1
|
Epp S, Walker A, Boudes E, Bray S, Noel M, Rayner L, Rasic N, Miller JV. Brain Function and Pain Interference After Pediatric Intensive Interdisciplinary Pain Treatment. Clin J Pain 2024; 40:393-399. [PMID: 38606879 DOI: 10.1097/ajp.0000000000001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVES Intensive interdisciplinary pain treatments (IIPTs) are programs that aim to improve functioning in youth with severe chronic pain. Little is known about how the brain changes after IIPT; however, decreased brain responses to emotional stimuli have been identified previously in pediatric chronic pain relative to healthy controls. We examined whether IIPT increased brain responses to emotional stimuli, and whether this change was associated with a reduction in pain interference. PATIENTS AND METHODS Twenty youths with chronic pain aged 14 to 18 years were scanned using functional magnetic resonance imaging, pre and post-IIPT. During the functional magnetic resonance imaging, patients were presented with emotional stimuli (ie, faces expressing happiness/fear), neutral expressions, and control (ie, scrambled) images. Patients completed a measure of pain interference pre and post-IIPT. Paired t tests were used to examine differences in brain activation in response to emotional versus neutral stimuli, pre to post-IIPT. Data from significant brain clusters were entered into linear mixed models to examine the relationships between brain activation and impairment pre and post-IIPT. RESULTS Patients demonstrated a decrease in middle frontal gyrus (MFG) activation in response to emotional stimuli (happy + fear) relative to scrambled images, between pre and post-IIPT ( P < 0.05). Lower MFG activation was associated with lower pain interference, pre and post-IIPT ( P < 0.05). CONCLUSION Contrary to our hypothesis, IIPT was associated with a reduction in MFG activation to emotional stimuli, and this change was associated with reduced pain interference. The MFG is a highly interconnected brain area involved in both pain chronification and antinociception. With further validation of these results, the MFG may represent an important biomarker for evaluating patient treatment response and target for future pain interventions.
Collapse
Affiliation(s)
- Spencer Epp
- Department of Anesthesiology, Perioperative and Pain Medicine
| | - Andrew Walker
- Department of Anesthesiology, Perioperative and Pain Medicine
| | | | - Signe Bray
- Department of Radiology, Cumming School of Medicine
- Hotchkiss Brain Institute
- Owerko Centre, Alberta Children's Hospital Research Institute
- Alberta Children's Hospital Research Institute
| | - Melanie Noel
- Department of Radiology, Psychology
- Hotchkiss Brain Institute
- Owerko Centre, Alberta Children's Hospital Research Institute
- Alberta Children's Hospital Research Institute
- Vi Riddell Children's Pain and Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada
| | - Laura Rayner
- Department of Anesthesiology, Perioperative and Pain Medicine
| | - Nivez Rasic
- Department of Anesthesiology, Perioperative and Pain Medicine
- Alberta Children's Hospital Research Institute
- Vi Riddell Children's Pain and Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada
| | - Jillian Vinall Miller
- Department of Anesthesiology, Perioperative and Pain Medicine
- Department of Radiology, Psychology
- O'Brien Institute for Public Health, University of Calgary
- Hotchkiss Brain Institute
- Owerko Centre, Alberta Children's Hospital Research Institute
- Alberta Children's Hospital Research Institute
- Vi Riddell Children's Pain and Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada
| |
Collapse
|
2
|
da Silva Fiorin F, do Espírito Santo CC, Da Silva JT, Chung MK. Inflammation, brain connectivity, and neuromodulation in post-traumatic headache. Brain Behav Immun Health 2024; 35:100723. [PMID: 38292321 PMCID: PMC10827408 DOI: 10.1016/j.bbih.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Post-traumatic headache (PTH) is a debilitating condition that affects individuals with different levels of traumatic brain injury (TBI) severity. The difficulties in developing an effective treatment are related to a lack of understanding the complicated mechanisms and neurobiological changes in brain function after a brain injury. Preclinical studies have indicated that peripheral and central sensitization of the trigeminal nociceptive pathways contributes to PTH. While recent brain imaging studies have uncovered widespread changes in brain functional connectivity following trauma, understanding exactly how these networks contribute to PTH after injury remains unknown. Stimulation of peripheral (trigeminal or vagus) nerves show promising efficacies in PTH experimental animals, likely mediated by influencing TBI-induced pathological plasticity by decreasing neuroinflammation and neuronal apoptosis. Non-invasive brain stimulations, such as transcranial magnetic or direct current stimulations, show analgesia for multiple chronic pain conditions, including PTH. Better mechanistic understanding of analgesia achieved by neuromodulations can define peripheral and central mechanisms involved in the development, the resolution, and the management of PTH.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - Caroline Cunha do Espírito Santo
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Joyce T. Da Silva
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Program in Neuroscience, Center to Advance Chronic Pain Research, Baltimore, MD, USA
| |
Collapse
|
3
|
Jotwani ML, Wu Z, Lunde CE, Sieberg CB. The missing mechanistic link: Improving behavioral treatment efficacy for pediatric chronic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1022699. [PMID: 36313218 PMCID: PMC9614027 DOI: 10.3389/fpain.2022.1022699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Pediatric chronic pain is a significant global issue, with biopsychosocial factors contributing to the complexity of the condition. Studies have explored behavioral treatments for pediatric chronic pain, but these treatments have mixed efficacy for improving functional and psychological outcomes. Furthermore, the literature lacks an understanding of the biobehavioral mechanisms contributing to pediatric chronic pain treatment response. In this mini review, we focus on how neuroimaging has been used to identify biobehavioral mechanisms of different conditions and how this modality can be used in mechanistic clinical trials to identify markers of treatment response for pediatric chronic pain. We propose that mechanistic clinical trials, utilizing neuroimaging, are warranted to investigate how to optimize the efficacy of behavioral treatments for pediatric chronic pain patients across pain types and ages.
Collapse
Affiliation(s)
- Maya L. Jotwani
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Ziyan Wu
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Claire E. Lunde
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christine B. Sieberg
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
den Hollander M, Smeets RJEM, van Meulenbroek T, van Laake-Geelen CCM, Baadjou VA, Timmers I. Exposure in Vivo as a Treatment Approach to Target Pain-Related Fear: Theory and New Insights From Research and Clinical Practice. Phys Ther 2022; 102:6515749. [PMID: 35084025 DOI: 10.1093/ptj/pzab270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 01/07/2023]
Abstract
UNLABELLED Pain-related fear (PRF) can be a significant factor contributing to the development and maintenance of pain-related disability in individuals with persistent pain. One treatment approach to target PRF and related avoidance behavior is exposure in vivo (EXP). EXP has a long history in the field of anxiety, a field that is constantly evolving. This Perspective outlines recent theoretical advancements and how they apply to EXP for PRF, including suggestions for how to optimize inhibitory learning during EXP; reviews mechanistic work from neuroimaging supporting the targeting of PRF in people with chronic pain; and focuses on clinical applications of EXP for PRF, as EXP is moving into new directions regarding who is receiving EXP (eg, EXP in chronic secondary pain) and how treatment is provided (EXP in primary care with a crucial role for physical therapists). Considerations are provided regarding challenges, remaining questions, and promising future perspectives. IMPACT For patients with chronic pain who have elevated pain-related fear (PRF), exposure is the treatment of choice. This Perspective highlights the inhibitory learning approach, summarizes mechanistic work from experimental psychology and neuroimaging regarding PRF in chronic pain, and describes possible clinical applications of EXP in chronic secondary pain as well as in primary care.
Collapse
Affiliation(s)
- Marlies den Hollander
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rob J E M Smeets
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands.,CIR Revalidatie, location Eindhoven, the Netherlands
| | - Thijs van Meulenbroek
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Charlotte C M van Laake-Geelen
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Vera A Baadjou
- Adelante Centre of Expertise in Rehabilitation and Audiology, Maastricht, the Netherlands.,Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Inge Timmers
- Department of Rehabilitation Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Timmers I, van de Ven VG, Vlaeyen JW, Smeets RJ, Verbunt JA, de Jong JR, Kaas AL. Corticolimbic Circuitry in Chronic Pain Tracks Pain Intensity Relief Following Exposure In Vivo. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:28-36. [PMID: 36324433 PMCID: PMC9616294 DOI: 10.1016/j.bpsgos.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background A subset of patients with chronic pain who receive exposure in vivo (EXP) treatment experience clinically relevant relief of pain intensity. Although pain relief is not an explicit therapeutic target, it is important to understand how and why this concomitant effect occurs in some patients but not others. This longitudinal study therefore aimed to characterize brain plasticity as well as to explore pretreatment factors related to pain relief. Methods Resting-state functional magnetic resonance imaging data were acquired in 30 patients with chronic pain. Twenty-three patients completed EXP, and 6-month follow-up data were available in 20 patients (magnetic resonance imaging data in 17 patients). Pain-free control data were acquired at two time points (n = 29, n = 21). Seed-based resting-state functional connectivity (rsFC) analyses were performed, with seeds in the amygdala, hippocampus, and nucleus accumbens. Results Pain relief after EXP was highly variable, with 60% of patients reporting a clinically relevant improvement. Amygdala rsFC with the middle frontal gyrus decreased significantly over time in patients but was not associated with pain relief. In contrast, greater pain relief was associated with greater decreases over time in hippocampus rsFC with the precuneus, which was related to reductions in catastrophizing (EXP therapeutic target) as well. Greater pain relief was also associated with lower pretreatment rsFC between nucleus accumbens and postcentral gyrus. Conclusions While changes in hippocampus rsFC were associated with pain relief after EXP, pretreatment nucleus accumbens rsFC showed potential prognostic value. Our findings further support the importance of corticolimbic circuitry in chronic pain, emphasizing its relation to pain relief and identifying potential underlying mechanisms and prognostic factors, warranting further testing in independent samples.
Collapse
|
6
|
Abstract
Approximately 1.7 million youth suffer from debilitating chronic pain in the US alone, conferring risk of continued pain in adulthood. Aberrations in threat-safety (T-S) discrimination are proposed to contribute to pain chronicity in adults and youth by interacting with pain-related distress. Yet, few studies have examined the neural circuitry underlying T-S discrimination in patients with chronic pain or how T-S discrimination relates to pain-related distress. In this study, 91 adolescents (10-24 years; 78 females) including 30 chronic pain patients with high pain-related distress, 29 chronic pain patients with low pain-related distress, and 32 healthy peers without chronic pain completed a developmentally appropriate T-S learning paradigm. We measured self-reported fear, psychophysiology (skin conductance response), and functional magnetic resonance imaging responses (N = 72 after functional magnetic resonance imaging exclusions). After controlling for age and anxiety symptoms, patients with high pain-related distress showed altered self-reported fear and frontolimbic activity in response to learned threat and safety cues compared with both patients with low pain-related distress and healthy controls. Specifically, adolescent patients with high pain-related distress reported elevated fear and showed elevated limbic (hippocampus and amygdala) activation in response to a learned threat cue (CS+). In addition, they showed decreased frontal (vmPFC) activation and aberrant frontolimbic connectivity in response to a learned safety cue (CS-). Patients with low pain-related distress and healthy controls appeared strikingly similar across brain and behavior. These findings indicate that altered T-S discrimination, mediated by frontolimbic activation and connectivity, may be one mechanism maintaining pain chronicity in adolescents with high levels of pain-related distress.
Collapse
|
7
|
Abstract
Pain-related fear and avoidance are increasingly demonstrated to play an important role in adult and childhood chronic pain. The Fear of Pain Questionnaire for Children (FOPQC) is a 24-item measure of pain-related fear-avoidance in youth that has demonstrated good indices of reliability and validity, treatment responsiveness, and associations with brain circuitry alterations. This study describes the development and psychometric examination of the FOPQC-SF, a short form of the original measure. We selected 10 items for the short form that best represented the content and 2-factor (fear and avoidance) structure of the original measure from a cohort of 613 youth (Mage = 14.7 years) with chronic pain. Next, confirmatory factor analyses from a second sample of 526 youth (Mage = 14.7 years) with chronic pain who completed the FOPQC-SF supported the original 2-factor model but indicated that one item should be moved to the avoidance subscale. The FOPQC-SF demonstrates strong internal consistency and moderate-to-strong construct and criterion validity. The 3-month test-retest reliability estimates (N = 94) were strong, and there was preliminary evidence of responsivity to change. To aid integration into intervention trials and clinical practice, we provide clinical reference points and a criterion to assess reliable change. The short form could be used for rapid identification of pain-related fear and avoidance in youth during clinic evaluations, and is optimized for clinical registries.
Collapse
|
8
|
Eccleston C, Fisher E, Howard RF, Slater R, Forgeron P, Palermo TM, Birnie KA, Anderson BJ, Chambers CT, Crombez G, Ljungman G, Jordan I, Jordan Z, Roberts C, Schechter N, Sieberg CB, Tibboel D, Walker SM, Wilkinson D, Wood C. Delivering transformative action in paediatric pain: a Lancet Child & Adolescent Health Commission. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:47-87. [PMID: 33064998 DOI: 10.1016/s2352-4642(20)30277-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Eccleston
- Centre for Pain Research, University of Bath, Bath, UK; Cochrane Pain, Palliative, and Supportive Care Review Groups, Churchill Hospital, Oxford, UK; Department of Clinical-Experimental and Health Psychology, Ghent University, Ghent, Belgium.
| | - Emma Fisher
- Centre for Pain Research, University of Bath, Bath, UK; Cochrane Pain, Palliative, and Supportive Care Review Groups, Churchill Hospital, Oxford, UK
| | - Richard F Howard
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paula Forgeron
- School of Nursing, Faculty of Health Sciences, University of Ottawa, ON, Canada
| | - Tonya M Palermo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA; Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kathryn A Birnie
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Calgary, AB, Canada
| | - Brian J Anderson
- Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
| | - Christine T Chambers
- Department of Psychology and Neuroscience, and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada; Centre for Pediatric Pain Research, IWK Health Centre, Halifax, NS, Canada
| | - Geert Crombez
- Department of Clinical-Experimental and Health Psychology, Ghent University, Ghent, Belgium
| | - Gustaf Ljungman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | | | | | | - Neil Schechter
- Division of Pain Medicine, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Anesthesiology, Harvard Medical School, Boston, MA, USA
| | - Christine B Sieberg
- Division of Pain Medicine, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Suellen M Walker
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dominic Wilkinson
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK; John Radcliffe Hospital, Oxford, UK; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Chantal Wood
- Department of Spine Surgery and Neuromodulation, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
9
|
Neuropathic pain in children: Steps towards improved recognition and management. EBioMedicine 2020; 62:103124. [PMID: 33248373 PMCID: PMC7704400 DOI: 10.1016/j.ebiom.2020.103124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain in children can be severe and persistent, difficult to recognise and manage, and associated with significant pain-related disability. Recognition based on clinical history and sensory descriptors is challenging in young children, and screening tools require further validation at older ages. Confirmatory tests can identify the disease or lesion of the somatosensory nervous system resulting in neuropathic pain, but feasibility and interpretation may be influenced by age- and sex-dependent changes throughout development. Quantitative sensory testing identifies specific mechanism-related sensory profiles; brain imaging is a potential biomarker of alterations in central processing and modulation of both sensory and affective components of pain; and genetic analysis can reveal known and new causes of neuropathic pain. Alongside existing patient- and parent-reported outcome measures, somatosensory system research methodologies and validation of mechanism-based standardised end-points may inform individualised therapy and stratification for clinical trials that will improve evidence-based management of neuropathic pain in children.
Collapse
|
10
|
The feasibility and acceptability of research magnetic resonance imaging in adolescents with moderate-severe neuropathic pain. Pain Rep 2020; 5:e807. [PMID: 32072101 PMCID: PMC7004507 DOI: 10.1097/pr9.0000000000000807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Introduction: Multimodal characterisation with questionnaires, Quantitative Sensory Testing (QST), and neuroimaging will improve understanding of neuropathic pain (NeuP) in adolescents. Magnetic resonance imaging (MRI) data in adolescents with NeuP are limited, and the perceived practical or ethical burden of scanning may represent a barrier to research. Objective: To determine the feasibility of MRI scanning in adolescents with moderate–severe NeuP, with respect to consent rate, postscan acceptability, and data quality. Methods: This prospective cohort study evaluating questionnaires and QST recruited adolescents aged 10 to 18 years with clinically diagnosed NeuP from a tertiary clinic. Eligible adolescents aged 11 years and older could additionally agree/decline an MRI scan. After the scan, families rated discomfort, perceived risk, and acceptability of current and future MRI scans (0–10 numerical rating scales). Head motion during scanning was compared with healthy controls to assess data quality. Results: Thirty-four families agreed to MRI (72% recruitment), and 21 adolescents with moderate–severe pain (average last week 6.7 ± 1.7; mean ± SD) and with neuropathic QST profiles were scanned. Three adolescents reported positional or noise-related discomfort during scanning. Perceived risk was low, and acceptability of the current scan was high for parents (range [median]: 7 to 10/10 [10]) and adolescents (8–10/10 [10]). Willingness to undergo a future research scan was high for parents (7–10/10 [10]) and adolescents (5–10/10 [10]) and did not differ from future scans for clinical purposes. Mean head motion during resting state functional MRI did not differ from control adolescents. Conclusion: Research MRI is feasible and acceptable for many adolescents with moderate–severe NeuP.
Collapse
|
11
|
McInnis PM, Braund TA, Chua ZK, Kozlowska K. Stress-system activation in children with chronic pain: A focus for clinical intervention. Clin Child Psychol Psychiatry 2020; 25:78-97. [PMID: 31364391 DOI: 10.1177/1359104519864994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Accumulating evidence indicates that psychological and neurophysiological processes interconnect and interact to activate the body's stress system and to trigger and maintain functional somatic symptoms. This study used the Early Life Stress Questionnaire, Depression Anxiety Stress Scales and biological markers (heart rate, heart rate variability, skin conductance, C-reactive protein (CRP) titre, respiratory rate, and accuracy and reaction time in an emotion-face identification task), to examine childhood adversity, psychological distress and stress-system activation in 35 children and adolescents (23 girls and 12 boys, 9-17 years old) disabled by chronic pain (vs two groups of age- and sex-matched healthy controls). Patients reported more early-life stress (U = 798.5, p = .026) and more psychological distress (U = 978, p < .001). They showed activation of the autonomic system: elevated heart rate (U = 862.5, p = .003), elevated electrodermal activity (U = 804.5, p = .024) and lower heart rate variability in the time domain (U = 380.5, p = .007) and frequency domain (U = 409.5, p = .017). The group showed an upward shift of CRP titres (with 75th and 90th CRP percentiles of 4.5 and 10.5 mg/L, respectively), suggesting the activation of the immune-inflammatory system. Elevated CRP titres were associated with elevated heart rate (p = .028). There were no differences in respiratory rate or in accuracy and reaction time in the emotion-face identification task. The results indicate that interventions for children and adolescents with chronic pain need a multidisciplinary mind-body approach that concurrently addresses psychological distress, physical impairment and stress-system dysregulation.
Collapse
Affiliation(s)
- Peter M McInnis
- Department of Psychological Medicine, The Children's Hospital at Westmead, Australia
| | - Taylor A Braund
- Total Brain, Australia.,Brain Dynamics Centre, The Westmead Institute for Medical Research, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Zhi Kai Chua
- Department of Psychological Medicine, The Children's Hospital at Westmead, Australia
| | - Kasia Kozlowska
- Department of Psychological Medicine, The Children's Hospital at Westmead, Australia.,Brain Dynamics Centre, The Westmead Institute for Medical Research, Australia.,Sydney Medical School, University of Sydney, Australia
| |
Collapse
|
12
|
Holmes S, Barakat N, Bhasin M, Lopez N, Lebel A, Zurakowski D, Thomas B, Bhasin S, Silva K, Borra R, Burstein R, Simons L, Borsook D. Biological and behavioral markers of pain following nerve injury in humans. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 7:100038. [PMID: 31890990 PMCID: PMC6926375 DOI: 10.1016/j.ynpai.2019.100038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
The evolution of peripheral and central changes following a peripheral nerve injury imply the onset of afferent signals that affect the brain. Changes to inflammatory processes may contribute to peripheral and central alterations such as altered psychological state and are not well characterized in humans. We focused on four elements that change peripheral and central nervous systems following ankle injury in 24 adolescent patients and 12 age-sex matched controls. Findings include (a) Changes in tibial, fibular, and sciatic nerve divisions consistent with neurodegeneration; (b) Changes within the primary motor and somatosensory areas as well as higher order brain regions implicated in pain processing; (c) Increased expression of fear of pain and pain reporting; and (d) Significant changes in cytokine profiles relating to neuroinflammatory signaling pathways. Findings address how changes resulting from peripheral nerve injury may develop into chronic neuropathic pain through changes in the peripheral and central nervous system.
Collapse
Affiliation(s)
- S.A. Holmes
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - N. Barakat
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - M. Bhasin
- Bioinformatic and Systems Biology Center, Beth Israel Deaconess Medical Center, United States
- Department of Medicine, Harvard Medical School, United States
| | - N.I. Lopez
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
| | - A. Lebel
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - D. Zurakowski
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
| | - B. Thomas
- Bioinformatic and Systems Biology Center, Beth Israel Deaconess Medical Center, United States
- Department of Medicine, Harvard Medical School, United States
| | - S. Bhasin
- Bioinformatic and Systems Biology Center, Beth Israel Deaconess Medical Center, United States
- Department of Medicine, Harvard Medical School, United States
| | - K.E. Silva
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
| | - R. Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - R. Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, United States
| | - L.E. Simons
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - D. Borsook
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
13
|
Low Kapalu CM, Hall JJ, Wallace DP. Neuropsychological Functioning of Youth Receiving Intensive Interdisciplinary Pain Treatment. J Pediatr Psychol 2019; 43:870-881. [PMID: 29846679 DOI: 10.1093/jpepsy/jsy034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Objective Chronic pain is associated with school difficulties; however, there is limited published evidence on the cognitive or neuropsychological functioning of youth with chronic pain. Method When beginning intensive interdisciplinary pain treatment, 94 youth (age = 10-18) with chronic pain completed neuropsychological assessment (e.g., intelligence, academic skills, learning and recall, and attention) and clinical questionnaires (e.g., pain and physical and psychological functioning). We compared neuropsychological scores with test norms and with clinical questionnaires. Results Youth with chronic pain had higher verbal comprehension and full scale IQ scores than expected, below-average nondominant hand dexterity, and difficulty with visual recall. Self-reported difficulties with executive functioning were associated with small-to-moderate difficulties with objectively measured attention. Performance on neuropsychological measures was generally not associated with pain, impairment, anxiety, or depression, though catastrophizing was negatively correlated with perceptual reasoning. An expected number of these youth had learning disorders (14%); however, more than expected had an autism spectrum disorder (9%) or attention deficit hyperactivity disorder (18%), and nearly a quarter demonstrated characteristics of nonverbal learning disability (22%). Conclusions Some of these cognitive findings may be a consequence of chronic pain, and others may reflect subtle neurodevelopmental differences that may predate or be comorbid with pain. Regardless of etiology, with more than half the current sample experiencing some type of learning challenge, often undiagnosed, pediatric psychologists evaluating youth with chronic pain may wish to screen for comorbid learning difficulties.
Collapse
Affiliation(s)
| | - John J Hall
- Children's Mercy Kansas City.,School of Medicine, University of Missouri Kansas City
| | - Dustin P Wallace
- Children's Mercy Kansas City.,School of Medicine, University of Missouri Kansas City
| |
Collapse
|
14
|
Timmers I, Quaedflieg CWEM, Hsu C, Heathcote LC, Rovnaghi CR, Simons LE. The interaction between stress and chronic pain through the lens of threat learning. Neurosci Biobehav Rev 2019; 107:641-655. [PMID: 31622630 DOI: 10.1016/j.neubiorev.2019.10.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Stress and pain are interleaved at multiple levels - interacting and influencing each other. Both are modulated by psychosocial factors including fears, beliefs, and goals, and are served by overlapping neural substrates. One major contributing factor in the development and maintenance of chronic pain is threat learning, with pain as an emotionally-salient threat - or stressor. Here, we argue that threat learning is a central mechanism and contributor, mediating the relationship between stress and chronic pain. We review the state of the art on (mal)adaptive learning in chronic pain, and on effects of stress and particularly cortisol on learning. We then provide a theoretical integration of how stress may affect chronic pain through its effect on threat learning. Prolonged stress, as may be experienced by patients with chronic pain, and its resulting changes in key brain networks modulating stress responses and threat learning, may further exacerbate these impairing effects on threat learning. We provide testable hypotheses and suggestions for how this integration may guide future research and clinical approaches in chronic pain.
Collapse
Affiliation(s)
- Inge Timmers
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 300, Palo Alto, CA 94304, United States.
| | - Conny W E M Quaedflieg
- Department of Clinical Psychological Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Connie Hsu
- Feinberg School of Medicine, Northwestern University, 420 E Superior St, Chicago, IL 60611, United States
| | - Lauren C Heathcote
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 300, Palo Alto, CA 94304, United States
| | - Cynthia R Rovnaghi
- Department of Pediatrics, Stanford University School of Medicine, 770 Welch Road, Suite 435, Stanford, CA 94304, United States
| | - Laura E Simons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, 1070 Arastradero Road, Suite 300, Palo Alto, CA 94304, United States
| |
Collapse
|
15
|
Walker SM, Melbourne A, O'Reilly H, Beckmann J, Eaton-Rosen Z, Ourselin S, Marlow N. Somatosensory function and pain in extremely preterm young adults from the UK EPICure cohort: sex-dependent differences and impact of neonatal surgery. Br J Anaesth 2018; 121:623-635. [PMID: 30115261 PMCID: PMC6200114 DOI: 10.1016/j.bja.2018.03.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Surgery or multiple procedural interventions in extremely preterm neonates influence neurodevelopmental outcome and may be associated with long-term changes in somatosensory function or pain response. METHODS This observational study recruited extremely preterm (EP, <26 weeks' gestation; n=102, 60% female) and term-born controls (TC; n=48) aged 18-20 yr from the UK EPICure cohort. Thirty EP but no TC participants had neonatal surgery. Evaluation included: quantitative sensory testing (thenar eminence, chest wall); clinical pain history; questionnaires (intelligence quotient; pain catastrophising; anxiety); and structural brain imaging. RESULTS Reduced thermal threshold sensitivity in EP vs TC participants persisted at age 18-20 yr. Sex-dependent effects varied with stimulus intensity and were enhanced by neonatal surgery, with reduced threshold sensitivity in EP surgery males but increased sensitivity to prolonged noxious cold in EP surgery females (P<0.01). Sex-dependent differences in thermal sensitivity correlated with smaller amygdala volume (P<0.05) but not current intelligence quotient. While generalised decreased sensitivity encompassed mechanical and thermal modalities in EP surgery males, a mixed pattern of sensory loss and sensory gain persisted adjacent to neonatal scars in males and females. More EP participants reported moderate-severe recurrent pain (22/101 vs 4/48; χ2=0.04) and increased pain intensity correlated with higher anxiety and pain catastrophising. CONCLUSIONS After preterm birth and neonatal surgery, different patterns of generalised and local scar-related alterations in somatosensory function persist into early adulthood. Sex-dependent changes in generalised sensitivity may reflect central modulation by affective circuits. Early life experience and sex/gender should be considered when evaluating somatosensory function, pain experience, or future chronic pain risk.
Collapse
Affiliation(s)
- S M Walker
- Clinical Neurosciences (Pain Research), UCL Great Ormond Street Institute of Child Health, London, UK; Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| | - A Melbourne
- Translational Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - H O'Reilly
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | - J Beckmann
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | - Z Eaton-Rosen
- Translational Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - S Ourselin
- Translational Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - N Marlow
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| |
Collapse
|
16
|
Groenewald CB, Law EF, Fisher E, Beals-Erickson SE, Palermo TM. Associations Between Adolescent Chronic Pain and Prescription Opioid Misuse in Adulthood. THE JOURNAL OF PAIN 2018; 20:28-37. [PMID: 30098405 DOI: 10.1016/j.jpain.2018.07.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/31/2022]
Abstract
Prescription opioid misuse is a serious public health concern, yet antecedent factors are poorly described. Using data from the National Longitudinal Study of Adolescent to Adult Health (N = 14,784), we examined the longitudinal relationship between a history of adolescent chronic pain and the odds of misusing prescription opioids in adulthood. The primary predictor variable was chronic pain status during adolescence. The primary outcome variables were prescription opioid misuse during early adulthood and adulthood. Multivariate models controlled for known risk factors of opioid misuse, including sociodemographics (sex, race, and ethnicity), adolescent mental health symptoms (anxiety, depression), adolescent self-reported physical health status, adolescent substance use/abuse, childhood trauma, and adult legitimate opioid use. We found that adults with a history of adolescent chronic pain were more likely to misuse opioids than those without history of chronic pain, even after controlling for other known risk factors. Further, we found that among individuals with history of adolescent chronic pain that race (white), other substance use, and exposure to trauma were risk factors for later opioid misuse. Longitudinal associations between adolescent chronic pain and subsequent adult prescription opioid misuse highlight the need for early targeted screening and prevention efforts that may reduce later opioid misuse. Perspective: Using a large, nationally representative sample, we found that chronic pain during adolescence was an independent risk factor for opioid misuse in adulthood, over and above other known risk factors. Furthermore, among those individuals with adolescent chronic pain, substance use, exposure to trauma, and race were associated with opioid misuse.
Collapse
Affiliation(s)
- Cornelius B Groenewald
- Departments of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Emily F Law
- Departments of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Emma Fisher
- Department for Health, University of Bath, Claverton Down, Bath, UK
| | - Sarah E Beals-Erickson
- Division of Developmental and Behavioral Sciences, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| | - Tonya M Palermo
- Departments of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington; Pediatrics, University of Washington School of Medicine, Seattle, Washington; Psychiatry, University of Washington School of Medicine, Seattle, Washington; Division of Developmental and Behavioral Sciences, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
17
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
18
|
Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment. CHILDREN-BASEL 2016; 3:children3040040. [PMID: 27918444 PMCID: PMC5184815 DOI: 10.3390/children3040040] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022]
Abstract
Chronic pain during childhood and adolescence can lead to persistent pain problems and mental health disorders into adulthood. Posttraumatic stress disorders and depressive and anxiety disorders are mental health conditions that co-occur at high rates in both adolescent and adult samples, and are linked to heightened impairment and disability. Comorbid chronic pain and psychopathology has been explained by the presence of shared neurobiology and mutually maintaining cognitive-affective and behavioral factors that lead to the development and/or maintenance of both conditions. Particularly within the pediatric chronic pain population, these factors are embedded within the broader context of the parent-child relationship. In this review, we will explore the epidemiology of, and current working models explaining, these comorbidities. Particular emphasis will be made on shared neurobiological mechanisms, given that the majority of previous research to date has centered on cognitive, affective, and behavioral mechanisms. Parental contributions to co-occurring chronic pain and psychopathology in childhood and adolescence will be discussed. Moreover, we will review current treatment recommendations and future directions for both research and practice. We argue that the integration of biological and behavioral approaches will be critical to sufficiently address why these comorbidities exist and how they can best be targeted in treatment.
Collapse
|
19
|
Abstract
The evaluation and management of childhood pain syndromes of neuromuscular origin have distinct challenges, as the patterns of disease presentation and the ability of a child to describe symptoms may differ from that of an adult. Advances in scientific and clinical knowledge are leading to significant progress in the care of affected children. The genetic origins of Fabry disease and the inherited form of erythromelalgia are better understood. The increasing interest in neuroimmunology among pediatric neurologists has led to more sophisticated diagnostic and therapeutic approaches. Treatment protocols for complex regional pain syndrome have become more standardized. In addition, investigations continue into potential new interventions for metabolic muscle diseases such as McArdle disease and carnitine palmitoyl transferase deficiency type II. In the years to come, children with pain of neuromuscular origin will have access to more precise diagnostic tools and novel therapies that would alleviate this particularly distressing category of disease.
Collapse
Affiliation(s)
- Anthony C Rodrigues
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA.
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
20
|
Meier ML, Stämpfli P, Vrana A, Humphreys BK, Seifritz E, Hotz-Boendermaker S. Neural Correlates of Fear of Movement in Patients with Chronic Low Back Pain vs. Pain-Free Individuals. Front Hum Neurosci 2016; 10:386. [PMID: 27507941 PMCID: PMC4960248 DOI: 10.3389/fnhum.2016.00386] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023] Open
Abstract
Fear of movement (FOM) can be acquired by a direct aversive experience such as pain or by social learning through observation and instruction. Excessive FOM results in heightened disability and is an obstacle for recovery from acute, subacute, and chronic low back pain (cLBP). FOM has further been identified as a significant explanatory factor in the Fear Avoidance (FA) model of cLBP that describes how individuals experiencing acute back pain may become trapped into a vicious circle of chronic disability and suffering. Despite a wealth of evidence emphasizing the importance of FOM in cLBP, to date, no related neural correlates in patients were found and this therefore has initiated a debate about the precise contribution of fear in the FA model. In the current fMRI study, we applied a novel approach encompassing: (1) video clips of potentially harmful activities for the back as FOM inducing stimuli; and (2) the assessment of FOM in both, cLBP patients (N = 20) and age- and gender-matched pain-free subjects (N = 20). Derived from the FA model, we hypothesized that FOM differentially affects brain regions involved in fear processing in patients with cLBP compared to pain-free individuals due to the recurrent pain and subsequent avoidance behavior. The results of the whole brain voxel-wise regression analysis revealed that: (1) FOM positively correlated with brain activity in fear-related brain regions such as the amygdala and the insula; and (2) differential effects of FOM between patients with cLBP and pain-free subjects were found in the extended amygdala and in its connectivity to the anterior insula. Current findings support the FOM component of the FA model in cLBP.
Collapse
Affiliation(s)
- Michael L Meier
- Interdisciplinary Spinal Pain Research (ISR), Chiropractic Medicine, Balgrist University HospitalZurich, Switzerland; Center of Dental Medicine, University of ZurichZurich, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of ZurichZurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of ZurichZurich, Switzerland
| | - Andrea Vrana
- Interdisciplinary Spinal Pain Research (ISR), Chiropractic Medicine, Balgrist University Hospital Zurich, Switzerland
| | - Barry K Humphreys
- Interdisciplinary Spinal Pain Research (ISR), Chiropractic Medicine, Balgrist University Hospital Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich Zurich, Switzerland
| | - Sabina Hotz-Boendermaker
- Interdisciplinary Spinal Pain Research (ISR), Chiropractic Medicine, Balgrist University Hospital Zurich, Switzerland
| |
Collapse
|