1
|
Sitthinamsuwan B, Ounahachok T, Pumseenil S, Nunta-Aree S. Comparative outcomes of microsurgical dorsal root entry zone lesioning (DREZotomy) for intractable neuropathic pain in spinal cord and cauda equina injuries. Neurosurg Rev 2025; 48:17. [PMID: 39747752 PMCID: PMC11695575 DOI: 10.1007/s10143-024-03136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 01/04/2025]
Abstract
Treatment of neuropathic pain in patients with spinal cord injury (SCI) and cauda equina injury (CEI) remains challenging. Dorsal root entry zone lesioning (DREZL) or DREZotomy is a viable surgical option for refractory cases. This study aimed to compare DREZL surgical outcomes between patients with SCI and those with CEI and to identify predictors of postoperative pain relief. We retrospectively analyzed 12 patients (6 with SCI and 6 with CEI) with intractable neuropathic pain who underwent DREZL. The data collected were demographic characteristics, pain distribution, and outcomes assessed by numeric pain rating scores. Variables and percentages of pain improvement at 1 year and long-term were statistically compared between the SCI and CEI groups. The demographic characteristics and percentage of patients who experienced pain improvement at 1 year postoperatively did not differ between the groups. Compared with the SCI group, the CEI group presented significantly better long-term pain reduction (p = 0.020) and favorable operative outcomes (p = 0.015). Patients with border zone pain had significantly better long-term pain relief and outcomes than did those with diffuse pain (p = 0.008 and p = 0.010, respectively). Recurrent pain after DREZL occurred in the SCI group but not in the CEI group. DREZL provided superior pain relief in patients with CEI. The presence of border zone pain predicted favorable outcomes. CEI patients or SCI patients with border zone pain are good surgical candidates for DREZL, whereas SCI patients with below-injury diffuse pain are poor candidates.
Collapse
Affiliation(s)
- Bunpot Sitthinamsuwan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, 10700, Bangkok, Thailand
| | - Tanawat Ounahachok
- Department of Surgery, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sawanee Pumseenil
- Neurosurgical Unit, Division of Perioperative Nursing, Department of Nursing, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sarun Nunta-Aree
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, 10700, Bangkok, Thailand.
| |
Collapse
|
2
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2025; 603:247-284. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Shoraka O, Syed M, Mandloi S, Thalheimer S, Kashani SN, Heller JE, Mohamed FB, Sharan AD, Talekar KS, Matias CM, Harrop JS, Krisa L, Alizadeh M. Periaqueductal gray connectivity in spinal cord injury-induced neuropathic pain. J Neuroimaging 2024; 34:704-719. [PMID: 39252511 DOI: 10.1111/jon.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain (NP) is a debilitating condition following spinal cord injury (SCI). The role of periaqueductal gray (PAG) in NP development following SCI remains underexplored. Using resting-state functional MRI (rsfMRI), our study aimed to demonstrate the alterations in functional connectivity (FC) of PAG in NP following SCI. METHODS Ten SCI patients (SCI + NP, n = 7, and SCI - NP, n = 3), alongside 10 healthy controls (HCs), were enrolled. rsfMRI was conducted followed by seed-to-voxel analysis using PAG as the seed region and then group-based analysis comprising three groups (SCI + NP, SCI - NP, and HC). Age and gender were considered as confounding variables. RESULTS Compared to HCs, SCI + NP demonstrated decreased FC between PAG and right insula, right frontal orbital cortex, right pallidum, dorsal raphe nucleus (DRN), red nuclei (RN), substantia nigra (SN), and ventral posterolateral (VPL) thalamic nuclei. Compared to SCI - NP, SCI + NP demonstrated increased FC between PAG and posterior cingulate cortex (PCC), hippocampus, cerebellar vermis lobules IV and V, and thalamic structures (posterior and lateral pulvinar, the mediodorsal nuclei, and the ventral lateral nuclei). Additionally, decreased FC between the PAG and VPL, geniculate bodies, intralaminar nuclei of thalamus, DRN, RN, SN, and prefrontal cortex was observed in this comparison. CONCLUSIONS Altered FC between PAG and right anterior insula, VPL, DRN, RN, SN, cerebellar vermis lobules IV and V, frontal cortex, and PCC was associated with NP sequelae of SCI. Additionally, SCI was independently associated with decreased FC between PAG and right posterior insula, cerebellar lobules IV and V, and cerebellar vermis lobules III, IV, and V.
Collapse
Affiliation(s)
- Omid Shoraka
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Thalheimer
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Naghizadeh Kashani
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joshua E Heller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini D Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kiran S Talekar
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Caio M Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James S Harrop
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Wu Z, Feng K, Huang J, Ye X, Yang R, Huang Q, Jiang Q. Brain region changes following a spinal cord injury. Neurochem Int 2024; 174:105696. [PMID: 38354751 DOI: 10.1016/j.neuint.2024.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Brain-related complications are common in clinical practice after spinal cord injury (SCI); however, the molecular mechanisms of these complications are still unclear. Here, we reviewed the changes in the brain regions caused by SCI from three perspectives: imaging, molecular analysis, and electrophysiology. Imaging studies revealed abnormal functional connectivity, gray matter volume atrophy, and metabolic abnormalities in brain regions after SCI, leading to changes in the structure and function of brain regions. At the molecular level, chemokines, inflammatory factors, and damage-associated molecular patterns produced in the injured area were retrogradely transmitted through the corticospinal tract, cerebrospinal fluid, or blood circulation to the specific brain area to cause pathologic changes. Electrophysiologic recordings also suggested abnormal changes in brain electrical activity after SCI. Transcranial magnetic stimulation, transcranial direct current stimulation, and deep brain stimulation alleviated pain and improved motor function in patients with SCI; therefore, transcranial therapy may be a new strategy for the treatment of patients with SCI.
Collapse
Affiliation(s)
- Zhiwu Wu
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Kaiming Feng
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Jinqing Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Xinyun Ye
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Ruijin Yang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China
| | - Qianliang Huang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| | - Qiuhua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16th Mei-guan Avenue, Ganzhou, 341000, China.
| |
Collapse
|
5
|
Fallahi MS, Azadnajafabad S, Maroufi SF, Pour-Rashidi A, Khorasanizadeh M, Sattari SA, Faramarzi S, Slavin KV. Application of Vagus Nerve Stimulation in Spinal Cord Injury Rehabilitation. World Neurosurg 2023; 174:11-24. [PMID: 36858292 DOI: 10.1016/j.wneu.2023.02.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Spinal cord injury (SCI) is a prevalent devastating condition causing significant morbidity and mortality, especially in developing countries. The pathophysiology of SCI involves ischemia, neuroinflammation, cell death, and scar formation. Due to the lack of definitive therapy for SCI, interventions mainly focus on rehabilitation to reduce deterioration and improve the patient's quality of life. Currently, rehabilitative exercises and neuromodulation methods such as functional electrical stimulation, epidural electrical stimulation, and transcutaneous electrical nerve stimulation are being tested in patients with SCI. Other spinal stimulation techniques are being developed and tested in animal models. However, often these methods require complex surgical procedures and solely focus on motor function. Vagus nerve stimulation (VNS) is currently used in patients with epilepsy, depression, and migraine and is being investigated for its application in other disorders. In animal models of SCI, VNS significantly improved locomotor function by ameliorating inflammation and improving plasticity, suggesting its use in human subjects. SCI patients also suffer from nonmotor complications, including pain, gastrointestinal dysfunction, cardiovascular disorders, and chronic conditions such as obesity and diabetes. VNS has shown promising results in alleviating these conditions in non-SCI patients, which makes it a possible therapeutic option in SCI patients.
Collapse
Affiliation(s)
- Mohammad Sadegh Fallahi
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Azadnajafabad
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Farzad Maroufi
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Neurosurgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Pour-Rashidi
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - MirHojjat Khorasanizadeh
- Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York, New York, USA
| | - Shahab Aldin Sattari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sina Faramarzi
- School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
6
|
Black SR, Janson A, Mahan M, Anderson J, Butson CR. Identification of Deep Brain Stimulation Targets for Neuropathic Pain After Spinal Cord Injury Using Localized Increases in White Matter Fiber Cross Section. Neuromodulation 2022; 25:276-285. [PMID: 35125147 DOI: 10.1111/ner.13399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The spinal cord injury (SCI) patient population is overwhelmingly affected by neuropathic pain (NP), a secondary condition for which therapeutic options are limited and have a low degree of efficacy. The objective of this study was to identify novel deep brain stimulation (DBS) targets that may theoretically benefit those with NP in the SCI patient population. We hypothesize that localized changes in white matter identified in SCI subjects with NP compared to those without NP could be used to develop an evidence-based approach to DBS target identification. MATERIALS AND METHODS To classify localized neurostructural changes associated with NP in the SCI population, we compared white matter fiber density (FD) and cross section (FC) between SCI subjects with NP (n = 17) and SCI subjects without NP (n = 15) using diffusion-weighted magnetic resonance imaging (MRI). We then identified theoretical target locations for DBS using fiber bundles connected to significantly altered regions of white matter. Finally, we used computational models of DBS to determine if our theoretical target locations could be used to feasibly activate our fiber bundles of interest. RESULTS We identified significant increases in FC in the splenium of the corpus callosum in pain subjects when compared to controls. We then isolated five fiber bundles that were directly connected to the affected region of white matter. Our models were able to predict that our fiber bundles of interest can be feasibly activated with DBS at reasonable stimulation amplitudes and with clinically relevant implantation approaches. CONCLUSIONS Altogether, we identified neuroarchitectural changes associated with NP in the SCI cohort and implemented a novel evidence-driven target selection approach for DBS to guide future research in neuromodulation treatment of NP after SCI.
Collapse
Affiliation(s)
- Shana R Black
- Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Andrew Janson
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark Mahan
- Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Jeffrey Anderson
- Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Christopher R Butson
- Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA; Neurosurgery, University of Utah, Salt Lake City, UT, USA; Neurology, University of Utah, Salt Lake City, UT, USA; Psychiatry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
8
|
Kyathanahally SP, Azzarito M, Rosner J, Calhoun VD, Blaiotta C, Ashburner J, Weiskopf N, Wiech K, Friston K, Ziegler G, Freund P. Microstructural plasticity in nociceptive pathways after spinal cord injury. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-325580. [PMID: 34039630 PMCID: PMC8292587 DOI: 10.1136/jnnp-2020-325580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/12/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To track the interplay between (micro-) structural changes along the trajectories of nociceptive pathways and its relation to the presence and intensity of neuropathic pain (NP) after spinal cord injury (SCI). METHODS A quantitative neuroimaging approach employing a multiparametric mapping protocol was used, providing indirect measures of myelination (via contrasts such as magnetisation transfer (MT) saturation, longitudinal relaxation (R1)) and iron content (via effective transverse relaxation rate (R2*)) was used to track microstructural changes within nociceptive pathways. In order to characterise concurrent changes along the entire neuroaxis, a combined brain and spinal cord template embedded in the statistical parametric mapping framework was used. Multivariate source-based morphometry was performed to identify naturally grouped patterns of structural variation between individuals with and without NP after SCI. RESULTS In individuals with NP, lower R1 and MT values are evident in the primary motor cortex and dorsolateral prefrontal cortex, while increases in R2* are evident in the cervical cord, periaqueductal grey (PAG), thalamus and anterior cingulate cortex when compared with pain-free individuals. Lower R1 values in the PAG and greater R2* values in the cervical cord are associated with NP intensity. CONCLUSIONS The degree of microstructural changes across ascending and descending nociceptive pathways is critically implicated in the maintenance of NP. Tracking maladaptive plasticity unravels the intimate relationships between neurodegenerative and compensatory processes in NP states and may facilitate patient monitoring during therapeutic trials related to pain and neuroregeneration.
Collapse
Affiliation(s)
- Sreenath P Kyathanahally
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Michela Azzarito
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Claudia Blaiotta
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, UCL, London, UK
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, UCL, London, UK
| | - Nikolaus Weiskopf
- Neurophysics, Max-Planck-Institut fur Kognitions- und Neurowissenschaften, Leipzig, Germany
| | - Katja Wiech
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, UCL, London, UK
| | - Gabriel Ziegler
- German Center for Neurodegenerative Disease (DZNE), Magdeburg, Germany
| | - Patrick Freund
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, UCL, London, UK
- Neurophysics, Max-Planck-Institut fur Kognitions- und Neurowissenschaften, Leipzig, Germany
| |
Collapse
|
9
|
Neuromodulation for Medically Refractory Neuropathic Pain: Spinal Cord Stimulation, Deep Brain Stimulation, Motor Cortex Stimulation, and Posterior Insula Stimulation. World Neurosurg 2020; 146:246-260. [PMID: 33217591 DOI: 10.1016/j.wneu.2020.11.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The treatment of neuropathic pain (NP) continues to be controversial as well as an economic health issue and a challenge to health care. Neurosurgery can offer different methods of neuromodulation that may improve patients' condition, including deep brain stimulation (DBS), motor cortex stimulation (MCS), spinal cord stimulation (SCS), and posterior insula stimulation (PIS). There is no consensus of opinion as to the final effects of these procedures, which stimulation parameters to select, the correct timing, or how to select the patients who will best benefit from these procedures. OBJECTIVE To review the evidence available regarding these 4 procedures and the management of NP. METHODS We conducted a PubMed, Embase, and Cochrane Library database search from 1990 to 2020. The strategy of the search concentrated on the following keywords: "neuropathic pain," "chronic pain," "deep brain stimulation," "motor cortex stimulation," "spinal cord stimulation," "insula stimulation," and "neuromodulation." Studies that provided data regarding the immediate and long-term effectiveness of the procedure, anatomic stimulation target, percentage of pain control, and cause of the NP were included. RESULTS The most frequent causes of NP were phantom limb pain and central poststroke pain in the MCS group; central poststroke pain, phantom limb pain, and spinal cord injury (SCI) in the DBS group; and complex regional pain syndrome and failed back surgery syndrome in the SCS group. Pain improvement varied between 35% and 80% in the MCS group and 50% and 60% in the DBS group. In the SCS group, successful rates varied between 38% and 89%. CONCLUSIONS This systematic review highlights the literature supporting SCS, DBS, MCS, and PIS methods for the treatment of NP. We found consistent evidence supporting MCS, DBS, and SCS as possible treatments for NP; however, we were not able to define which procedure should be indicated for each cause. Furthermore, we did not find enough evidence to justify the routine use of PIS. We conclude that unanswered points need to be discussed in this controversial field and emphasize that new research must be developed to treat patients with NP, to improve their quality of life.
Collapse
|
10
|
Tian F, Cheng W, Hu J, Huang S, Sun S. Effects of botulinum toxin A on endometriosis‑associated pain and its related mechanism. Mol Med Rep 2020; 22:4351-4359. [PMID: 33000241 PMCID: PMC7533527 DOI: 10.3892/mmr.2020.11501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 08/14/2020] [Indexed: 11/30/2022] Open
Abstract
Endometriosis (EMS) is a common disease in women aged 25–45 years, and pain is the main clinical symptom. The primary clinical treatment is surgical excision and drug therapy targeting the ectopic lesions, but these have not been very effective. Botulinum neurotoxin serotype A (BTX-A) has been reported to be useful in the treatment of pain in a variety of diseases. Based on this, the aim of the present study was to explore the therapeutic effect and mechanism of BTX-A on EMS. A model of nerve injury induced by oxygen glucose deprivation (OGD) was constructed in PC12 cells and EMS mice. Model cells and mice were treated with different concentrations of BTX-A to observe the changes in pain behavior, to detect cell viability and the secretion of norepinephrine (NE) and methionine enkephalin (M-EK) in cells and the spinal cord, and to evaluate the expression of apoptosis-related molecules in spinal cord nerves. The results revealed that BTX-A significantly reduced the amount of writhing in model mice, enhanced the activity of PC12 OGD cells, increased the secretion of NE and M-EK in model cells and the spinal cord of mice, and decreased the apoptosis of neural cells in the spinal cord of the model mice. Therefore, it was hypothesized that BTX-A may alleviate the pain induced by EMS by increasing the secretion of analgesic substances and promoting the repair of nerve injury. The present study provided a theoretical basis for the treatment of pain induced by EMS.
Collapse
Affiliation(s)
- Fubo Tian
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, P.R. China
| | - Wuzhong Cheng
- Massage Department, Beijing Traditional Chinese Medicine Hospital, Capital Medical University, Beijing 100010, P.R. China
| | - Jianying Hu
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, P.R. China
| | - Shaoqiang Huang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, P.R. China
| | - Shen Sun
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, P.R. China
| |
Collapse
|
11
|
Cellular Changes in Injured Rat Spinal Cord Following Electrical Brainstem Stimulation. Brain Sci 2019; 9:brainsci9060124. [PMID: 31142050 PMCID: PMC6628227 DOI: 10.3390/brainsci9060124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of disability and pain, but little progress has been made in its clinical management. Low-frequency electrical stimulation (LFS) of various anti-nociceptive targets improves outcomes after SCI, including motor recovery and mechanical allodynia. However, the mechanisms of these beneficial effects are incompletely delineated and probably multiple. Our aim was to explore near-term effects of LFS in the hindbrain's nucleus raphe magnus (NRM) on cellular proliferation in a rat SCI model. Starting 24 h after incomplete contusional SCI at C5, intermittent LFS at 8 Hz was delivered wirelessly to NRM. Controls were given inactive stimulators. At 48 h, 5-bromodeoxyuridine (BrdU) was administered and, at 72 h, spinal cords were extracted and immunostained for various immune and neuroglial progenitor markers and BrdU at the level of the lesion and proximally and distally. LFS altered cell marker counts predominantly at the dorsal injury site. BrdU cell counts were decreased. Individually and in combination with BrdU, there were reductions in CD68 (monocytes) and Sox2 (immature neural precursors) and increases in Blbp (radial glia) expression. CD68-positive cells showed increased co-staining with iNOS. No differences in the expression of GFAP (glia) and NG2 (oligodendrocytes) or in GFAP cell morphology were found. In conclusion, our work shows that LFS of NRM in subacute SCI influences the proliferation of cell types implicated in inflammation and repair, thus providing mechanistic insight into deep brain stimulation as a neuromodulatory treatment for this devastating pathology.
Collapse
|
12
|
Gimenes C, Malheiros JM, Battapady H, Tannus A, Hamani C, Covolan L. The neural response to deep brain stimulation of the anterior nucleus of the thalamus: A MEMRI and c-Fos study. Brain Res Bull 2019; 147:133-139. [PMID: 30658130 DOI: 10.1016/j.brainresbull.2019.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) refers to the delivery of electric current to specific deep brain structures through implanted electrodes. Recently approved for use in United States, DBS to the anterior nucleus of thalamus (ANT) is a safe and effective alternative treatment for medically refractory seizures. Despite the anti-seizure effects of ANT DBS, preclinical and clinical studies have failed to demonstrate it actions at a whole brain level. OBJECTIVE Here, we used a magnetic resonance imaging (MRI)-based approach in healthy adult rats to investigate the effects of ANT DBS through the circuit of Papez, which has central role in the generation and propagation of limbic seizures, in temporal lobe epilepsy (TLE). METHODS After ANT electrode implantation and recovery, ANT DBS and SHAM (sham animals had electrodes implanted but were not stimulated) rats received one single injection of the contrast enhancer, manganese chloride (60 mg/kg, ip). Twelve hours after, rats underwent the baseline scan using the MEMRI (Manganese-Enhanced Magnetic Resonance Imaging) technique. We used the same MEMRI and parvalbumin sequence to follow the DBS delivered during 1 h (130 Hz and 200 μA). Perfusion was followed by subsequent c-Fos and parvalbumin immunostaining of brain sections. RESULTS Acute unilateral ANT DBS significantly reduced the overall manganese uptake and consequently, the MEMRI contrast in the circuit of Papez. Additionally, c-Fos expression was bilaterally increased in the cingulate cortex and posterior hypothalamus, areas directly connected to ANT, as well as in amygdala and subiculum, within the limbic circuitry. CONCLUSION Our data indicate that MEMRI can be used to detect whole-brain responses to DBS, as the high frequency stimulation parameters used here caused a significant reduction of cell activity in the circuit of Papez that might help to explain the antiepileptic effects of ANT DBS.
Collapse
Affiliation(s)
- Christiane Gimenes
- Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alberto Tannus
- Physics Institute of Sao Carlos, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
13
|
Chen FC, Shao HL, Han FL. A pilot study of neuromuscular electrical stimulation for neuropathic pain caused by spinal cord injury. Medicine (Baltimore) 2018; 97:e11658. [PMID: 30075553 PMCID: PMC6081201 DOI: 10.1097/md.0000000000011658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This pilot study retrospectively investigated the feasible effect and safety of neuromuscular electrical stimulation (NMES) for the management of neuropathic pain (NPP) caused by spinal cord injury (SCI).A total of 54 patient cases with NPP after SCI were included. Of these, 27 cases underwent carbamazepine plus NMES treatment, and were assigned to an NMES group; while the other 27 cases received carbamazepine only, and were assigned to a control group. The primary outcome of pain intensity was measured by numerical rating scale (NRS). The secondary outcome of quality of life was measured by the Short Form 36 (SF-36) Scale. Furthermore, adverse events were also documented in this study. All outcomes were measured and analyzed before and after 3-month treatment.After 3-month treatment, the cases in the NMES group neither reduced the pain intensity of NPP, measured by the NRS (P > .05), nor improved the quality of life, measured by the SF-36 (P > .05), compared with cases in the control group. Moreover, both groups had similar adverse events.The results of this study showed that NMES might be not efficacious for NPP caused by SCI after 3 months treatment with quite low intervention dose.
Collapse
Affiliation(s)
| | | | - Feng-li Han
- Department of Neurology, The Fourth People's Hospital of Shaanxi, Xi’an, Shaanxi, China
| |
Collapse
|