1
|
Choi BJ, Liu J. A low-cost transhumeral prosthesis operated via an ML-assisted EEG-head gesture control system. J Neural Eng 2025; 22:016031. [PMID: 39854835 DOI: 10.1088/1741-2552/adae35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Objective.Key challenges in upper limb prosthetics include a lack of effective control systems, the often invasive surgical requirements of brain-controlled limbs, and prohibitive costs. As a result, disuse rates remain high despite potential for increased quality of life. To address these concerns, this project developed a low cost, noninvasive transhumeral neuroprosthesis-operated via a combination of electroencephalography (EEG) signals and head gestures.Approach.To address the shortcomings of current noninvasive neural monitoring techniques-namely, single-channel EEG-we leveraged machine learning (ML), creating a neural network-based EEG interpretation algorithm. ML generation was guided by two underlying goals: (1) to improve overall system performance by combining discrete models using a prediction voting scheme, and (2) to favor modeldiversitywithin these new neural network ensembles, as opposed to individual modelperformance. EEG data from eight frequency bands was collected from human subjects to train a ML algorithm employing a hierarchical mixture-of-experts structure. We also implemented head gesture-based control to assist in the generation of additional stable classes for the control system.Main results.The final model performs competitively with existing EEG interpretation systems. Inertial measurement unit (IMU)-based head gestures supplement the neural control system, with 270° actuation of synovial elbow and radial wrist joints driven by intuitive corresponding head gestures. The brain-controlled prosthesis presented in this study costs US$300 to manufacture and achieved competitive performance on a Box and Block Test.Significance.These results suggest proof-of-concept for potential application as an alternative to current prosthetics, but it is important to note that the demonstration in this study remains exploratory. Future work includes broader clinical testing and exploring further uses for the developed ML system.
Collapse
Affiliation(s)
| | - Ji Liu
- Stony Brook University, Stony Brook, NY, United States of America
| |
Collapse
|
2
|
Lemoine É, Neves Briard J, Rioux B, Gharbi O, Podbielski R, Nauche B, Toffa D, Keezer M, Lesage F, Nguyen DK, Bou Assi E. Computer-assisted analysis of routine EEG to identify hidden biomarkers of epilepsy: A systematic review. Comput Struct Biotechnol J 2024; 24:66-86. [PMID: 38204455 PMCID: PMC10776381 DOI: 10.1016/j.csbj.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Background Computational analysis of routine electroencephalogram (rEEG) could improve the accuracy of epilepsy diagnosis. We aim to systematically assess the diagnostic performances of computed biomarkers for epilepsy in individuals undergoing rEEG. Methods We searched MEDLINE, EMBASE, EBM reviews, IEEE Explore and the grey literature for studies published between January 1961 and December 2022. We included studies reporting a computational method to diagnose epilepsy based on rEEG without relying on the identification of interictal epileptiform discharges or seizures. Diagnosis of epilepsy as per a treating physician was the reference standard. We assessed the risk of bias using an adapted QUADAS-2 tool. Results We screened 10 166 studies, and 37 were included. The sample size ranged from 8 to 192 (mean=54). The computed biomarkers were based on linear (43%), non-linear (27%), connectivity (38%), and convolutional neural networks (10%) models. The risk of bias was high or unclear in all studies, more commonly from spectrum effect and data leakage. Diagnostic accuracy ranged between 64% and 100%. We observed high methodological heterogeneity, preventing pooling of accuracy measures. Conclusion The current literature provides insufficient evidence to reliably assess the diagnostic yield of computational analysis of rEEG. Significance We provide guidelines regarding patient selection, reference standard, algorithms, and performance validation.
Collapse
Affiliation(s)
- Émile Lemoine
- Department of Neurosciences, University of Montreal, Canada
- Institute of biomedical engineering, Polytechnique Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Joel Neves Briard
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Bastien Rioux
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Oumayma Gharbi
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | | | - Bénédicte Nauche
- University of Montreal Hospital Center’s Research Center, Canada
| | - Denahin Toffa
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Mark Keezer
- Department of Neurosciences, University of Montreal, Canada
- School of Public Health, University of Montreal, Canada
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Frédéric Lesage
- Institute of biomedical engineering, Polytechnique Montreal, Canada
| | - Dang K. Nguyen
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| | - Elie Bou Assi
- Department of Neurosciences, University of Montreal, Canada
- University of Montreal Hospital Center’s Research Center, Canada
| |
Collapse
|
3
|
Edgar EV, McGuire K, Pelphrey KA, Ventola P, van Noordt S, Crowley MJ. Early- and Late-Stage Auditory Processing of Speech Versus Non-Speech Sounds in Children With Autism Spectrum Disorder: An ERP and Oscillatory Activity Study. Dev Psychobiol 2024; 66:e22552. [PMID: 39508446 DOI: 10.1002/dev.22552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024]
Abstract
Individuals with autism spectrum disorder (ASD) often exhibit greater sensitivity to non-speech sounds, reduced sensitivity to speech, and increased variability in cortical activity during auditory speech processing. We assessed differences in cortical responses and variability in early and later processing stages of auditory speech versus non-speech sounds in typically developing (TD) children and children with ASD. Twenty-eight 4- to 9-year-old children (14 ASDs) listened to speech and non-speech sounds during an electroencephalography session. We measured peak amplitudes for early (P2) and later (P3a) stages of auditory processing and inter-trial theta phase coherence as a marker of cortical variability. TD children were more sensitive to speech sounds during early and later processing stages than ASD children, reflected in larger P2 and P3a amplitudes. Individually, twice as many TD children showed reliable differentiation between speech and non-speech sounds compared to children with ASD. Children with ASD showed greater intra-individual variability in theta responses to speech sounds during early and later processing stages. Children with ASD show atypical auditory processing of fundamental speech sounds, perhaps due to reduced and more variable cortical activation. These atypicalities in the consistency of cortical responses to fundamental speech features may impact the development of cortical networks and have downstream effects on more complex forms of language processing.
Collapse
Affiliation(s)
- Elizabeth V Edgar
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kjersti McGuire
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Kevin A Pelphrey
- UVA Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Pamela Ventola
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stefon van Noordt
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Michael J Crowley
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Soriano-Segura P, Ortiz M, Iáñez E, Azorín JM. Design of a brain-machine interface for reducing false activations of a lower-limb exoskeleton based on error related potential. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108332. [PMID: 39053352 DOI: 10.1016/j.cmpb.2024.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND OBJECTIVE Brain-Machine Interfaces (BMIs) based on a motor imagination paradigm provide an intuitive approach for the exoskeleton control during gait. However, their clinical applicability remains difficulted by accuracy limitations and sensitivity to false activations. A proposed improvement involves integrating the BMI with methods based on detecting Error Related Potentials (ErrP) to self-tune erroneous commands and enhance not only the system accuracy, but also its usability. The aim of the current research is to characterize the ErrP at the beginning of the gait with a lower limb exoskeleton to reduce the false starts in the BMI system. Furthermore, this study is valuable for determining which type of feedback, Tactile, Visual, or Visuo-Tactile, achieves the best performance in evoking and detecting the ErrP. METHODS The initial phase of the research concentrates on detecting ErrP at the beginning of gait to improve the efficiency of an asynchronous BMI based on motor imagery (BMI-MI) to control a lower limb exoskeleton. Initially, an experimental protocol is designed to evoke ErrP at the start of gait, employing three different stimuli: Tactile, Visual, and Visuo-Tactile. An iterative selection process is then utilized to characterize ErrP in both time and frequency domains and fine-tune various parameters, including electrode distribution, feature combinations, and classifiers. A generic classifier with 6 subjects is employed to configure an ensemble classification system for detecting ErrP and reducing the false starts. RESULTS The ensembled system configured with the selected parameters yields an average correction of false starts of 72.60 % ± 10.23, highlighting its corrective efficacy. Tactile feedback emerges as the most effective stimulus, outperforming Visual and Visuo-Tactile feedback in both training types. CONCLUSIONS The results suggest promising prospects for reducing the false starts when integrating ErrP with BMI-MI, employing Tactile feedback. Consequently, the security of the system is enhanced. Subsequent, further research efforts will focus on detecting error potential during movement for gait stop, in order to limit undesired stops.
Collapse
Affiliation(s)
- P Soriano-Segura
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain
| | - M Ortiz
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain.
| | - E Iáñez
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain
| | - J M Azorín
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain; Valencian Graduate School and Research Network of Artificial Intelligence-ValgrAI, Valencia, Spain
| |
Collapse
|
5
|
Baez S, Hernandez H, Moguilner S, Cuadros J, Santamaria‐Garcia H, Medel V, Migeot J, Cruzat J, Valdes‐Sosa PA, Lopera F, González‐Hernández A, Bonilla‐Santos J, Gonzalez‐Montealegre RA, Aktürk T, Legaz A, Altschuler F, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, Huepe D, Soto‐Añari M, Coronel‐Oliveros C, Herrera E, Abasolo D, Clark RA, Güntekin B, Duran‐Aniotz C, Parra MA, Lawlor B, Tagliazucchi E, Prado P, Ibanez A. Structural inequality and temporal brain dynamics across diverse samples. Clin Transl Med 2024; 14:e70032. [PMID: 39360669 PMCID: PMC11447638 DOI: 10.1002/ctm2.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Structural income inequality - the uneven income distribution across regions or countries - could affect brain structure and function, beyond individual differences. However, the impact of structural income inequality on the brain dynamics and the roles of demographics and cognition in these associations remains unexplored. METHODS Here, we assessed the impact of structural income inequality, as measured by the Gini coefficient on multiple EEG metrics, while considering the subject-level effects of demographic (age, sex, education) and cognitive factors. Resting-state EEG signals were collected from a diverse sample (countries = 10; healthy individuals = 1394 from Argentina, Brazil, Colombia, Chile, Cuba, Greece, Ireland, Italy, Turkey and United Kingdom). Complexity (fractal dimension, permutation entropy, Wiener entropy, spectral structure variability), power spectral and aperiodic components (1/f slope, knee, offset), as well as graph-theoretic measures were analysed. FINDINGS Despite variability in samples, data collection methods, and EEG acquisition parameters, structural inequality systematically predicted electrophysiological brain dynamics, proving to be a more crucial determinant of brain dynamics than individual-level factors. Complexity and aperiodic activity metrics captured better the effects of structural inequality on brain function. Following inequality, age and cognition emerged as the most influential predictors. The overall results provided convergent multimodal metrics of biologic embedding of structural income inequality characterised by less complex signals, increased random asynchronous neural activity, and reduced alpha and beta power, particularly over temporoposterior regions. CONCLUSION These findings might challenge conventional neuroscience approaches that tend to overemphasise the influence of individual-level factors, while neglecting structural factors. Results pave the way for neuroscience-informed public policies aimed at tackling structural inequalities in diverse populations.
Collapse
Affiliation(s)
- Sandra Baez
- Departamento de PsicologíaUniversidad de los AndesBogotaColombia
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
| | - Hernan Hernandez
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Sebastian Moguilner
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Harvard Medical SchoolHarvard UniversityBostonMassachusettsUSA
| | - Jhosmary Cuadros
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa MaríaValparaísoChile
- Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del TáchiraSan CristóbalVenezuela
| | - Hernando Santamaria‐Garcia
- PhD Program in NeurosciencePontificia Universidad JaverianaBogotaColombia
- Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio BogotáSan IgnacioColombia
| | - Vicente Medel
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Joaquín Migeot
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Josephine Cruzat
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of AntioquiaMedellínColombia
| | | | | | | | - Tuba Aktürk
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Agustina Legaz
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Facultad de Psicología, Universidad Nacional de CórdobaCórdobaArgentina
| | - Florencia Altschuler
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Sol Fittipaldi
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- School of Psychology, Trinity College DublinDublinIreland
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of EconomicsIzmirTurkey
- Brain Dynamics Multidisciplinary Research CenterDokuz Eylul UniversityIzmirTurkey
- Izmir Biomedicine and Genome CenterIzmirTurkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of EdinburghScotlandUK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology ‘V. Erspamer’Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Susanna Lopez
- Department of Physiology and Pharmacology ‘V. Erspamer’Sapienza University of RomeRomeItaly
| | - Robert Whelan
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- School of Psychology, Trinity College DublinDublinIreland
| | - Alberto A Fernández Lucas
- Department of Legal MedicinePsychiatry and Pathology at the Complutense University of MadridMadridSpain
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo IbáñezPenalolenChile
| | | | - Carlos Coronel‐Oliveros
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaísoChile
| | - Eduar Herrera
- Departamento de Estudios PsicológicosUniversidad IcesiCaliColombia
| | - Daniel Abasolo
- Faculty of Engineering and Physical Sciences, Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of SurreyGuildfordUK
| | - Ruaridh A. Clark
- Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK
- Department of Electronic and Electrical EngineeringCentre for Signal and Image ProcessingUniversity of StrathclydeGlasgowUK
| | - Bahar Güntekin
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Health Sciences and Technology Research Institute (SABITA)Istanbul Medipol UniversityIstanbulTurkey
| | - Claudia Duran‐Aniotz
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
| | - Mario A. Parra
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Brian Lawlor
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Department of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Enzo Tagliazucchi
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- University of Buenos AiresBuenos AiresArgentina
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San SebastiánSantiagoChile
| | - Agustin Ibanez
- Global Brain Health Institute (GBHI)University of CaliforniaSan FranciscoCaliforniaUSA
- Global Brain Health Institute (GBHI)Trinity College DublinDublinIreland
- Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiago de ChileChile
- Cognitive Neuroscience Center, Universidad de San AndrésBuenos AiresArgentina
- Trinity College Dublin, The University of DublinDublinIreland
| |
Collapse
|
6
|
Aspbury M, Mansfield RC, Baxter L, Bhatt A, Cobo MM, Fitzgibbon SP, Hartley C, Hauck A, Marchant S, Monk V, Pillay K, Poorun R, van der Vaart M, Slater R. Establishing a standardised approach for the measurement of neonatal noxious-evoked brain activity in response to an acute somatic nociceptive heel lance stimulus. Cortex 2024; 179:215-234. [PMID: 39197410 PMCID: PMC11913738 DOI: 10.1016/j.cortex.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Electroencephalography (EEG) can be used in neonates to measure brain activity changes that are evoked by noxious events, such as clinically required immunisations, cannulation and heel lancing for blood tests. EEG provides an alternative approach to infer pain experience in infants compared with more commonly used behavioural and physiological pain assessments. Establishing the generalisability and construct validity of these measures will help corroborate the use of brain-derived outcomes to evaluate the efficacy of new or existing pharmacological and non-pharmacological methods to treat neonatal pain. This study aimed to test whether a measure of noxious-evoked EEG activity called the noxious neurodynamic response function (n-NRF), that was originally derived in a sample of term-aged infants at the Oxford John Radcliffe Hospital, UK, in 2017, can reliably distinguish noxious from non-noxious events in two independent datasets collected at University College London Hospital and at Royal Devon & Exeter Hospital. We aimed to reproduce three published results that use this measure to quantify noxious-evoked changes in brain activity. We used the n-NRF to quantify noxious-evoked brain activity to test (i) whether significantly larger noxious-evoked activity is recorded in response to a clinical heel lance compared to a non-noxious control heel lance procedure; (ii) whether the magnitude of the activity evoked by a noxious heel lance is equivalent in independent cohorts of infants; and (iii) whether the magnitude of the noxious-evoked brain activity increases with postmenstrual age (PMA) in premature infants up to 37 weeks PMA. Positive replication of these studies will build confidence in the use of the n-NRF as a valid and reliable pain-related outcome which could be used to evaluate analgesic efficacy in neonates. The protocol for this study was published following peer review (https://doi.org/10.17605/OSF.IO/ZY9MS). RESULTS The n-NRF magnitude to a noxious heel lance stimulus was significantly greater than to a non-noxious control heel lance stimulus in both the UCL dataset (n = 60; mean difference .88; 95% confidence interval (CI) .64-1.13; p < .0001) and the Exeter dataset (n = 31; mean difference .31; 95% CI .02-.61; p = .02). The mean magnitude and 90% bootstrap confidence interval of the n-NRF evoked by the heel lance did not meet our pre-defined equivalence bounds of 1.0 ± .2 in either the UCL dataset (n = 72; mean magnitude 1.33; 90% bootstrapped CI 1.18-1.52) or the Exeter dataset (n = 35; mean magnitude .92, 90% bootstrapped CI .74-1.22). The magnitude of the n-NRF to the noxious stimulus was significantly positively correlated with PMA in infants up to 37 weeks PMA (n = 65; one-sided Pearson's R, adjusted for site: .24; 95% CI .06-1.00; p = .03). CONCLUSIONS We have reproduced in independent datasets the findings that the n-NRF response to a noxious stimulus is significantly greater than to a non-noxious stimulus, and that the noxious-evoked EEG response increases with PMA. The pre-defined equivalence bounds for the mean magnitude of the EEG response were not met, though this might be due to either inter-site differences such as the lack of calibration of devices between sites (a true negative) or underpowering (a false negative). This reproducibility study provides robust evidence that supports the use of the n-NRF as an objective outcome for clinical trials assessing acute nociception in neonates. Use of the n-NRF in this way has the potential to transform the way analgesic efficacy studies are performed.
Collapse
Affiliation(s)
| | - Roshni C Mansfield
- Department of Paediatrics, University of Oxford, Oxford, UK; Newborn Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Aomesh Bhatt
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Maria M Cobo
- Department of Paediatrics, University of Oxford, Oxford, UK; Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biologicas y Ambientales, Quito, Ecuador
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Annalisa Hauck
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Simon Marchant
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Vaneesha Monk
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Kirubin Pillay
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ravi Poorun
- Children's Services, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK; College of Medicine & Health, University of Exeter, Exeter, UK
| | | | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
7
|
Hernandez H, Baez S, Medel V, Moguilner S, Cuadros J, Santamaria-Garcia H, Tagliazucchi E, Valdes-Sosa PA, Lopera F, OchoaGómez JF, González-Hernández A, Bonilla-Santos J, Gonzalez-Montealegre RA, Aktürk T, Yıldırım E, Anghinah R, Legaz A, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, García AM, Huepe D, Caterina GD, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel C, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark R, Herzog R, Yerlikaya D, Güntekin B, Parra MA, Prado P, Ibanez A. Brain health in diverse settings: How age, demographics and cognition shape brain function. Neuroimage 2024; 295:120636. [PMID: 38777219 PMCID: PMC11812057 DOI: 10.1016/j.neuroimage.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.
Collapse
Affiliation(s)
- Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Harvard Medical School, Boston, MA, USA
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; University of Buenos Aires, Argentina
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Tuba Aktürk
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ebru Yıldırım
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Scotland, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Alberto A Fernández Lucas
- Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andréss, Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ruaridh Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris 75013, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Biophysics, School of Medicine, Istanbul Medipol University, Turkey
| | - Mario A Parra
- Department of Psychological Sciences and Health, University of Strathclyde, United Kingdom and Associate Researcher of the Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, Universidad de San Andrés and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Klug M, Berg T, Gramann K. Optimizing EEG ICA decomposition with data cleaning in stationary and mobile experiments. Sci Rep 2024; 14:14119. [PMID: 38898069 PMCID: PMC11187149 DOI: 10.1038/s41598-024-64919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Electroencephalography (EEG) studies increasingly utilize more mobile experimental protocols, leading to more and stronger artifacts in the recorded data. Independent Component Analysis (ICA) is commonly used to remove these artifacts. It is standard practice to remove artifactual samples before ICA to improve the decomposition, for example using automatic tools such as the sample rejection option of the AMICA algorithm. However, the effects of movement intensity and the strength of automatic sample rejection on ICA decomposition have not been systematically evaluated. We conducted AMICA decompositions on eight open-access datasets with varying degrees of motion intensity using varying sample rejection criteria. We evaluated decomposition quality using mutual information of the components, the proportion of brain, muscle, and 'other' components, residual variance, and an exemplary signal-to-noise ratio. Within individual studies, increased movement significantly decreased decomposition quality, though this effect was not found across different studies. Cleaning strength significantly improved the decomposition, but the effect was smaller than expected. Our results suggest that the AMICA algorithm is robust even with limited data cleaning. Moderate cleaning, such as 5 to 10 iterations of the AMICA sample rejection, is likely to improve the decomposition of most datasets, regardless of motion intensity.
Collapse
Affiliation(s)
- M Klug
- Young Investigator Group Intuitive XR, Neuroadaptive Human-Computer Interaction, Institute of Medical Technology, BTU Cottbus-Senftenberg, Cottbus, Germany.
- Biopsychology and Neuroergonomics, Institute of Psychology and Ergonomics, TU Berlin, Berlin, Germany.
| | - T Berg
- Biopsychology and Neuroergonomics, Institute of Psychology and Ergonomics, TU Berlin, Berlin, Germany
| | - K Gramann
- Biopsychology and Neuroergonomics, Institute of Psychology and Ergonomics, TU Berlin, Berlin, Germany
| |
Collapse
|
9
|
Song M, Gwon D, Jun SC, Ahn M. Signal alignment for cross-datasets in P300 brain-computer interfaces. J Neural Eng 2024; 21:036007. [PMID: 38657615 DOI: 10.1088/1741-2552/ad430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Objective.Transfer learning has become an important issue in the brain-computer interface (BCI) field, and studies on subject-to-subject transfer within the same dataset have been performed. However, few studies have been performed on dataset-to-dataset transfer, including paradigm-to-paradigm transfer. In this study, we propose a signal alignment (SA) for P300 event-related potential (ERP) signals that is intuitive, simple, computationally less expensive, and can be used for cross-dataset transfer learning.Approach.We proposed a linear SA that uses the P300's latency, amplitude scale, and reverse factor to transform signals. For evaluation, four datasets were introduced (two from conventional P300 Speller BCIs, one from a P300 Speller with face stimuli, and the last from a standard auditory oddball paradigm).Results.Although the standard approach without SA had an average precision (AP) score of 25.5%, the approach demonstrated a 35.8% AP score, and we observed that the number of subjects showing improvement was 36.0% on average. Particularly, we confirmed that the Speller dataset with face stimuli was more comparable with other datasets.Significance.We proposed a simple and intuitive way to align ERP signals that uses the characteristics of ERP signals. The results demonstrated the feasibility of cross-dataset transfer learning even between datasets with different paradigms.
Collapse
Affiliation(s)
- Minseok Song
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Daeun Gwon
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minkyu Ahn
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
- School of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| |
Collapse
|
10
|
Melnik A, Miasayedzenkau M, Makaravets D, Pirshtuk D, Akbulut E, Holzmann D, Renusch T, Reichert G, Ritter H. Face Generation and Editing With StyleGAN: A Survey. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:3557-3576. [PMID: 38224501 DOI: 10.1109/tpami.2024.3350004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Our goal with this survey is to provide an overview of the state of the art deep learning methods for face generation and editing using StyleGAN. The survey covers the evolution of StyleGAN, from PGGAN to StyleGAN3, and explores relevant topics such as suitable metrics for training, different latent representations, GAN inversion to latent spaces of StyleGAN, face image editing, cross-domain face stylization, face restoration, and even Deepfake applications. We aim to provide an entry point into the field for readers that have basic knowledge about the field of deep learning and are looking for an accessible introduction and overview.
Collapse
|
11
|
Mueller JL, Weyers I, Friederici AD, Männel C. Individual differences in auditory perception predict learning of non-adjacent tone sequences in 3-year-olds. Front Hum Neurosci 2024; 18:1358380. [PMID: 38638804 PMCID: PMC11024384 DOI: 10.3389/fnhum.2024.1358380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Auditory processing of speech and non-speech stimuli oftentimes involves the analysis and acquisition of non-adjacent sound patterns. Previous studies using speech material have demonstrated (i) children's early emerging ability to extract non-adjacent dependencies (NADs) and (ii) a relation between basic auditory perception and this ability. Yet, it is currently unclear whether children show similar sensitivities and similar perceptual influences for NADs in the non-linguistic domain. We conducted an event-related potential study with 3-year-old children using a sine-tone-based oddball task, which simultaneously tested for NAD learning and auditory perception by means of varying sound intensity. Standard stimuli were A × B sine-tone sequences, in which specific A elements predicted specific B elements after variable × elements. NAD deviants violated the dependency between A and B and intensity deviants were reduced in amplitude. Both elicited similar frontally distributed positivities, suggesting successful deviant detection. Crucially, there was a predictive relationship between the amplitude of the sound intensity discrimination effect and the amplitude of the NAD learning effect. These results are taken as evidence that NAD learning in the non-linguistic domain is functional in 3-year-olds and that basic auditory processes are related to the learning of higher-order auditory regularities also outside the linguistic domain.
Collapse
Affiliation(s)
- Jutta L. Mueller
- Department of Linguistics, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Research HUB, Vienna, Austria
| | - Ivonne Weyers
- Department of Linguistics, University of Vienna, Vienna, Austria
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Audiology and Phoniatrics, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Bryniarska A, Ramos JA, Fernández M. Machine Learning Classification of Event-Related Brain Potentials during a Visual Go/NoGo Task. ENTROPY (BASEL, SWITZERLAND) 2024; 26:220. [PMID: 38539732 PMCID: PMC11670797 DOI: 10.3390/e26030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 01/06/2025]
Abstract
Machine learning (ML) methods are increasingly being applied to analyze biological signals. For example, ML methods have been successfully applied to the human electroencephalogram (EEG) to classify neural signals as pathological or non-pathological and to predict working memory performance in healthy and psychiatric patients. ML approaches can quickly process large volumes of data to reveal patterns that may be missed by humans. This study investigated the accuracy of ML methods at classifying the brain's electrical activity to cognitive events, i.e., event-related brain potentials (ERPs). ERPs are extracted from the ongoing EEG and represent electrical potentials in response to specific events. ERPs were evoked during a visual Go/NoGo task. The Go/NoGo task requires a button press on Go trials and response withholding on NoGo trials. NoGo trials elicit neural activity associated with inhibitory control processes. We compared the accuracy of six ML algorithms at classifying the ERPs associated with each trial type. The raw electrical signals were fed to all ML algorithms to build predictive models. The same raw data were then truncated in length and fitted to multiple dynamic state space models of order nx using a continuous-time subspace-based system identification algorithm. The 4nx numerator and denominator parameters of the transfer function of the state space model were then used as substitutes for the data. Dimensionality reduction simplifies classification, reduces noise, and may ultimately improve the predictive power of ML models. Our findings revealed that all ML methods correctly classified the electrical signal associated with each trial type with a high degree of accuracy, and accuracy remained high after parameterization was applied. We discuss the models and the usefulness of the parameterization.
Collapse
Affiliation(s)
- Anna Bryniarska
- Department of Computer Science, Opole
University of Technology, 45-758 Opole, Poland;
| | - José A. Ramos
- College of Computing and Engineering, Nova
Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Mercedes Fernández
- Department of Psychology and Neuroscience, Nova
Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
13
|
Yang SY, Lin YP. Movement Artifact Suppression in Wearable Low-Density and Dry EEG Recordings Using Active Electrodes and Artifact Subspace Reconstruction. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3844-3853. [PMID: 37751338 DOI: 10.1109/tnsre.2023.3319355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Wearable low-density dry electroencephalogram (EEG) headsets facilitate multidisciplinary applications of brain-activity decoding and brain-triggered interaction for healthy people in real-world scenarios. However, movement artifacts pose a great challenge to their validity in users with naturalistic behaviors (i.e., without highly controlled settings in a laboratory). High-precision, high-density EEG instruments commonly embed an active electrode infrastructure and/or incorporate an auxiliary artifact subspace reconstruction (ASR) pipeline to handle movement artifact interferences. Existing endeavors motivate this study to explore the efficacy of both hardware and software solutions in low-density and dry EEG recordings against non-tethered settings, which are rarely found in the literature. Therefore, this study employed a LEGO-like electrode-holder assembly grid to coordinate three 3-channel system designs (with passive/active dry vs. passive wet electrodes). It also conducted a simultaneous EEG recording while performing an oddball task during treadmill walking, with speeds of 1 and 2 KPH. The quantitative metrics of pre-stimulus noise, signal-to-noise ratio, and inter-subject correlation from the collected event-related potentials of 18 subjects were assessed. Results indicate that while treating a passive-wet system as benchmark, only the active-electrode design more or less rectified movement artifacts for dry electrodes, whereas the ASR pipeline was substantially compromised by limited electrodes. These findings suggest that a lightweight, minimally obtrusive dry EEG headset should at least equip an active-electrode infrastructure to withstand realistic movement artifacts for potentially sustaining its validity and applicability in real-world scenarios.
Collapse
|
14
|
He C, Chen YY, Phang CR, Stevenson C, Chen IP, Jung TP, Ko LW. Diversity and Suitability of the State-of-the-Art Wearable and Wireless EEG Systems Review. IEEE J Biomed Health Inform 2023; 27:3830-3843. [PMID: 37022001 DOI: 10.1109/jbhi.2023.3239053] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wireless electroencephalography (EEG) systems have been attracting increasing attention in recent times. Both the number of articles discussing wireless EEG and their proportion relative to general EEG publications have increased over years. These trends indicate that wireless EEG systems could be more accessible to researchers and the research community has recognized the potential of wireless EEG systems. To explore the development and diverse applications of wireless EEG systems, this review highlights the trends in wearable and wireless EEG systems over the past decade and compares the specifications and research applications of the major wireless systems marketed by 16 companies. For each product, five parameters (number of channels, sampling rate, cost, battery life, and resolution) were assessed for comparison. Currently, these wearable and portable wireless EEG systems have three main application areas: consumer, clinical, and research. To address this multitude of options, the article also discussed the thought process to find a suitable device that meets personalization and use cases specificities. These investigations suggest that low-price and convenience are key factors for consumer applications, wireless EEG systems with FDA or CE-certification may be more suitable for clinical settings, and devices that provide raw EEG data with high-density channels are important for laboratory research. This article presents an overview of the current state of the wireless EEG systems specifications and possible applications and serves as a guide point as it is expected that more influential and novel research will cyclically promote the development of such EEG systems.
Collapse
|
15
|
Gyimes IL, Valentini E. Reminders of Mortality: Investigating the Effects of Different Mortality Saliences on Somatosensory Neural Activity. Brain Sci 2023; 13:1077. [PMID: 37509009 PMCID: PMC10377243 DOI: 10.3390/brainsci13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Terror Management Theory (TMT) offered a great deal of generative hypotheses that have been tested in a plethora of studies. However, there is a still substantive lack of clarity about the interpretation of TMT-driven effects and their underlying neurological mechanisms. Here, we aimed to expand upon previous research by introducing two novel methodological manipulations aimed to enhance the effects of mortality salience (MS). We presented participants with the idea of the participants' romantic partner's death as well as increased the perceived threat of somatosensory stimuli. Linear mixed modelling disclosed the greater effects of MS directed at one's romantic partner on pain perception (as opposed to the participant's own mortality). The theta event-related oscillatory activity measured at the vertex of the scalp was significantly lower compared to the control condition. We suggest that MS aimed at one's romantic partner can result in increased effects on perceptual experience; however, the underlying neural activities are not reflected by a classical measure of cortical arousal.
Collapse
Affiliation(s)
- Istvan Laszlo Gyimes
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester CO4 3SQ, UK
| | - Elia Valentini
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester CO4 3SQ, UK
| |
Collapse
|
16
|
Prado P, Mejía JA, Sainz‐Ballesteros A, Birba A, Moguilner S, Herzog R, Otero M, Cuadros J, Z‐Rivera L, O'Byrne DF, Parra M, Ibáñez A. Harmonized multi-metric and multi-centric assessment of EEG source space connectivity for dementia characterization. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12455. [PMID: 37424962 PMCID: PMC10329259 DOI: 10.1002/dad2.12455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Introduction Harmonization protocols that address batch effects and cross-site methodological differences in multi-center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. Methods We implemented an automatic processing pipeline incorporating electrode layout integrations, patient-control normalizations, and multi-metric EEG source space connectomics analyses. Results Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z-score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long-range connections, and diminished short-range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia. Discussion Harmonized multi-metric analysis of EEG source space connectivity can address data heterogeneities in multi-centric studies, representing a powerful tool for accurately characterizing dementia.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Escuela de FonoaudiologíaFacultad de Odontología y Ciencias de la RehabilitaciónUniversidad San SebastiánSantiagoChile
| | - Jhony A. Mejía
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Departamento de Ingeniería BiomédicaUniversidad de Los AndesBogotáColombia
- Memory and Aging ClinicUniversity of CaliforniaSan FranciscoUnited States
| | - Agustín Sainz‐Ballesteros
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Cognitive Neuroscience Center (CNC)Universidad de San AndrésBuenos AiresArgentina
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Cognitive Neuroscience Center (CNC)Universidad de San AndrésBuenos AiresArgentina
- Instituto Universitario de NeurocienciaUniversidad de La LagunaTenerifeSpain
- Facultad de PsicologíaUniversidad de La LagunaTenerifeSpain
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Cognitive Neuroscience Center (CNC)Universidad de San AndrésBuenos AiresArgentina
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Rubén Herzog
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Fundación para el Estudio de la Conciencia Humana (EcoH)Santiago de ChileChile
| | - Mónica Otero
- Facultad de Ingeniería, Arquitectura y DiseñoUniversidad San SebastiánSantiagoChile
- Centro BASAL Ciencia & Vida; Facultad de Ingeniería y TecnologíaUniversidad San SebastiánSantiago de ChileChile
| | - Jhosmary Cuadros
- Advanced Center for Electrical and Electronic Engineering (AC3E)Universidad Técnica Federico Santa MaríaValparaísoChile
| | - Lucía Z‐Rivera
- Advanced Center for Electrical and Electronic Engineering (AC3E)Universidad Técnica Federico Santa MaríaValparaísoChile
| | - Daniel Franco O'Byrne
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbáñezSantiagoChile
| | - Mario Parra
- School of Psychological Sciences and HealthUniversity of StrathclydeGlasgowUK
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat)Universidad Adolfo IbáñezSantiago de ChileChile
- Cognitive Neuroscience Center (CNC)Universidad de San AndrésBuenos AiresArgentina
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbáñezSantiagoChile
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Global Brain Health Institute (GBHI)University of California San FranciscoCalifornia and Trinity College DublinDublinIreland
- Trinity College Dublin (TCD)DublinIreland
| |
Collapse
|
17
|
Gwon D, Won K, Song M, Nam CS, Jun SC, Ahn M. Review of public motor imagery and execution datasets in brain-computer interfaces. Front Hum Neurosci 2023; 17:1134869. [PMID: 37063105 PMCID: PMC10101208 DOI: 10.3389/fnhum.2023.1134869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
The demand for public datasets has increased as data-driven methodologies have been introduced in the field of brain-computer interfaces (BCIs). Indeed, many BCI datasets are available in various platforms or repositories on the web, and the studies that have employed these datasets appear to be increasing. Motor imagery is one of the significant control paradigms in the BCI field, and many datasets related to motor tasks are open to the public already. However, to the best of our knowledge, these studies have yet to investigate and evaluate the datasets, although data quality is essential for reliable results and the design of subject- or system-independent BCIs. In this study, we conducted a thorough investigation of motor imagery/execution EEG datasets recorded from healthy participants published over the past 13 years. The 25 datasets were collected from six repositories and subjected to a meta-analysis. In particular, we reviewed the specifications of the recording settings and experimental design, and evaluated the data quality measured by classification accuracy from standard algorithms such as Common Spatial Pattern (CSP) and Linear Discriminant Analysis (LDA) for comparison and compatibility across the datasets. As a result, we found that various stimulation types, such as text, figure, or arrow, were used to instruct subjects what to imagine and the length of each trial also differed, ranging from 2.5 to 29 s with a mean of 9.8 s. Typically, each trial consisted of multiple sections: pre-rest (2.38 s), imagination ready (1.64 s), imagination (4.26 s, ranging from 1 to 10 s), the post-rest (3.38 s). In a meta-analysis of the total of 861 sessions from all datasets, the mean classification accuracy of the two-class (left-hand vs. right-hand motor imagery) problem was 66.53%, and the population of the BCI poor performers, those who are unable to reach proficiency in using a BCI system, was 36.27% according to the estimated accuracy distribution. Further, we analyzed the CSP features and found that each dataset forms a cluster, and some datasets overlap in the feature space, indicating a greater similarity among them. Finally, we checked the minimal essential information (continuous signals, event type/latency, and channel information) that should be included in the datasets for convenient use, and found that only 71% of the datasets met those criteria. Our attempts to evaluate and compare the public datasets are timely, and these results will contribute to understanding the dataset's quality and recording settings as well as the use of using public datasets for future work on BCIs.
Collapse
Affiliation(s)
- Daeun Gwon
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Kyungho Won
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minseok Song
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Chang S. Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, United States
- Department of Industrial and Management Systems Engineering, Kyung Hee University, Yongin-si, Republic of Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- AI Graudate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minkyu Ahn
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
- School of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| |
Collapse
|
18
|
Russo C, Senese VP. Functional near-infrared spectroscopy is a useful tool for multi-perspective psychobiological study of neurophysiological correlates of parenting behaviour. Eur J Neurosci 2023; 57:258-284. [PMID: 36485015 DOI: 10.1111/ejn.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The quality of the relationship between caregiver and child has long-term effects on the cognitive and socio-emotional development of children. A process involved in human parenting is the bio-behavioural synchrony that occurs between the partners in the relationship during interaction. Through interaction, bio-behavioural synchronicity allows the adaptation of the physiological systems of the parent to those of the child and promotes the positive development and modelling of the child's social brain. The role of bio-behavioural synchrony in building social bonds could be investigated using functional near-infrared spectroscopy (fNIRS). In this paper we have (a) highlighted the importance of the quality of the caregiver-child relationship for the child's cognitive and socio-emotional development, as well as the relevance of infantile stimuli in the activation of parenting behaviour; (b) discussed the tools used in the study of the neurophysiological substrates of the parental response; (c) proposed fNIRS as a particularly suitable tool for the study of parental responses; and (d) underlined the need for a multi-systemic psychobiological approach to understand the mechanisms that regulate caregiver-child interactions and their bio-behavioural synchrony. We propose to adopt a multi-system psychobiological approach to the study of parental behaviour and social interaction.
Collapse
Affiliation(s)
- Carmela Russo
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Paolo Senese
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
19
|
Santoyo-Mora M, Villaseñor-Mora C, Cardona-Torres LM, Martínez-Nolasco JJ, Barranco-Gutiérrez AI, Padilla-Medina JA, Bravo-Sánchez MG. COVID-19 Long-Term Effects: Is There an Impact on the Simple Reaction Time and Alternative-Forced Choice on Recovered Patients? Brain Sci 2022; 12:brainsci12091258. [PMID: 36138994 PMCID: PMC9496861 DOI: 10.3390/brainsci12091258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
A comparative single-evaluation cross-sectional study was performed to evaluate cognitive damage in post-COVID-19 patients. The psychophysics tests of Two-Alternative Forced Choice (2AFC) and Simple Reaction Time (SRT), under a designed virtual environment, were used to evaluate the cognitive processes of decision-making, visual attention, and information processing speed. The population under study consisted of 147 individuals, 38 controls, and 109 post-COVID patients. During the 2AFC test, an Emotiv EPOC+® headset was used to obtain EEG signals to evaluate their Focus, Interest, and Engagement metrics. Results indicate that compared to healthy patients or recovered patients from mild-moderate COVID-19 infection, patients who recovered from a severe-critical COVID infection showed a poor performance in different cognitive tests: decision-making tasks required higher visual sensitivity (p = 0.002), Focus (p = 0.01) and information processing speed (p < 0.001). These results signal that the damage caused by the coronavirus on the central nervous and visual systems significantly reduces the cognitive processes capabilities, resulting in a prevalent deficit of 42.42% in information processing speed for mild-moderate cases, 46.15% for decision-making based on visual sensitivity, and 62.16% in information processing speed for severe-critical cases. A psychological follow-up for patients recovering from COVID-19 is recommended based on our findings.
Collapse
Affiliation(s)
- Mauro Santoyo-Mora
- Division of Postgraduate Studies and Research, Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico
| | - Carlos Villaseñor-Mora
- Division of Sciences and Engineering, Universidad de Guanajuato Campus León, León 37150, Mexico
| | - Luz M. Cardona-Torres
- Department of Education and Research in Health, Hospital General Zona 4 Instituto Mexicano del Seguro Social, Celaya 38060, Mexico
| | - Juan J. Martínez-Nolasco
- Department of Mechatronics Engineering, Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico
| | | | - José A. Padilla-Medina
- Department of Electronics Engineering, Tecnológico Nacional de México en Celaya, Celaya 38010, Mexico
- Correspondence:
| | | |
Collapse
|
20
|
Niso G, Krol LR, Combrisson E, Dubarry AS, Elliott MA, François C, Héjja-Brichard Y, Herbst SK, Jerbi K, Kovic V, Lehongre K, Luck SJ, Mercier M, Mosher JC, Pavlov YG, Puce A, Schettino A, Schön D, Sinnott-Armstrong W, Somon B, Šoškić A, Styles SJ, Tibon R, Vilas MG, van Vliet M, Chaumon M. Good scientific practice in EEG and MEG research: Progress and perspectives. Neuroimage 2022; 257:119056. [PMID: 35283287 PMCID: PMC11236277 DOI: 10.1016/j.neuroimage.2022.119056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022] Open
Abstract
Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons.
Collapse
Affiliation(s)
- Guiomar Niso
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Universidad Politecnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Laurens R Krol
- Neuroadaptive Human-Computer Interaction, Brandenburg University of Technology Cottbus-Senftenberg, Germany
| | - Etienne Combrisson
- Aix-Marseille University, Institut de Neurosciences de la Timone, France
| | | | | | | | - Yseult Héjja-Brichard
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRD, Université Montpellier, Montpellier, France
| | - Sophie K Herbst
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, NeuroSpin center, Université Paris-Saclay, Gif/Yvette, France
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Laboratory, Department of Psychology, University of Montreal, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Canada
| | - Vanja Kovic
- Faculty of Philosophy, Laboratory for neurocognition and applied cognition, University of Belgrade, Serbia
| | - Katia Lehongre
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm U 1127, CNRS UMR 7225, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France
| | - Steven J Luck
- Center for Mind & Brain, University of California, Davis, CA, USA
| | - Manuel Mercier
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
| | - John C Mosher
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yuri G Pavlov
- University of Tuebingen, Germany; Ural Federal University, Yekaterinburg, Russia
| | - Aina Puce
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Antonio Schettino
- Erasmus University Rotterdam, Rotterdam, the Netherland; Institute for Globally Distributed Open Research and Education (IGDORE), Sweden
| | - Daniele Schön
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France
| | | | | | - Anđela Šoškić
- Faculty of Philosophy, Laboratory for neurocognition and applied cognition, University of Belgrade, Serbia; Teacher Education Faculty, University of Belgrade, Serbia
| | - Suzy J Styles
- Psychology, Nanyang Technological University, Singapore; Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; School of Psychology, University of Nottingham, Nottingham, UK
| | - Martina G Vilas
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
| | | | - Maximilien Chaumon
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm U 1127, CNRS UMR 7225, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France..
| |
Collapse
|
21
|
Prado P, Birba A, Cruzat J, Santamaría-García H, Parra M, Moguilner S, Tagliazucchi E, Ibáñez A. Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration. Int J Psychophysiol 2022; 172:24-38. [PMID: 34968581 PMCID: PMC9887537 DOI: 10.1016/j.ijpsycho.2021.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/19/2021] [Indexed: 02/02/2023]
Abstract
The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by conducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, several barriers preclude the development of a systematic "ConnEEGtome" in dementia research. Here we review critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric protocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. "Ground truths" for the choice of processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Conducting multiple analyses of the same data and a proper integration of the results need to be considered in additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite metric combining different connectivity measures brings a powerful strategy to scale up the replicability of multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of the dementia.
Collapse
Affiliation(s)
- Pavel Prado
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Agustina Birba
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Josefina Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | - Hernando Santamaría-García
- Pontificia Universidad Javeriana, Medical School, Physiology and Psychiatry Departments, Memory and Cognition Center Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mario Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA,Trinity College Dublin (TCD), Dublin, Ireland
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Departamento de Física, Universidad de Buenos Aires and Instituto de Fisica de Buenos Aires (IFIBA -CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile,Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina,Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, USA,Trinity College Dublin (TCD), Dublin, Ireland,Corresponding author at: Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile., (A. Ibáñez)
| |
Collapse
|
22
|
Saul MA, He X, Black S, Charles F. A Two-Person Neuroscience Approach for Social Anxiety: A Paradigm With Interbrain Synchrony and Neurofeedback. Front Psychol 2022; 12:568921. [PMID: 35095625 PMCID: PMC8796854 DOI: 10.3389/fpsyg.2021.568921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Social anxiety disorder has been widely recognised as one of the most commonly diagnosed mental disorders. Individuals with social anxiety disorder experience difficulties during social interactions that are essential in the regular functioning of daily routines; perpetually motivating research into the aetiology, maintenance and treatment methods. Traditionally, social and clinical neuroscience studies incorporated protocols testing one participant at a time. However, it has been recently suggested that such protocols are unable to directly assess social interaction performance, which can be revealed by testing multiple individuals simultaneously. The principle of two-person neuroscience highlights the interpersonal aspect of social interactions that observes behaviour and brain activity from both (or all) constituents of the interaction, rather than analysing on an individual level or an individual observation of a social situation. Therefore, two-person neuroscience could be a promising direction for assessment and intervention of the social anxiety disorder. In this paper, we propose a novel paradigm which integrates two-person neuroscience in a neurofeedback protocol. Neurofeedback and interbrain synchrony, a branch of two-person neuroscience, are discussed in their own capacities for their relationship with social anxiety disorder and relevance to the paradigm. The newly proposed paradigm sets out to assess the social interaction performance using interbrain synchrony between interacting individuals, and to employ a multi-user neurofeedback protocol for intervention of the social anxiety.
Collapse
Affiliation(s)
- Marcia A. Saul
- Faculty of Media and Communication, Centre for Digital Entertainment, Bournemouth University, Poole, United Kingdom
| | - Xun He
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- *Correspondence: Xun He
| | - Stuart Black
- Applied Neuroscience Solutions Ltd., Frimley Green, United Kingdom
| | - Fred Charles
- Department of Creative Technology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- Fred Charles
| |
Collapse
|
23
|
Radman N, Jost L, Dorood S, Mancini C, Annoni JM. Language distance modulates cognitive control in bilinguals. Sci Rep 2021; 11:24131. [PMID: 34916553 PMCID: PMC8677725 DOI: 10.1038/s41598-021-02973-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Linguistic processes in the bilingual brain are partially shared across languages, and the degree of neural overlap between the languages is influenced by several factors, including the age of acquisition, relative language proficiency, and immersion. There is limited evidence on the role of linguistic distance on the performance of the language control as well as domain-general cognitive control systems. The present study aims at exploring whether being bilingual in close and distant language pairs (CLP and DLP) influences language control and domain-general cognitive processes. We recruited two groups of DLP (Persian-English) and CLP (French-English) bilinguals. Subjects performed language nonswitching and switching picture-naming tasks and a nonlinguistic switching task while EEG data were recorded. Behaviorally, CLP bilinguals showed a lower cognitive cost than DLP bilinguals, reflected in faster reaction times both in language switching (compared to nonswitching) and nonlinguistic switching. ERPs showed differential involvement of cognitive control regions between the CLP and DLP groups during linguistic switching vs. nonswitching at 450 to 515 ms poststimulus presentation. Moreover, there was a difference between CLP and DLP groups from 40 to 150 ms in the nonlinguistic task. Our electrophysiological results confirm a stronger involvement of language control and domain-general cognitive control regions in CLP bilinguals.
Collapse
Affiliation(s)
- Narges Radman
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM) Opposite the ARAJ, Artesh Highway, Aghdassieh, Tehran, 1956836484, Iran.
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Lea Jost
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Setareh Dorood
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM) Opposite the ARAJ, Artesh Highway, Aghdassieh, Tehran, 1956836484, Iran
| | - Christian Mancini
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Marie Annoni
- Neurology Unit, Medicine Section, Laboratory for Cognitive and Neurological Science, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Norton ES, MacNeill LA, Harriott EM, Allen N, Krogh-Jespersen S, Smyser CD, Rogers CE, Smyser TA, Luby J, Wakschlag L. EEG/ERP as a pragmatic method to expand the reach of infant-toddler neuroimaging in HBCD: Promises and challenges. Dev Cogn Neurosci 2021; 51:100988. [PMID: 34280739 PMCID: PMC8318873 DOI: 10.1016/j.dcn.2021.100988] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 07/12/2021] [Indexed: 01/12/2023] Open
Abstract
Though electrophysiological measures (EEG and ERP) offer complementary information to MRI and a variety of advantages for studying infants and young children, these measures have not yet been included in large cohort studies of neurodevelopment. This review summarizes the types of EEG and ERP measures that could be used in the HEALthy Brain and Cognitive Development (HBCD) study, and the promises and challenges in doing so. First, we provide brief overview of the use of EEG/ERP for studying the developing brain and discuss exemplar findings, using resting or baseline EEG measures as well as the ERP mismatch negativity (MMN) as exemplars. We then discuss the promises of EEG/ERP such as feasibility, while balancing challenges such as ensuring good signal quality in diverse children with different hair types. We then describe an ongoing multi-site EEG data harmonization from our groups. We discuss the process of alignment and provide preliminary usability data for both resting state EEG data and auditory ERP MMN in diverse samples including over 300 infants and toddlers. Finally, we provide recommendations and considerations for the HBCD study and other studies of neurodevelopment.
Collapse
Affiliation(s)
- Elizabeth S Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, United States; Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, United States; Institute for Innovations in Developmental Sciences, Northwestern University, United States.
| | - Leigha A MacNeill
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, United States; Institute for Innovations in Developmental Sciences, Northwestern University, United States
| | - Emily M Harriott
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, United States
| | - Norrina Allen
- Institute for Innovations in Developmental Sciences, Northwestern University, United States; Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, United States
| | - Sheila Krogh-Jespersen
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, United States; Institute for Innovations in Developmental Sciences, Northwestern University, United States
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics, and Radiology, Washington University School of Medicine, United States; Department of Psychiatry, Washington University School of Medicine, United States
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, United States
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, United States
| | - Joan Luby
- Department of Psychiatry, Washington University School of Medicine, United States
| | - Lauren Wakschlag
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, United States; Institute for Innovations in Developmental Sciences, Northwestern University, United States
| |
Collapse
|
25
|
Kutafina E, Heiligers A, Popovic R, Brenner A, Hankammer B, Jonas SM, Mathiak K, Zweerings J. Tracking of Mental Workload with a Mobile EEG Sensor. SENSORS 2021; 21:s21155205. [PMID: 34372445 PMCID: PMC8348794 DOI: 10.3390/s21155205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022]
Abstract
The aim of the present investigation was to assess if a mobile electroencephalography (EEG) setup can be used to track mental workload, which is an important aspect of learning performance and motivation and may thus represent a valuable source of information in the evaluation of cognitive training approaches. Twenty five healthy subjects performed a three-level N-back test using a fully mobile setup including tablet-based presentation of the task and EEG data collection with a self-mounted mobile EEG device at two assessment time points. A two-fold analysis approach was chosen including a standard analysis of variance and an artificial neural network to distinguish the levels of cognitive load. Our findings indicate that the setup is feasible for detecting changes in cognitive load, as reflected by alterations across lobes in different frequency bands. In particular, we observed a decrease of occipital alpha and an increase in frontal, parietal and occipital theta with increasing cognitive load. The most distinct levels of cognitive load could be discriminated by the integrated machine learning models with an accuracy of 86%.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (R.P.); (B.H.)
- Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Krakow, Poland
- Correspondence:
| | - Anne Heiligers
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (K.M.); (J.Z.)
| | - Radomir Popovic
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (R.P.); (B.H.)
| | - Alexander Brenner
- Institute of Medical Informatics, University of Münster, 48149 Münster, Germany;
| | - Bernd Hankammer
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany; (R.P.); (B.H.)
| | - Stephan M. Jonas
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany;
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (K.M.); (J.Z.)
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (A.H.); (K.M.); (J.Z.)
| |
Collapse
|
26
|
Lin YP, Liang HY, Chen YS, Lu CH, Wu YR, Chang YY, Lin WC. Objective assessment of impulse control disorder in patients with Parkinson's disease using a low-cost LEGO-like EEG headset: a feasibility study. J Neuroeng Rehabil 2021; 18:109. [PMID: 34215283 PMCID: PMC8252252 DOI: 10.1186/s12984-021-00897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Patients with Parkinson’s disease (PD) can develop impulse control disorders (ICDs) while undergoing a pharmacological treatment for motor control dysfunctions with a dopamine agonist (DA). Conventional clinical interviews or questionnaires can be biased and may not accurately diagnose at the early stage. A wearable electroencephalogram (EEG)-sensing headset paired with an examination procedure can be a potential user-friendly method to explore ICD-related signatures that can detect its early signs and progression by reflecting brain activity. Methods A stereotypical Go/NoGo test that targets impulse inhibition was performed on 59 individuals, including healthy controls, patients with PD, and patients with PD diagnosed by ICDs. We conducted two Go/NoGo sessions before and after the DA-pharmacological treatment for the PD and ICD groups. A low-cost LEGO-like EEG headset was used to record concurrent EEG signals. Then, we used the event-related potential (ERP) analytical framework to explore ICD-related EEG abnormalities after DA treatment. Results After the DA treatment, only the ICD-diagnosed PD patients made more behavioral errors and tended to exhibit the deterioration for the NoGo N2 and P3 peak amplitudes at fronto-central electrodes in contrast to the HC and PD groups. Particularly, the extent of the diminished NoGo-N2 amplitude was prone to be modulated by the ICD scores at Fz with marginal statistical significance (r = − 0.34, p = 0.07). Conclusions The low-cost LEGO-like EEG headset successfully captured ERP waveforms and objectively assessed ICD in patients with PD undergoing DA treatment. This objective neuro-evidence could provide complementary information to conventional clinical scales used to diagnose ICD adverse effects.
Collapse
Affiliation(s)
- Yuan-Pin Lin
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsing-Yi Liang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yueh-Sheng Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Yee Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan. .,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City, 833, Taiwan.
| |
Collapse
|
27
|
Peterson SM, Singh SH, Wang NXR, Rao RPN, Brunton BW. Behavioral and Neural Variability of Naturalistic Arm Movements. eNeuro 2021; 8:ENEURO.0007-21.2021. [PMID: 34031100 PMCID: PMC8225404 DOI: 10.1523/eneuro.0007-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/27/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022] Open
Abstract
Motor behaviors are central to many functions and dysfunctions of the brain, and understanding their neural basis has consequently been a major focus in neuroscience. However, most studies of motor behaviors have been restricted to artificial, repetitive paradigms, far removed from natural movements performed "in the wild." Here, we leveraged recent advances in machine learning and computer vision to analyze intracranial recordings from 12 human subjects during thousands of spontaneous, unstructured arm reach movements, observed over several days for each subject. These naturalistic movements elicited cortical spectral power patterns consistent with findings from controlled paradigms, but with considerable neural variability across subjects and events. We modeled interevent variability using 10 behavioral and environmental features; the most important features explaining this variability were reach angle and day of recording. Our work is among the first studies connecting behavioral and neural variability across cortex in humans during unstructured movements and contributes to our understanding of long-term naturalistic behavior.
Collapse
Affiliation(s)
- Steven M Peterson
- Department of Biology, University of Washington, Seattle, Washington 98195
- eScience Institute, University of Washington, Seattle, Washington 98195
| | - Satpreet H Singh
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195
| | - Nancy X R Wang
- IBM Research, San Jose, California 95120
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195
| | - Rajesh P N Rao
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195
- Center for Neurotechnology, University of Washington, Seattle, Washington 98195
| | - Bingni W Brunton
- Department of Biology, University of Washington, Seattle, Washington 98195
- eScience Institute, University of Washington, Seattle, Washington 98195
| |
Collapse
|
28
|
Khan DM, Yahya N, Kamel N, Faye I. Effective Connectivity in Default Mode Network for Alcoholism Diagnosis. IEEE Trans Neural Syst Rehabil Eng 2021; 29:796-808. [PMID: 33900918 DOI: 10.1109/tnsre.2021.3075737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic relapsing brain disease characterized by excessive alcohol use, loss of control over alcohol intake, and negative emotional states under no alcohol consumption. The key factor in successful treatment of AUD is the accurate diagnosis for better medical and therapy management. Conventionally, for individuals to be diagnosed with AUD, certain criteria as outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM) should be met. However, this process is subjective in nature and could be misleading due to memory problems and dishonesty of some AUD patients. In this paper, an assessment scheme for objective diagnosis of AUD is proposed. For this purpose, EEG recording of 31 healthy controls and 31 AUD patients are used for the calculation of effective connectivity (EC) between the various regions of the brain Default Mode Network (DMN). The EC is estimated using partial directed coherence (PDC) which are then used as input to a 3D Convolutional Neural Network (CNN) for binary classification of AUD cases. Using 5-fold cross validation, the classification of AUD vs. HC effective connectivity matrices using the proposed 3D-CNN gives an accuracy of 87.85 ± 4.64 %. For further validation, 32 and 30 subjects are randomly selected for training and testing, respectively, giving 100% correct classification of all the testing subjects.
Collapse
|
29
|
Pavlov YG, Adamian N, Appelhoff S, Arvaneh M, Benwell CSY, Beste C, Bland AR, Bradford DE, Bublatzky F, Busch NA, Clayson PE, Cruse D, Czeszumski A, Dreber A, Dumas G, Ehinger B, Ganis G, He X, Hinojosa JA, Huber-Huber C, Inzlicht M, Jack BN, Johannesson M, Jones R, Kalenkovich E, Kaltwasser L, Karimi-Rouzbahani H, Keil A, König P, Kouara L, Kulke L, Ladouceur CD, Langer N, Liesefeld HR, Luque D, MacNamara A, Mudrik L, Muthuraman M, Neal LB, Nilsonne G, Niso G, Ocklenburg S, Oostenveld R, Pernet CR, Pourtois G, Ruzzoli M, Sass SM, Schaefer A, Senderecka M, Snyder JS, Tamnes CK, Tognoli E, van Vugt MK, Verona E, Vloeberghs R, Welke D, Wessel JR, Zakharov I, Mushtaq F. #EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex 2021; 144:213-229. [PMID: 33965167 DOI: 10.1016/j.cortex.2021.03.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
There is growing awareness across the neuroscience community that the replicability of findings about the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardised analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalography (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound influence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and selection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations.
Collapse
Affiliation(s)
- Yuri G Pavlov
- University of Tuebingen, Germany; Ural Federal University, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | - Anna Dreber
- Stockholm School of Economics, Sweden; University of Innsbruck, Austria
| | - Guillaume Dumas
- Université de Montréal, Montréal, Quebec, Canada; CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
| | | | | | - Xun He
- Bournemouth University, UK
| | - José A Hinojosa
- Universidad Complutense de Madrid, Spain; Universidad Nebrija, Spain
| | | | | | | | | | | | | | - Laura Kaltwasser
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | | | | | - Peter König
- University Osnabrück, Germany; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Louisa Kulke
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | - Nicolas Langer
- University of Zurich, Switzerland; Neuroscience Center Zurich, Switzerland
| | | | - David Luque
- Universidad Autónoma de Madrid, Spain; Universidad de Málaga, Spain
| | | | - Liad Mudrik
- School of Psychological Sciences & Sagol School of Neuroscience, Tel Aviv University, Israel
| | | | | | | | - Guiomar Niso
- Indiana University, Bloomington, USA; Universidad Politecnica de Madrid and CIBER-BBN, Spain
| | | | | | | | | | | | | | | | | | - Joel S Snyder
- Department of Psychology, University of Nevada, Las Vegas, USA
| | | | | | | | | | | | - Dominik Welke
- Max-Planck-Institute for Empirical Aesthetics, Germany
| | - Jan R Wessel
- University of Iowa Hospitals and Clinics, Iowa City, USA; University of Iowa, Iowa City, USA
| | | | | |
Collapse
|
30
|
Tanaka S. Mirror Neuron Activity During Audiovisual Appreciation of Opera Performance. Front Psychol 2021; 11:563031. [PMID: 33584402 PMCID: PMC7873040 DOI: 10.3389/fpsyg.2020.563031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
Opera is a performing art in which music plays the leading role, and the acting of singers has a synergistic effect with the music. The mirror neuron system represents the neurophysiological mechanism underlying the coupling of perception and action. Mirror neuron activity is modulated by the appropriateness of actions and clarity of intentions, as well as emotional expression and aesthetic values. Therefore, it would be reasonable to assume that an opera performance induces mirror neuron activity in the audience so that the performer effectively shares an embodied performance with the audience. However, it is uncertain which aspect of opera performance induces mirror neuron activity. It is hypothesized that although auditory stimuli could induce mirror neuron activity, audiovisual perception of stage performance is the primary inducer of mirror neuron activity. To test this hypothesis, this study sought to correlate opera performance with brain activity as measured by electroencephalography (EEG) in singers while watching an opera performance with sounds or while listening to an aria without visual stimulus. We detected mirror neuron activity by observing that the EEG power in the alpha frequency band (8-13 Hz) was selectively decreased in the frontal-central-parietal area when watching an opera performance. In the auditory condition, however, the alpha-band power did not change relative to the resting condition. This study illustrates that the audiovisual perception of an opera performance engages the mirror neuron system in its audience.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, Tokyo, Japan
| |
Collapse
|
31
|
Thomas J, Thangavel P, Peh WY, Jing J, Yuvaraj R, Cash SS, Chaudhari R, Karia S, Rathakrishnan R, Saini V, Shah N, Srivastava R, Tan YL, Westover B, Dauwels J. Automated Adult Epilepsy Diagnostic Tool Based on Interictal Scalp Electroencephalogram Characteristics: A Six-Center Study. Int J Neural Syst 2021; 31:2050074. [PMID: 33438530 DOI: 10.1142/s0129065720500744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The diagnosis of epilepsy often relies on a reading of routine scalp electroencephalograms (EEGs). Since seizures are highly unlikely to be detected in a routine scalp EEG, the primary diagnosis depends heavily on the visual evaluation of Interictal Epileptiform Discharges (IEDs). This process is tedious, expert-centered, and delays the treatment plan. Consequently, the development of an automated, fast, and reliable epileptic EEG diagnostic system is essential. In this study, we propose a system to classify EEG as epileptic or normal based on multiple modalities extracted from the interictal EEG. The ensemble system consists of three components: a Convolutional Neural Network (CNN)-based IED detector, a Template Matching (TM)-based IED detector, and a spectral feature-based classifier. We evaluate the system on datasets from six centers from the USA, Singapore, and India. The system yields a mean Leave-One-Institution-Out (LOIO) cross-validation (CV) area under curve (AUC) of 0.826 (balanced accuracy (BAC) of 76.1%) and Leave-One-Subject-Out (LOSO) CV AUC of 0.812 (BAC of 74.8%). The LOIO results are found to be similar to the interrater agreement (IRA) reported in the literature for epileptic EEG classification. Moreover, as the proposed system can process routine EEGs in a few seconds, it may aid the clinicians in diagnosing epilepsy efficiently.
Collapse
Affiliation(s)
| | | | | | - Jin Jing
- Massachusetts General Hospital, Boston MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | | | - Sydney S Cash
- Massachusetts General Hospital, Boston MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | | | - Sagar Karia
- Lokmanya Tilak Municipal General Hospital, Mumbai, India
| | | | - Vinay Saini
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Nilesh Shah
- Lokmanya Tilak Municipal General Hospital, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | | | - Brandon Westover
- Massachusetts General Hospital, Boston MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Charalambous E, Hanna S, Penn A. Aha! I know where I am: the contribution of visuospatial cues to reorientation in urban environments. SPATIAL COGNITION AND COMPUTATION 2021. [DOI: 10.1080/13875868.2020.1865359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Efrosini Charalambous
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| | - Sean Hanna
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| | - Alan Penn
- Bartlett School of Architecture, University College London Bartlett Faculty of the Built Environment, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
33
|
Are the new mobile wireless EEG headsets reliable for the evaluation of musical pleasure? PLoS One 2021; 15:e0244820. [PMID: 33382801 PMCID: PMC7775075 DOI: 10.1371/journal.pone.0244820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022] Open
Abstract
Since the beginning of the 20th century, electroencephalography (EEG) has been used in a wide variety of applications, both for medical needs and for the study of various cerebral processes. With the rapid development of the technique, more and more precise and advanced tools have emerged for research purposes. However, the main constraints of these devices have often been the high price and, for some devices the low transportability and the long set-up time. Nevertheless, a broad range of wireless EEG devices have emerged on the market without these constraints, but with a lower signal quality. The development of EEG recording on multiple participants simultaneously, and new technological solutions provides further possibilities to understand the cerebral emotional dynamics of a group. A great number of studies have compared and tested many mobile devices, but have provided contradictory results. It is therefore important to test the reliability of specific wireless devices in a specific research context before developing a large-scale study. The aim of this study was to assess the reliability of two wireless devices (g.tech Nautilus SAHARA electrodes and Emotiv™ Epoc +) for the detection of musical emotions, in comparison with a gold standard EEG device. Sixteen participants reported feeling emotional pleasure (from low pleasure up to musical chills) when listening to their favorite chill-inducing musical excerpts. In terms of emotion detection, our results show statistically significant concordance between Epoc + and the gold standard device in the left prefrontal and left temporal areas in the alpha frequency band. We validated the use of the Emotiv™ Epoc + for research into musical emotion. We did not find any significant concordance between g.tech and the gold standard. This suggests that Emotiv Epoc is more appropriate for musical emotion investigations in natural settings.
Collapse
|
34
|
Yang SY, Lin YP. Validating a LEGO-Like EEG Headset for a Simultaneous Recording of Wet- and Dry-Electrode Systems During Treadmill Walking. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:4055-4058. [PMID: 33018889 DOI: 10.1109/embc44109.2020.9176190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent mobile and wearable electroencephalogram (EEG)-sensing technologies have been demonstrated to be effective for measuring rapid changes of spatio-spectral EEG correlates of brain and cognitive functions of interest with more ecologically natural settings. However, commercial EEG products are available commonly with a fixed headset in terms of the number of electrodes and their locations to the scalp practically constrains their generalizability for different demands of EEG and brain-computer interface (BCI) study. While most progress focused on innovation of sensing hardware and conductive electrodes, less effort has been done to renovate mechanical structures of an EEG headset. Recently, an electrode-holder assembly infrastructure was designed to be capable of unlimitedly (re)assembling a desired n-channel electrode headset through a set of primary elements (i.e., LEGO-like headset). The present work empirically demonstrated one of its advantage regarding coordinating the homogeneous or heterogeneous sensors covering the target regions of the brain. Towards this objective, an 8-channel LEGO headset was assembled to conduct a simultaneous event-related potential (ERP) recording of the wet- and dry-electrode EEG systems and testify their signal quality during standing still versus treadmill walking. The results showed that both systems returned a comparable P300 signal-to-noise ratio (SNR) for standing, yet the dry system was more susceptible to the movement artifacts during slow walking. The LEGO headset infrastructure facilitates a desired benchmark study, e.g., comparing the signal quality of different electrodes on non-stationary subjects conducted in this work, or a specific EEG and BCI application.
Collapse
|
35
|
Williams NS, McArthur GM, de Wit B, Ibrahim G, Badcock NA. A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ 2020; 8:e9713. [PMID: 32864218 PMCID: PMC7427545 DOI: 10.7717/peerj.9713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023] Open
Abstract
Background Previous work has validated consumer-grade electroencephalography (EEG) systems for use in research. Systems in this class are cost-effective and easy to set up and can facilitate neuroscience outside of the laboratory. The aim of the current study was to determine if a new consumer-grade system, the Emotiv EPOC Saline Flex, was capable of capturing research-quality data. Method The Emotiv system was used simultaneously with a research-grade EEG system, Neuroscan Synamps2, to collect EEG data across 16 channels during five well-established paradigms: (1) a mismatch negativity (MMN) paradigm that involved a passive listening task in which rare deviant (1,500 Hz) tones were interspersed amongst frequent standard tones (1,000 Hz), with instructions to ignore the tones while watching a silent movie; (2) a P300 paradigm that involved an active listening task in which participants were asked to count rare deviant tones presented amongst frequent standard tones; (3) an N170 paradigm in which participants were shown images of faces and watches and asked to indicate whether the images were upright or inverted; (4) a steady-state visual evoked potential (SSVEP) paradigm in which participants passively viewed a flickering screen (15 Hz) for 2 min; and (5) a resting state paradigm in which participants sat quietly with their eyes open and then closed for 3 min each. Results The MMN components and P300 peaks were equivalent between the two systems (BF10 = 0.25 and BF10 = 0.26, respectively), with high intraclass correlations (ICCs) between the ERP waveforms (>0.81). Although the N170 peak values recorded by the two systems were different (BF10 = 35.88), ICCs demonstrated that the N170 ERP waveforms were strongly correlated over the right hemisphere (P8; 0.87–0.97), and moderately-to-strongly correlated over the left hemisphere (P7; 0.52–0.84). For the SSVEP, the signal-to-noise ratio (SNR) was larger for Neuroscan than Emotiv EPOC Flex (19.94 vs. 8.98, BF10 = 51,764), but SNR z-scores indicated a significant brain response at the stimulus frequency for both Neuroscan (z = 12.47) and Flex (z = 11.22). In the resting state task, both systems measured similar alpha power (BF10 = 0.28) and higher alpha power when the eyes were closed than open (BF10 = 32.27). Conclusions The saline version of the Emotiv EPOC Flex captures data similar to that of a research-grade EEG system. It can be used to measure reliable auditory and visual research-quality ERPs. In addition, it can index SSVEP signatures and is sensitive to changes in alpha oscillations.
Collapse
Affiliation(s)
- Nikolas S Williams
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | | | - Bianca de Wit
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - George Ibrahim
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| | - Nicholas A Badcock
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia.,School of Psychological Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
36
|
Gupta SS, Manthalkar RR. Classification of visual cognitive workload using analytic wavelet transform. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Saqib M, Zhu Y, Wang MD, Beaulieu-Jones B. Regularization of Deep Neural Networks for EEG Seizure Detection to Mitigate Overfitting. PROCEEDINGS : ANNUAL INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE. COMPSAC 2020; 2020:664-673. [PMID: 33073266 PMCID: PMC7567426 DOI: 10.1109/compsac48688.2020.0-182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seizure detection is a major goal for simplifying the workflow of clinicians working on EEG records. Current algorithms can only detect seizures effectively for patients already presented to the classifier. These algorithms are hard to generalize outside the initial training set without proper regularization and fail to capture seizures from the larger population. We proposed a data processing pipeline for seizure detection on an intra-patient dataset from the world's largest public EEG seizure corpus. We created spatially and session invariant features by forcing our networks to rely less on exact combinations of channels and signal amplitudes, but instead to learn dependencies towards seizure detection. For comparison, the baseline results without any additional regularization on a deep learning model achieved an F1 score of 0.544. By using random rearrangements of channels on each minibatch to force the network to generalize to other combinations of channels, we increased the F1 score to 0.629. By using random rescale of the data within a small range, we further increased the F1 score to 0.651 for our best model. Additionally, we applied adversarial multi-task learning and achieved similar results. We observed that session and patient specific dependencies were causing overfitting of deep neural networks, and the most overfitting models learnt features specific only to the EEG data presented. Thus, we created networks with regularization that the deep learning did not learn patient and session-specific features. We are the first to use random rearrangement, random rescale, and adversarial multitask learning to regularize intra-patient seizure detection and have increased sensitivity to 0.86 comparing to baseline study.
Collapse
Affiliation(s)
- Mohammed Saqib
- Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yuanda Zhu
- Electrical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - May Dongmei Wang
- Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
38
|
Ramirez-Quintana JA, Madrid-Herrera L, Chacon-Murguia MI, Corral-Martinez LF. Brain-Computer Interface System Based on P300 Processing with Convolutional Neural Network, Novel Speller, and Low Number of Electrodes. Cognit Comput 2020. [DOI: 10.1007/s12559-020-09744-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Leach S, Chung KY, Tüshaus L, Huber R, Karlen W. A Protocol for Comparing Dry and Wet EEG Electrodes During Sleep. Front Neurosci 2020; 14:586. [PMID: 32625053 PMCID: PMC7313551 DOI: 10.3389/fnins.2020.00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/12/2020] [Indexed: 01/17/2023] Open
Abstract
Background Sleep is commonly assessed by recording the electroencephalogram (EEG) of the sleeping brain. As sleep assessments in a lab environment are cumbersome for both the participant and researcher, it would be highly desirable to record sleep EEG with a user-friendly and mobile device. Dry electrodes that are reusable, low-cost, and easy to apply would be an essential component of such a device. In this study, we developed a testing protocol to investigate the performance of novel flat-type dry electrodes for sleep EEG recordings in free-living conditions. Methods Overnight sleep EEG, electrooculogram and electromyogram of four young and healthy participants were recorded at home. Two identical ambulatory recording devices, one using novel flat-type dry electrodes, the other using self-adhesive pre-gelled electrodes, simultaneously recorded sleep EEG. Between both electrode types, we then compared the signal quality, the incidence of artifacts, the sensitivity, specificity and inter-scoring reliability (Cohen’s kappa) of sleep staging, as well as the agreement of important characteristics of sleep-specific EEG microstructure features, such as slow waves (0.5–4 Hz) and sleep spindles (10–16 Hz). Results Our testing protocol comprehensively compared the two electrode types on a macro- and microstructure level of sleep. The dry and pre-gelled electrodes both had comparable signal quality and sleep staging was feasible with both electrodes. Also, slow-wave and spindle characteristics were similar. However, sweat artifacts were more prevalent in the flat-type dry electrodes. Conclusion With a reliable testing protocol, the performance of dry electrodes can be compared to reference technologies and objectively assessed also in free-living conditions.
Collapse
Affiliation(s)
- Sven Leach
- Child Development Center and Pediatric Sleep Disorders Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ku-Young Chung
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Laura Tüshaus
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center and Pediatric Sleep Disorders Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
40
|
Tinga AM, de Back TT, Louwerse MM. Non-invasive Neurophysiology in Learning and Training: Mechanisms and a SWOT Analysis. Front Neurosci 2020; 14:589. [PMID: 32581700 PMCID: PMC7290240 DOI: 10.3389/fnins.2020.00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/13/2020] [Indexed: 11/29/2022] Open
Abstract
Although many scholars deem non-invasive measures of neurophysiology to have promise in assessing learning, these measures are currently not widely applied, neither in educational settings nor in training. How can non-invasive neurophysiology provide insight into learning and how should research on this topic move forward to ensure valid applications? The current article addresses these questions by discussing the mechanisms underlying neurophysiological changes during learning followed by a SWOT (strengths, weaknesses, opportunities, and threats) analysis of non-invasive neurophysiology in learning and training. This type of analysis can provide a structured examination of factors relevant to the current state and future of a field. The findings of the SWOT analysis indicate that the field of neurophysiology in learning and training is developing rapidly. By leveraging the opportunities of neurophysiology in learning and training (while bearing in mind weaknesses, threats, and strengths) the field can move forward in promising directions. Suggestions for opportunities for future work are provided to ensure valid and effective application of non-invasive neurophysiology in a wide range of learning and training settings.
Collapse
Affiliation(s)
- Angelica M Tinga
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | - Tycho T de Back
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| | - Max M Louwerse
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| |
Collapse
|
41
|
Kutafina E, Brenner A, Titgemeyer Y, Surges R, Jonas S. Comparison of mobile and clinical EEG sensors through resting state simultaneous data collection. PeerJ 2020; 8:e8969. [PMID: 32391200 PMCID: PMC7197399 DOI: 10.7717/peerj.8969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/24/2020] [Indexed: 11/22/2022] Open
Abstract
Development of mobile sensors brings new opportunities to medical research. In particular, mobile electroencephalography (EEG) devices can be potentially used in low cost screening for epilepsy and other neurological and psychiatric disorders. The necessary condition for such applications is thoughtful validation in the specific medical context. As part of validation and quality assurance, we developed a computer-based analysis pipeline, which aims to compare the EEG signal acquired by a mobile EEG device to the one collected by a medically approved clinical-grade EEG device. Both signals are recorded simultaneously during 30 min long sessions in resting state. The data are collected from 22 patients with epileptiform abnormalities in EEG. In order to compare two multichannel EEG signals with differently placed references and electrodes, a novel data processing pipeline is proposed. It allows deriving matching pairs of time series which are suitable for similarity assessment through Pearson correlation. The average correlation of 0.64 is achieved on a test dataset, which can be considered a promising result, taking the positions shift due to the simultaneous electrode placement into account.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Alexander Brenner
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yannic Titgemeyer
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital of Bonn, Bonn, Germany
| | - Stephan Jonas
- Department of Informatics, Technical University of Munich, Garching, Germany
| |
Collapse
|
42
|
Hinrichs H, Scholz M, Baum AK, Kam JWY, Knight RT, Heinze HJ. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci Rep 2020; 10:5218. [PMID: 32251333 PMCID: PMC7090045 DOI: 10.1038/s41598-020-62154-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
Dry electrode electroencephalogram (EEG) recording combined with wireless data transmission offers an alternative tool to conventional wet electrode EEG systems. However, the question remains whether the signal quality of dry electrode recordings is comparable to wet electrode recordings in the clinical context. We recorded the resting state EEG (rsEEG), the visual evoked potentials (VEP) and the visual P300 (P3) from 16 healthy subjects (age range: 26-79 years) and 16 neurological patients who reported subjective memory impairment (age range: 50-83 years). Each subject took part in two recordings on different days, one with 19 dry electrodes and another with 19 wet electrodes. They reported their preferred EEG system. Comparisons of the rsEEG recordings were conducted qualitatively by independent visual evaluation by two neurologists blinded to the EEG system used and quantitatively by spectral analysis of the rsEEG. The P100 visual evoked potential (VEP) and P3 event-related potential (ERP) were compared in terms of latency, amplitude and pre-stimulus noise. The majority of subjects preferred the dry electrode headset. Both neurologists reported that all rsEEG traces were comparable between the wet and dry electrode headsets. Absolute Alpha and Beta power during rest did not statistically differ between the two EEG systems (p > 0.05 in all cases). However, Theta and Delta power was slightly higher with the dry electrodes (p = 0.0004 for Theta and p < 0.0001 for Delta). For ERPs, the mean latencies and amplitudes of the P100 VEP and P3 ERP showed comparable values (p > 0.10 in all cases) with a similar spatial distribution for both wet and dry electrode systems. These results suggest that the signal quality, ease of set-up and portability of the dry electrode EEG headset used in our study comply with the needs of clinical applications.
Collapse
Affiliation(s)
- Hermann Hinrichs
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Department of Behavioural Neurology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany. .,Center for Behavioural Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany. .,German Centre for Neurodegenerative Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Forschungscampus STIMULATE, Magdeburg, Germany.
| | - Michael Scholz
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Anne Katrin Baum
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California - Berkeley, 132 Barker Hall, Berkeley, CA, 94720, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California - Berkeley, 132 Barker Hall, Berkeley, CA, 94720, USA.,Department of Psychology, University of California - Berkeley, 130 Barker Hall, Berkeley, CA, 94720, USA
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Behavioural Neurology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany.,Center for Behavioural Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
43
|
Czeszumski A, Eustergerling S, Lang A, Menrath D, Gerstenberger M, Schuberth S, Schreiber F, Rendon ZZ, König P. Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction. Front Hum Neurosci 2020; 14:39. [PMID: 32180710 PMCID: PMC7059252 DOI: 10.3389/fnhum.2020.00039] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/27/2020] [Indexed: 01/11/2023] Open
Abstract
Social interactions are a crucial part of human life. Understanding the neural underpinnings of social interactions is a challenging task that the hyperscanning method has been trying to tackle over the last two decades. Here, we review the existing literature and evaluate the current state of the hyperscanning method. We review the type of methods (fMRI, M/EEG, and fNIRS) that are used to measure brain activity from more than one participant simultaneously and weigh their pros and cons for hyperscanning. Further, we discuss different types of analyses that are used to estimate brain networks and synchronization. Lastly, we present results of hyperscanning studies in the context of different cognitive functions and their relations to social interactions. All in all, we aim to comprehensively present methods, analyses, and results from the last 20 years of hyperscanning research.
Collapse
Affiliation(s)
- Artur Czeszumski
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Sara Eustergerling
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Anne Lang
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - David Menrath
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | | | - Susanne Schuberth
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | - Felix Schreiber
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany
| | | | - Peter König
- Institute of Cognitive Science, Universität Osnabrück, Osnabrück, Germany.,Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
44
|
Automated EEG mega-analysis II: Cognitive aspects of event related features. Neuroimage 2020; 207:116054. [DOI: 10.1016/j.neuroimage.2019.116054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/11/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022] Open
|
45
|
Bigdely-Shamlo N, Touryan J, Ojeda A, Kothe C, Mullen T, Robbins K. Automated EEG mega-analysis I: Spectral and amplitude characteristics across studies. Neuroimage 2020; 207:116361. [DOI: 10.1016/j.neuroimage.2019.116361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022] Open
|
46
|
Abstract
The electroencephalogram (EEG) was invented almost 100 years ago and is still a method of choice for many research questions, even applications-from functional brain imaging in neuroscientific investigations during movement to real-time applications like brain-computer interfacing. This chapter gives some background information on the establishment and properties of the EEG. This chapter starts with a closer look at the sources of EEG at a micro or neuronal level, followed by recording techniques, types of electrodes, and common EEG artifacts. Then an overview on EEG phenomena, namely, spontaneous EEG and event-related potentials build the middle part of this chapter. The last part discusses brain signals, which are used in current BCI research, including short descriptions and examples of applications.
Collapse
Affiliation(s)
- Gernot R Müller-Putz
- Institute for Neural Engineering, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Graz, Austria.
| |
Collapse
|
47
|
Shen YW, Lin YP. Challenge for Affective Brain-Computer Interfaces: Non-stationary Spatio-spectral EEG Oscillations of Emotional Responses. Front Hum Neurosci 2019; 13:366. [PMID: 31736727 PMCID: PMC6831623 DOI: 10.3389/fnhum.2019.00366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
Electroencephalogram (EEG)-based affective brain-computer interfaces (aBCIs) have been attracting ever-growing interest and research resources. Whereas most previous neuroscience studies have focused on single-day/-session recording and sensor-level analysis, less effort has been invested in assessing the fundamental nature of non-stationary EEG oscillations underlying emotional responses across days and individuals. This work thus aimed to use a data-driven blind source separation method, i.e., independent component analysis (ICA), to derive emotion-relevant spatio-spectral EEG source oscillations and assess the extent of non-stationarity. To this end, this work conducted an 8-day music-listening experiment (i.e., roughly interspaced over 2 months) and recorded whole-scalp 30-ch EEG data from 10 subjects. Given the large size of the data (i.e., from 80 sessions), results indicated that EEG non-stationarity was clearly revealed in the numbers and locations of brain sources of interest as well as their spectral modulation to the emotional responses. Less than half of subjects (two to four) showed the same relatively day-stationary (source reproducibility >6 days) spatio-spectral tendency towards one of the binary valence and arousal states. This work substantially advances the previous work by exploiting intra- and inter-individual EEG variability in an ecological multiday scenario. Such EEG non-stationarity may inevitably present a great challenge for the development of an accurate, robust, and generalized emotion-classification model.
Collapse
Affiliation(s)
- Yi-Wei Shen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yuan-Pin Lin
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
48
|
Cost-efficient and Custom Electrode-holder Assembly Infrastructure for EEG Recordings. SENSORS 2019; 19:s19194273. [PMID: 31581619 PMCID: PMC6806080 DOI: 10.3390/s19194273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 01/04/2023]
Abstract
Mobile electroencephalogram (EEG)-sensing technologies have rapidly progressed and made the access of neuroelectrical brain activity outside the laboratory in everyday life more realistic. However, most existing EEG headsets exhibit a fixed design, whereby its immobile montage in terms of electrode density and coverage inevitably poses a great challenge with applicability and generalizability to the fundamental study and application of the brain-computer interface (BCI). In this study, a cost-efficient, custom EEG-electrode holder infrastructure was designed through the assembly of primary components, including the sensor-positioning ring, inter-ring bridge, and bridge shield. It allows a user to (re)assemble a compact holder grid to accommodate a desired number of electrodes only to the regions of interest of the brain and iteratively adapt it to a given head size for optimal electrode-scalp contact and signal quality. This study empirically demonstrated its easy-to-fabricate nature by a low-end fused deposition modeling (FDM) 3D printer and proved its practicability of capturing event-related potential (ERP) and steady-state visual-evoked potential (SSVEP) signatures over 15 subjects. This paper highlights the possibilities for a cost-efficient electrode-holder assembly infrastructure with replaceable montage, flexibly retrofitted in an unlimited fashion, for an individual for distinctive fundamental EEG studies and BCI applications.
Collapse
|
49
|
Baumgart KG, Byvshev P, Sliby AN, Strube A, König P, Wahn B. Neurophysiological correlates of collective perceptual decision-making. Eur J Neurosci 2019; 51:1676-1696. [PMID: 31418946 DOI: 10.1111/ejn.14545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/05/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022]
Abstract
Humans frequently perform tasks collaboratively in daily life. Collaborating with others may or may not result in higher task performance than if one were to complete the task alone (i.e., a collective benefit). A recent study on collective benefits in perceptual decision-making showed that dyad members with similar individual performances attain collective benefit. However, little is known about the physiological basis of these results. Here, we replicate this earlier work and also investigate the neurophysiological correlates of decision-making using EEG. In a two-interval forced-choice task, co-actors individually indicated presence of a target stimulus with a higher contrast and then indicated their confidence on a rating scale. Viewing the individual ratings, dyads made a joint decision. Replicating earlier work, we found a positive correlation between the similarity of individual performances and collective benefit. We analyzed event-related potentials (ERPs) in three phases (i.e., stimulus onset, response and feedback) using explorative cluster mass permutation tests. At stimulus onset, ERPs were significantly linearly related to our manipulation of contrast differences, validating our manipulation of task difficulty. For individual and joint responses, we found a significant centro-parietal error-related positivity for correct versus incorrect responses, which suggests that accuracy is already evaluated at the response level. At feedback presentation, we found a significant late positive fronto-central potential elicited by incorrect joint responses. In sum, these results demonstrate that response- and feedback-related components elicited by an error-monitoring system differentially integrate conflicting information exchanged during the joint decision-making process.
Collapse
Affiliation(s)
- Kristina G Baumgart
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petr Byvshev
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Communications and Networking, Aalto University, Espoo, Finland
| | - Alexa-Nicole Sliby
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Strube
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter König
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Basil Wahn
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Oliveira AS, Andersen CØ, Grimstrup CB, Pretzmann F, Mortensen NH, Castro MN, Mrachacz-Kersting N. A software for testing and training visuo-motor coordination for upper limb control. J Neurosci Methods 2019; 324:108310. [DOI: 10.1016/j.jneumeth.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022]
|