave-one-out method. Outside of the motor network, seeds from the fronto-parietal task control, default mode, subcortical, and visual networks emerged as important contributors to the classification. Furthermore, a higher number of functional changes were observed to be strengthening from the pre- to post-therapy stage than the ones weakening, both of which involved motor and non-motor regions of the brain. These findings may provide new evidence to support the potential clinical utility of BCI therapy as a form of stroke rehabilitation that not only benefits motor recovery but also facilitates recovery in other brain networks. Moreover, delineation of stronger and weaker changes may inform more optimal designs of BCI interventional therapy so as to facilitate strengthened and suppress weakened changes in the recovery process.
Collapse
Affiliation(s)
- Rosaleena Mohanty
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Electrical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Anita M Sinha
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander B Remsik
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Keith C Dodd
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brittany M Young
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler Jacobson
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Deparment of Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Matthew McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jaclyn Thoma
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Hemali Advani
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Theresa J Kang
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristin Caldera
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, United States
| | - Dorothy F Edwards
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Improving Upper Extremity Function and Quality of Life with a Tongue Driven Exoskeleton: A Pilot Study Quantifying Stroke Rehabilitation. Stroke Res Treat 2018; 2017:3603860. [PMID: 29403672 PMCID: PMC5748322 DOI: 10.1155/2017/3603860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/29/2017] [Accepted: 11/13/2017] [Indexed: 01/17/2023] Open
Abstract
Stroke is a leading cause of long-term disability around the world. Many survivors experience upper extremity (UE) impairment with few rehabilitation opportunities, secondary to a lack of voluntary muscle control. We developed a novel rehabilitation paradigm (TDS-HM) that uses a Tongue Drive System (TDS) to control a UE robotic device (Hand Mentor: HM) while engaging with an interactive user interface. In this study, six stroke survivors with moderate to severe UE impairment completed 15 two-hour sessions of TDS-HM training over five weeks. Participants were instructed to move their paretic arm, with synchronized tongue commands to track a target waveform while using visual feedback to make accurate movements. Following TDS-HM training, significant improvements in tracking performance translated into improvements in the UE portion of the Fugl-Meyer Motor Assessment, range of motion, and all subscores for the Stroke Impact Scale. Regression modeling found daily training time to be a significant predictor of decreases in tracking error, indicating the presence of a potential dose-response relationship. The results of this pilot study indicate that the TDS-HM system can elicit significant improvements in moderate to severely impaired stroke survivors. This pilot study gives preliminary insight into the volume of treatment time required to improve outcomes.
Collapse
|
31
|
Kim T, Frank C, Schack T. A Systematic Investigation of the Effect of Action Observation Training and Motor Imagery Training on the Development of Mental Representation Structure and Skill Performance. Front Hum Neurosci 2017; 11:499. [PMID: 29089881 PMCID: PMC5650990 DOI: 10.3389/fnhum.2017.00499] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/28/2017] [Indexed: 11/13/2022] Open
Abstract
Action observation training and motor imagery training have independently been studied and considered as an effective training strategy for improving motor skill learning. However, comparative studies of the two training strategies are relatively few. The purpose of this study was to investigate the effects of action observation training and motor imagery training on the development of mental representation structure and golf putting performance as well as the relation between the changes in mental representation structure and skill performance during the early learning stage. Forty novices were randomly assigned to one of four groups: action observation training, motor imagery training, physical practice and no practice. The mental representation structure and putting performance were measured before and after 3 days of training, then after a 2-day retention period. The results showed that mental representation structure and the accuracy of the putting performance were improved over time through the two types of cognitive training (i.e., action observation training and motor imagery training). In addition, we found a significant positive correlation between changes in mental representation structure and skill performance for the action observation training group only. Taken together, these results suggest that both cognitive adaptations and skill improvement occur through the training of the two simulation states of action, and that perceptual-cognitive changes are associated with the change of skill performance for action observation training.
Collapse
Affiliation(s)
- Taeho Kim
- Neurocognition and Action-Biomechanics Research Group, Bielefeld University, Bielefeld, Germany.,Cognitive Interaction Technology-Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| | - Cornelia Frank
- Neurocognition and Action-Biomechanics Research Group, Bielefeld University, Bielefeld, Germany.,Cognitive Interaction Technology-Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action-Biomechanics Research Group, Bielefeld University, Bielefeld, Germany.,Cognitive Interaction Technology-Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany.,Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
32
|
Fujimoto H, Mihara M, Hattori N, Hatakenaka M, Yagura H, Kawano T, Miyai I, Mochizuki H. Neurofeedback-induced facilitation of the supplementary motor area affects postural stability. NEUROPHOTONICS 2017; 4:045003. [PMID: 29152530 PMCID: PMC5680482 DOI: 10.1117/1.nph.4.4.045003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/16/2017] [Indexed: 05/29/2023]
Abstract
Near-infrared spectroscopy-mediated neurofeedback (NIRS-NFB) is a promising therapeutic intervention for patients with neurological diseases. Studies have shown that NIRS-NFB can facilitate task-related cortical activation and induce task-specific behavioral changes. These findings indicate that the effect of neuromodulation depends on local cortical function. However, when the target cortical region has multiple functions, our understanding of the effects is less clear. This is true in the supplementary motor area (SMA), which is involved both in postural control and upper-limb movement. To address this issue, we investigated the facilitatory effect of NIRS SMA neurofeedback on cortical activity and behavior, without any specific task. Twenty healthy individuals participated in real and sham neurofeedback. Balance and hand dexterity were assessed before and after each NIRS-NFB session. We found a significant interaction between assessment periods (pre/post) and condition (real/sham) with respect to balance as assessed by the center of the pressure path length but not for hand dexterity as assessed by the 9-hole peg test. SMA activity only increased during real neurofeedback. Our findings indicate that NIRS-NFB itself has the potential to modulate focal cortical activation, and we suggest that it be considered a therapy to facilitate the SMA for patients with postural impairment.
Collapse
Affiliation(s)
- Hiroaki Fujimoto
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
- Osaka University Graduate School of Medicine, Department of Neurology, Suita, Osaka, Japan
| | - Masahito Mihara
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
- Osaka University Graduate School of Medicine, Department of Neurology, Suita, Osaka, Japan
- Kawasaki Medical School, Department of Neurology, Kurashiki, Okayama, Japan
| | - Noriaki Hattori
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
- Osaka University Graduate School of Medicine, Department of Neurology, Suita, Osaka, Japan
| | - Megumi Hatakenaka
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
| | - Hajime Yagura
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
| | - Teiji Kawano
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
| | - Ichiro Miyai
- Morinomiya Hospital, Neurorehabilitation Research Institute, Osaka, Osaka, Japan
| | - Hideki Mochizuki
- Osaka University Graduate School of Medicine, Department of Neurology, Suita, Osaka, Japan
| |
Collapse
|
33
|
Damiano DL, Stanley CJ, Bulea TC, Park HS. Motor Learning Abilities Are Similar in Hemiplegic Cerebral Palsy Compared to Controls as Assessed by Adaptation to Unilateral Leg-Weighting during Gait: Part I. Front Hum Neurosci 2017; 11:49. [PMID: 28228720 PMCID: PMC5296333 DOI: 10.3389/fnhum.2017.00049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 01/23/2017] [Indexed: 11/14/2022] Open
Abstract
Introduction: Individuals with cerebral palsy (CP) demonstrate high response variability to motor training insufficiently accounted for by age or severity. We propose here that differences in the inherent ability to learn new motor tasks may explain some of this variability. Damage to motor pathways involving the cerebellum, which may be a direct or indirect effect of the brain injury for many with CP, has been shown to adversely affect the ability to learn new motor tasks and may be a potential explanation. Classic adaptation paradigms that evaluate cerebellar integrity have been utilized to assess adaptation to gait perturbations in adults with stroke, traumatic brain injury and other neurological injuries but not in children with CP. Materials and Methods: A case-control study of 10 participants with and 10 without hemiplegic CP within the age range of 5–20 years was conducted. Mean age of participants in the CP group was slightly but not significantly higher than controls. Step length and swing time adaptation, defined as gradual accommodation to a perturbation, and aftereffects, or maintenance of the accommodation upon removal of the perturbation, to unilateral leg weighing during treadmill gait were quantified to assess group differences in learning. Results: Adaptation and aftereffects were demonstrated in step length across groups with no main effect for group. In CP, the dominant leg had a greater response when either leg was weighted. Swing time accommodated immediately (no adaptation) in the weighted leg only, with the non-dominant leg instead showing a more pronounced response in CP. Discussion: This group of participants with unilateral CP did not demonstrate poorer learning or retention similar to reported results in adult stroke. Deficits, while not found here, may become evident in those with other etiologies or greater severity of CP. Our data further corroborate an observation from the stroke literature that repeated practice of exaggerating the asymmetry (error augmentation), in this case by weighting the more involved or shorter step leg, vs. minimizing it by weighting the less involved or longer step leg (error reduction) may be a useful training strategy to improve step symmetry in unilateral CP.
Collapse
Affiliation(s)
- Diane L Damiano
- Functional and Applied Biomechanics Section, National Institutes of Health Bethesda, MD, USA
| | - Christopher J Stanley
- Functional and Applied Biomechanics Section, National Institutes of Health Bethesda, MD, USA
| | - Thomas C Bulea
- Functional and Applied Biomechanics Section, National Institutes of Health Bethesda, MD, USA
| | - Hyung Soon Park
- Mechanical Engineering Department, Korea Advanced Institute of Science and Technology Daejeon, South Korea
| |
Collapse
|
34
|
Bajaj S, Housley SN, Wu D, Dhamala M, James GA, Butler AJ. Dominance of the Unaffected Hemisphere Motor Network and Its Role in the Behavior of Chronic Stroke Survivors. Front Hum Neurosci 2016; 10:650. [PMID: 28082882 PMCID: PMC5186808 DOI: 10.3389/fnhum.2016.00650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022] Open
Abstract
Balance of motor network activity between the two brain hemispheres after stroke is crucial for functional recovery. Several studies have extensively studied the role of the affected brain hemisphere to better understand changes in motor network activity following stroke. Very few studies have examined the role of the unaffected brain hemisphere and confirmed the test-retest reliability of connectivity measures on unaffected hemisphere. We recorded blood oxygenation level dependent functional magnetic resonance imaging (fMRI) signals from nine stroke survivors with hemiparesis of the left or right hand. Participants performed a motor execution task with affected hand, unaffected hand, and both hands simultaneously. Participants returned for a repeat fMRI scan 1 week later. Using dynamic causal modeling (DCM), we evaluated effective connectivity among three motor areas: the primary motor area (M1), the premotor cortex (PMC) and the supplementary motor area for the affected and unaffected hemispheres separately. Five participants' manual motor ability was assessed by Fugl-Meyer Motor Assessment scores and root-mean square error of participants' tracking ability during a robot-assisted game. We found (i) that the task performance with the affected hand resulted in strengthening of the connectivity pattern for unaffected hemisphere, (ii) an identical network of the unaffected hemisphere when participants performed the task with their unaffected hand, and (iii) the pattern of directional connectivity observed in the affected hemisphere was identical for tasks using the affected hand only or both hands. Furthermore, paired t-test comparison found no significant differences in connectivity strength for any path when compared with one-week follow-up. Brain-behavior linear correlation analysis showed that the connectivity patterns in the unaffected hemisphere more accurately reflected the behavioral conditions than the connectivity patterns in the affected hemisphere. Above findings enrich our knowledge of unaffected brain hemisphere following stroke, which further strengthens our neurobiological understanding of stroke-affected brain and can help to effectively identify and apply stroke-treatments.
Collapse
Affiliation(s)
- Sahil Bajaj
- Department of Physics and Astronomy, Georgia State University, AtlantaGA, USA; Department of Psychiatry, College of Medicine, University of Arizona, TucsonAZ, USA
| | - Stephen N Housley
- Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta GA, USA
| | - David Wu
- Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta GA, USA
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Georgia State University, AtlantaGA, USA; Joint Center for Advanced Brain Imaging, Center for Behavioral Neuroscience, Center for Nano-Optics, Center for Diagnostics and Therapeutics, Georgia State University, AtlantaGA, USA; Neuroscience Institute, Georgia State University, AtlantaGA, USA
| | - G A James
- Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock AR, USA
| | - Andrew J Butler
- Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, AtlantaGA, USA; Neuroscience Institute, Georgia State University, AtlantaGA, USA; Department of Veterans Affairs, Atlanta Rehabilitation Research and Development Center of Excellence, DecaturGA, USA
| |
Collapse
|
35
|
Zhang J, Li C, Jiang T. New Insights into Signed Path Coefficient Granger Causality Analysis. Front Neuroinform 2016; 10:47. [PMID: 27833547 PMCID: PMC5082311 DOI: 10.3389/fninf.2016.00047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Abstract
Granger causality analysis, as a time series analysis technique derived from econometrics, has been applied in an ever-increasing number of publications in the field of neuroscience, including fMRI, EEG/MEG, and fNIRS. The present study mainly focuses on the validity of “signed path coefficient Granger causality,” a Granger-causality-derived analysis method that has been adopted by many fMRI researches in the last few years. This method generally estimates the causality effect among the time series by an order-1 autoregression, and defines a positive or negative coefficient as an “excitatory” or “inhibitory” influence. In the current work we conducted a series of computations from resting-state fMRI data and simulation experiments to illustrate the signed path coefficient method was flawed and untenable, due to the fact that the autoregressive coefficients were not always consistent with the real causal relationships and this would inevitablely lead to erroneous conclusions. Overall our findings suggested that the applicability of this kind of causality analysis was rather limited, hence researchers should be more cautious in applying the signed path coefficient Granger causality to fMRI data to avoid misinterpretation.
Collapse
Affiliation(s)
- Jian Zhang
- School of Mathematical Sciences, Zhejiang UniversityHangzhou, China; Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijing, China
| | - Chong Li
- School of Mathematical Sciences, Zhejiang University Hangzhou, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
36
|
Raghavan P, Geller D, Guerrero N, Aluru V, Eimicke JP, Teresi JA, Ogedegbe G, Palumbo A, Turry A. Music Upper Limb Therapy-Integrated: An Enriched Collaborative Approach for Stroke Rehabilitation. Front Hum Neurosci 2016; 10:498. [PMID: 27774059 PMCID: PMC5053999 DOI: 10.3389/fnhum.2016.00498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/21/2016] [Indexed: 01/09/2023] Open
Abstract
Stroke is a leading cause of disability worldwide. It leads to a sudden and overwhelming disruption in one’s physical body, and alters the stroke survivors’ sense of self. Long-term recovery requires that bodily perception, social participation and sense of self are restored; this is challenging to achieve, particularly with a single intervention. However, rhythmic synchronization of movement to external stimuli facilitates sensorimotor coupling for movement recovery, enhances emotional engagement and has positive effects on interpersonal relationships. In this proof-of-concept study, we designed a group music-making intervention, Music Upper Limb Therapy-Integrated (MULT-I), to address the physical, psychological and social domains of rehabilitation simultaneously, and investigated its effects on long-term post-stroke upper limb recovery. The study used a mixed-method pre-post design with 1-year follow up. Thirteen subjects completed the 45-min intervention twice a week for 6 weeks. The primary outcome was reduced upper limb motor impairment on the Fugl-Meyer Scale (FMS). Secondary outcomes included sensory impairment (two-point discrimination test), activity limitation (Modified Rankin Scale, MRS), well-being (WHO well-being index), and participation (Stroke Impact Scale, SIS). Repeated measures analysis of variance (ANOVA) was used to test for differences between pre- and post-intervention, and 1-year follow up scores. Significant improvement was found in upper limb motor impairment, sensory impairment, activity limitation and well-being immediately post-intervention that persisted at 1 year. Activities of daily living and social participation improved only from post-intervention to 1-year follow up. The improvement in upper limb motor impairment was more pronounced in a subset of lower functioning individuals as determined by their pre-intervention wrist range of motion. Qualitatively, subjects reported new feelings of ownership of their impaired limb, more spontaneous movement, and enhanced emotional engagement. The results suggest that the MULT-I intervention may help stroke survivors re-create their sense of self by integrating sensorimotor, emotional and interoceptive information and facilitate long-term recovery across multiple domains of disability, even in the chronic stage post-stroke. Randomized controlled trials are warranted to confirm the efficacy of this approach. Clinical Trial Registration: National Institutes of Health, clinicaltrials.gov, NCT01586221.
Collapse
Affiliation(s)
- Preeti Raghavan
- Department of Rehabilitation Medicine, New York University School of MedicineNew York, NY, USA; Steinhardt School of Culture, Education, and Human Development, New York UniversityNew York, NY, USA
| | - Daniel Geller
- Department of Rehabilitation Medicine, New York University School of Medicine New York, NY, USA
| | - Nina Guerrero
- Steinhardt School of Culture, Education, and Human Development, New York University New York, NY, USA
| | - Viswanath Aluru
- Department of Rehabilitation Medicine, New York University School of Medicine New York, NY, USA
| | - Joseph P Eimicke
- Research Division, Hebrew Home at RiverdaleBronx, NY, USA; Division of Geriatrics and Palliative Medicine, Weill Cornell Medical CollegeNew York, NY, USA
| | - Jeanne A Teresi
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medical CollegeNew York, NY, USA; Columbia University Stroud Center and New York State Psychiatric InstituteNew York, NY, USA
| | - Gbenga Ogedegbe
- Department of Population Health, New York University School of Medicine New York, NY, USA
| | - Anna Palumbo
- Steinhardt School of Culture, Education, and Human Development, New York University New York, NY, USA
| | - Alan Turry
- Steinhardt School of Culture, Education, and Human Development, New York University New York, NY, USA
| |
Collapse
|
37
|
Bajaj S, Adhikari BM, Friston KJ, Dhamala M. Bridging the Gap: Dynamic Causal Modeling and Granger Causality Analysis of Resting State Functional Magnetic Resonance Imaging. Brain Connect 2016; 6:652-661. [PMID: 27506256 DOI: 10.1089/brain.2016.0422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Granger causality (GC) and dynamic causal modeling (DCM) are the two key approaches used to determine the directed interactions among brain areas. Recent discussions have provided a constructive account of the merits and demerits. GC, on one side, considers dependencies among measured responses, whereas DCM, on the other, models how neuronal activity in one brain area causes dynamics in another. In this study, our objective was to establish construct validity between GC and DCM in the context of resting state functional magnetic resonance imaging (fMRI). We first established the face validity of both approaches using simulated fMRI time series, with endogenous fluctuations in two nodes. Crucially, we tested both unidirectional and bidirectional connections between the two nodes to ensure that both approaches give veridical and consistent results, in terms of model comparison. We then applied both techniques to empirical data and examined their consistency in terms of the (quantitative) in-degree of key nodes of the default mode. Our simulation results suggested a (qualitative) consistency between GC and DCM. Furthermore, by applying nonparametric GC and stochastic DCM to resting-state fMRI data, we confirmed that both GC and DCM infer similar (quantitative) directionality between the posterior cingulate cortex (PCC), the medial prefrontal cortex, the left middle temporal cortex, and the left angular gyrus. These findings suggest that GC and DCM can be used to estimate directed functional and effective connectivity from fMRI measurements in a consistent manner.
Collapse
Affiliation(s)
- Sahil Bajaj
- 1 Department of Physics and Astronomy, Georgia State University , Atlanta, Georgia .,2 Department of Psychiatry, College of Medicine, University of Arizona , Tucson, Arizona
| | - Bhim M Adhikari
- 1 Department of Physics and Astronomy, Georgia State University , Atlanta, Georgia
| | - Karl J Friston
- 3 Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London , London, United Kingdom
| | - Mukesh Dhamala
- 1 Department of Physics and Astronomy, Georgia State University , Atlanta, Georgia .,4 Neuroscience Institute, Georgia State University , Atlanta, Georgia .,5 Center for Behavioral Neuroscience, Center for Nano-Optics, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia
| |
Collapse
|
38
|
Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, Bleyenheuft Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci 2016; 10:442. [PMID: 27679565 PMCID: PMC5020059 DOI: 10.3389/fnhum.2016.00442] [Citation(s) in RCA: 455] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 12/27/2022] Open
Abstract
Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.
Collapse
Affiliation(s)
- Samar M Hatem
- Physical and Rehabilitation Medicine, Brugmann University HospitalBrussels, Belgium; Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de LouvainBrussels, Belgium; Faculty of Medicine and Pharmacy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit BrusselBrussels, Belgium
| | - Geoffroy Saussez
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Margaux Della Faille
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Vincent Prist
- Physical and Rehabilitation Medicine, Centre Hospitalier de l'Ardenne Libramont, Belgium
| | - Xue Zhang
- Movement Control and Neuroplasticity Research Group, Motor Control Laboratory, Department of Kinesiology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Delphine Dispa
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de LouvainBrussels, Belgium; Physical Medicine and Rehabilitation, Cliniques Universitaires Saint-Luc, Université Catholique de LouvainBrussels, Belgium
| | - Yannick Bleyenheuft
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| |
Collapse
|
39
|
Horn U, Roschka S, Eyme K, Walz AD, Platz T, Lotze M. Increased ventral premotor cortex recruitment after arm training in an fMRI study with subacute stroke patients. Behav Brain Res 2016; 308:152-9. [PMID: 27113682 DOI: 10.1016/j.bbr.2016.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 01/12/2023]
Abstract
To investigate therapy associated changes in the cerebral representation of movement after stroke, we used functional magnetic resonance imaging (fMRI) during an active and a passive motor task for the affected and unaffected hand before and after a three week comprehensive hand motor training. Twelve patients in the subacute phase from 2 to 9 weeks after mild to moderate motor stroke were recruited. During fMRI, the active task comprised fist clenching, which was precisely controlled for motor performance by visual feedback of force and frequency. The passive task consisted of wrist flexion-extension of 1Hz frequency by means of a pneumatic driven splint. Arm Ability Training (AAT) was conducted one hour per day over 3 weeks in addition to inward rehabilitative therapy. Performance gain was tested using movements trained with AAT, but also with conventional hand motor tests (Nine-Hole-Peg Test, Box-and-Block Test). Rehabilitation therapy and AAT resulted in considerable improvement of performance in trained tasks and other hand motor functions (e.g., Nine-Hole-Peg Test). FMRI activation in the ventral premotor cortex (vPMC) of the lesioned hemisphere increased over time for the active task only for the affected hand. No such change was present for the passive wrist extension task or the active task with the unaffected hand. In addition, only for the post measurement of the active task performed with the affected hand, bilateral vPMC shows a more pronounced activation than in healthy controls. This finding contradicts the simple "near to normal is good recovery" opinion.
Collapse
Affiliation(s)
- Ulrike Horn
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, University of Greifswald, Germany
| | - Sybille Roschka
- BDH-Klinik Greifswald, Neurorehabilitation Center and Spinal Cord Injury Unit, University of Greifswald, Germany
| | - Katharina Eyme
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, University of Greifswald, Germany
| | - Andrea-Daniela Walz
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, University of Greifswald, Germany
| | - Thomas Platz
- BDH-Klinik Greifswald, Neurorehabilitation Center and Spinal Cord Injury Unit, University of Greifswald, Germany
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, University of Greifswald, Germany.
| |
Collapse
|
40
|
Paggiaro A, Birbaumer N, Cavinato M, Turco C, Formaggio E, Del Felice A, Masiero S, Piccione F. Magnetoencephalography in Stroke Recovery and Rehabilitation. Front Neurol 2016; 7:35. [PMID: 27065338 PMCID: PMC4815903 DOI: 10.3389/fneur.2016.00035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neurophysiological technique used to study the cerebral cortex. Currently, MEG is mainly used clinically to localize epileptic foci and eloquent brain areas in order to avoid damage during neurosurgery. MEG might, however, also be of help in monitoring stroke recovery and rehabilitation. This review focuses on experimental use of MEG in neurorehabilitation. MEG has been employed to detect early modifications in neuroplasticity and connectivity, but there is insufficient evidence as to whether these methods are sensitive enough to be used as a clinical diagnostic test. MEG has also been exploited to derive the relationship between brain activity and movement kinematics for a motor-based brain–computer interface. In the current body of experimental research, MEG appears to be a powerful tool in neurorehabilitation, but it is necessary to produce new data to confirm its clinical utility.
Collapse
Affiliation(s)
- Andrea Paggiaro
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Niels Birbaumer
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation, Venice, Italy; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Marianna Cavinato
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Cristina Turco
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Emanuela Formaggio
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| | - Alessandra Del Felice
- Section of Rehabilitation, Department of Neuroscience, University of Padova , Padova , Italy
| | - Stefano Masiero
- Section of Rehabilitation, Department of Neuroscience, University of Padova , Padova , Italy
| | - Francesco Piccione
- Laboratory of Neurophysiology and Magnetoencephalography, Department of Neurophysiology, Institute of Care and Research, S.Camillo Hospital Foundation , Venice , Italy
| |
Collapse
|
41
|
Melnikova EA. [Analysis of the cerebral mechanisms underlying rehabilitation of the patients after stroke]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2016; 92:4-10. [PMID: 26841522 DOI: 10.17116/kurort201564-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors present the results of the comprehensive analysis of the principal cerebral mechanisms involved in the processes of rehabilitation of the patients after stroke based on the review of the literature concerning this issue. The data obtained in the course of original investigations including 203 patients who had undergone stroke confirm and refine the currently available information pertinent to the problem in question. First and foremost, they demonstrate the influence of the demographic, neurophysiological, and clinical factors as well as neuroimaging and ultrasound studies on the parameters of the evoked potentials in the brain of the stroke-affected patients. In addition, they provide a deeper insight into the role of short-term memory in the realization of the motor response. The probable macro- and microstructural, functional, neurochemical, and pathophysiological mechanisms contributing to the rehabilitation of the patients who had undergone stroke are considered with reference to their relationships. Special emphasis is laid on the methods for regulation of these mechanisms.
Collapse
Affiliation(s)
- E A Melnikova
- State autonomous healthcare facility 'Moscow Research and Practical Centre for Medical Rehabilitation, Restorative and Sports Medicine', Moscow Health Department, Moscow, Russian Federation, 105120
| |
Collapse
|
42
|
Melnikova EA, Razumov AN. [The factors influencing the recovery of the patients suffering from stroke during the rehabilitation period]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2016; 92:4-11. [PMID: 26852495 DOI: 10.17116/kurort201554-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this article, the results of the authors' research, including analysis of the clinical and instrumental data concerning 203 patients with stroke, are presented. The factors significantly affecting the recovery of patients in the rehabilitation are determine, viz. the age, the presence of the chronic pain, the level of education, the nature of the pathological process in the brain (the stroke type), the localization of the lesion (hemispheric, stem), right/left-sided localization of the lesion, the width of the lesion, the volume of the lesion (the atrophic post-ischemic changes, the volume of hematoma), the presence of cerebral atrophy (the width of the third ventricle), the presence of leukoareosis, the presence and the severity of stenosis in the internal carotid artery, the operations on the main arteries in the medical history, the presence of focal lesions on the electroencephalogram, the presence of the perifocal brain edema, accompanied by a shift of midline structures in the acute phase of stroke, the incidence of the stroke. We distinguished the "rehabilitation subgroups" according to the representation of the basic and additional risk factors. The influence of leukoareosis on the recovery of patients after hemorrhagic stroke in shown for the first time. The values of each risk factor for the patients presenting with ischemic stroke of hemisphere and stem localization, as well as for the patients with intracerebral hematomas were calculated. The prognostically significant percentage of the clinical improvement of the patients' conditions in the course of rehabilitation for each of the subgroups is estimated.
Collapse
Affiliation(s)
- E A Melnikova
- State autonomous healthcare facility 'Moscow Research and Practical Centre for Medical Rehabilitation, Restorative and Sports Medicine', Moscow Health Department, Moscow, Russian Federation, 105120
| | - A N Razumov
- State autonomous healthcare facility 'Moscow Research and Practical Centre for Medical Rehabilitation, Restorative and Sports Medicine', Moscow Health Department, Moscow, Russian Federation, 105120
| |
Collapse
|
43
|
Melnikova EA. [The peculiarities of the application of transcranial magnetic therapy and electrical stimulation for the treatment of the patients presenting with various types of stroke]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2016; 92:12-17. [PMID: 26852496 DOI: 10.17116/kurort2015512-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this article, the results of the authors' research, including analysis of the clinical and instrumental data concerning 203 patients with, stroke are presented. It is shown that the clinical effectiveness of the transcranial methods incorporated in the combined rehabilitation programs depends on the type of stroke and localization of the lesions. Specifically, the patients presenting with ischemic stroke of hemispheric localization experienced a neurophysiologically confirmed significant clinical improvement that became apparent after the consistent application of transcranial magnetic therapy and micropolarization. In the patients with ischemic stroke of stem localization, the positive influence on psychomotor recovery was achieved with the application of transcranial magnetic therapy, but transcranial micropolarization did not have an appreciable effect on the recovery of such patients. The patients presenting with hemorrhagic stroke did not experience any significant improvement of psychomotor parameters from transcranial magnetic therapy and transcranial micropolarization. The likely mechanism underlying the recovery of psychomotor processes under effect of transcranial magnetic therapy in the patients with ischemic stroke is the normalization of the frequency of interaction between brain structures. In addition, in the patients with ischemic stroke of hemispheric localization and in the patients with hemorrhagic stroke electrical myostimulation has a marked impact on the psychomotor recovery only in case of functional treatment. In the patients suffering from ischemic stroke of stem localization non-functional electromyostimulation significantly improves motor functions and cognitive motor control.
Collapse
Affiliation(s)
- E A Melnikova
- State autonomous healthcare facility 'Moscow Research and Practical Centre for Medical Rehabilitation, Restorative and Sports Medicine', Moscow Health Department, Moscow, Russian Federation, 105120
| |
Collapse
|
44
|
Murphy MD, Guggenmos DJ, Bundy DT, Nudo RJ. Current Challenges Facing the Translation of Brain Computer Interfaces from Preclinical Trials to Use in Human Patients. Front Cell Neurosci 2016; 9:497. [PMID: 26778962 PMCID: PMC4702293 DOI: 10.3389/fncel.2015.00497] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022] Open
Abstract
Current research in brain computer interface (BCI) technology is advancing beyond preclinical studies, with trials beginning in human patients. To date, these trials have been carried out with several different types of recording interfaces. The success of these devices has varied widely, but different factors such as the level of invasiveness, timescale of recorded information, and ability to maintain stable functionality of the device over a long period of time all must be considered in addition to accuracy in decoding intent when assessing the most practical type of device moving forward. Here, we discuss various approaches to BCIs, distinguishing between devices focusing on control of operations extrinsic to the subject (e.g., prosthetic limbs, computer cursors) and those focusing on control of operations intrinsic to the brain (e.g., using stimulation or external feedback), including closed-loop or adaptive devices. In this discussion, we consider the current challenges facing the translation of various types of BCI technology to eventual human application.
Collapse
Affiliation(s)
- Maxwell D Murphy
- Bioengineering Graduate Program, University of KansasLawrence, KS, USA; Department of Rehabilitation Medicine, University of Kansas Medical CenterKansas City, KS, USA
| | - David J Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center Kansas City, KS, USA
| | - David T Bundy
- Department of Rehabilitation Medicine, University of Kansas Medical Center Kansas City, KS, USA
| | - Randolph J Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical CenterKansas City, KS, USA; Landon Center on Aging, University of Kansas Medical CenterKansas City, KS, USA
| |
Collapse
|
45
|
Razumov AN, Melnikova EA. [The modern approaches to the prognostication of rehabilitation of the patients after stroke on an individual basis: a review of the literature and the results of original investigations]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2015; 92:11-16. [PMID: 26841523 DOI: 10.17116/kurort2015611-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This article was designed to analyze the results of the investigations with the purpose of elucidation of the prognostic factors relevant to the rehabilitation of the patients who survived after stroke. Special attention is given to the role of demographic (age and sex) factors and the data of the clinical, neurological, psychological, cognitive, and instrumental examination of the patients. The results of the original studies based on the treatment of 203 stroke patients are discussed in the context of modern concepts of the significance of the factors contributing to the recovery of the patients in the course of the post-stroke rehabilitation. The prognostic value of the selected factors, such as leukoareosis (for the patients presenting with hemorrhagic stroke), has been demonstrated for the first time. The new data on the duration of the rehabilitation period are presented with reference to its dependence on the type of stroke and localization of the lesions. Specifically, it is estimated to be 2 years for the patients who suffered from ischemic stroke in the brain stem, 31 months for those with ischemic stroke of the hemispherical localization, and 38 months for the patients presenting with hemorrhagic stroke (hemispherical hematoma). In addition, the data on the magnitude of the post-ischemic atrophic changes of prognostic values are presented.
Collapse
Affiliation(s)
- A N Razumov
- State autonomous healthcare facility 'Moscow Research and Practical Centre for Medical Rehabilitation, Restorative and Sports Medicine', Moscow Health Department, Moscow, Russian Federation, 105120
| | - E A Melnikova
- State autonomous healthcare facility 'Moscow Research and Practical Centre for Medical Rehabilitation, Restorative and Sports Medicine', Moscow Health Department, Moscow, Russian Federation, 105120
| |
Collapse
|
46
|
Bajaj S, Butler AJ, Drake D, Dhamala M. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation. NEUROIMAGE-CLINICAL 2015; 8:572-82. [PMID: 26236627 PMCID: PMC4501560 DOI: 10.1016/j.nicl.2015.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 01/17/2023]
Abstract
Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution tasks. These interactions and their functionality can change following stroke and recovery. How brain network interactions reorganize and recover their functionality during recovery and treatment following stroke are not well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals from 10 stroke survivors and evaluated dynamical causal modeling (DCM)-based effective connectivity among three motor areas: primary motor cortex (M1), pre-motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks. We compared the connectivity between affected and unaffected hemispheres before and after mental practice and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian model selection (BMS) approach in the DCM approach, we found that, after intervention, the same network dominated during motor-imagery and motor-execution tasks but modulatory parameters suggested a suppressive influence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted during the motor-execution task. We found that the intervention caused a reorganization of the network during both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) approach, we found that the intervention improved the regional connectivity among the motor areas during both the tasks. The connectivity between PMC and M1 was stronger in motor-imagery tasks whereas the connectivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral improvement (p = 0.001) in sensation and motor movements because of the intervention as reflected by behavioral Fugl-Meyer (FMA) measures, which were significantly correlated (p = 0.05) with a subset of connectivity. These findings suggest that PMC and M1 play a crucial role during motor-imagery as well as during motor-execution task. In addition, M1 causes more exchange of causal information among motor areas during a motor-execution task than during a motor-imagery task due to its interaction with SM A. This study expands our understanding of motor network involved during two different tasks, which are commonly used during rehabilitation following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in helping stroke survivors regain motor ability. Brain motor effective connectivity can change due to stroke and during recovery. Rehabilitative treatments caused significant changes in motor and sensation scores. Behavioral improvements were accompanied by specific changes in brain connectivity. SMA exerted a suppressive driving to M1 during motor imagery. SMA-to-M1connectivity was positively modulated during actual motor execution.
Collapse
Affiliation(s)
- Sahil Bajaj
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA
| | - Andrew J Butler
- Byrdine F. Lewis School of Nursing & Health Professions, Georgia State University, Atlanta, GA, USA ; Department of Veteran's Affairs, Atlanta Rehabilitation Research and Development Center of Excellence, Decatur, GA, USA ; Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Daniel Drake
- Byrdine F. Lewis School of Nursing & Health Professions, Georgia State University, Atlanta, GA, USA
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, USA ; Neuroscience Institute, Georgia State University, Atlanta, GA, USA ; Center for Nano-Optics, Center for Behavioral Neuroscience, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|