1
|
Megumi A, Suzuki A, Yano K, Qian Y, Uchida Y, Shin J, Yasumura A. Developmental change of prefrontal cortex activity during handwriting tasks in children and adults. Brain Dev 2025; 47:104338. [PMID: 40036905 DOI: 10.1016/j.braindev.2025.104338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND The relationship between handwriting and executive function has been explored in numerous studies. However, limited research has focused on the relationship between handwriting and prefrontal cortex (PFC) activity, which underpins executive function and writing processes. Additionally, differences in frontal lobe activity during writing between adults and children remain inadequately understood. This study aimed to investigate developmental changes in the prefrontal cortex and their neural basis during writing activities in children and adults. METHODS In this study, a pen tablet and functional near-infrared spectroscopy (fNIRS) were used to compare adult and pediatric writing dynamics and PFC function during two writing activities. The stimuli consisted of two line-drawing tasks designed to minimize linguistic influence, with two conditions (trace and predict) applied to each task. PFC activation was examined across the right, middle, and left regions. Oxygenated brain activity was quantified by converting oxygenated hemoglobin values obtained from fNIRS to z-scores. RESULTS The line length, an index of writing dynamics, was consistently shorter in children compared to adults across all tasks and conditions. Regarding brain function, the right PFC exhibited greater activation in adults during the predictive periodic line pattern drawing condition. CONCLUSION These findings suggest that the lateralization of the right PFC plays a critical role in the development of executive function, which is integral to writing development.
Collapse
Affiliation(s)
- Akiko Megumi
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka 830-0011, Japan.
| | - Akiko Suzuki
- Kanata Elementary School, 120-1 Kitahara, Minami-Tanaka, Hirakawa-shi, Aomori 036-0203, Japan.
| | - Koji Yano
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa-shi, Saitama 359-0042, Japan
| | - Yachun Qian
- Guiyang Preschool Educatlon College, 1306 Zhongyang Park, Jiuhua Road, Yunyan District, Guiyang, Guizhou Province 550001, China
| | - Yuta Uchida
- School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Fukushima Prefecture 965-8580, Japan
| | - Jungpil Shin
- Pattern Processing Lab, School of Computer Science and Engineering, University of Aizu, Aizuwakamatsu, Fukushima Prefecture 965-8580, Japan.
| | - Akira Yasumura
- Faculty of Humanities and Social Sciences, Kumamoto University, Kumamoto, Kumamoto Prefecture 860-8555, Japan.
| |
Collapse
|
2
|
Falivene A, Johnson C, Klingels K, Meyns P, Verbecque E, Hallemans A, Biffi E, Piazza C, Crippa A. Time-Normalization Approach for fNIRS Data During Tasks with High Variability in Duration. SENSORS (BASEL, SWITZERLAND) 2025; 25:1768. [PMID: 40292857 PMCID: PMC11945418 DOI: 10.3390/s25061768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Abstract
Functional near-infrared spectroscopy (fNIRS) is particularly suitable for measuring brain activity during motor tasks, due to its portability and good motion tolerance. In such cases, the trials' duration may vary depending on the experimental conditions or the participant's response, therefore a comparison of hemodynamic responses across repetitions cannot be properly performed. In this work, we present a MATLAB (R2023a) function (TaskNorm.m) developed for time-normalizing fNIRS data recorded during trials with different durations. It is based on a spline interpolation method that rescales the time -axis to the percentage of the trial with a fixed number of samples. This allows us to successively average across repetitions to obtain the mean hemodynamic responses and complete the standard data processing. The algorithm was tested on eight subjects (four with developmental coordination disorder, age: 9.78 ± 0.30 and four typically developing children, age: 9.02 ± 0.30) performing three different tasks. The results show that the TaskNorm function works as expected, allowing both a comparison and averaging of the data across multiple repetitions. The performance of the function is independent of the task or the pre-processing pipeline applied. The proposed function is publicly available and importable into the HomER3 package (v1.72.0), representing a further step in the ongoing standardization process of fNIRS data analysis.
Collapse
Affiliation(s)
- Anna Falivene
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (E.B.); (C.P.); (A.C.)
| | - Charlotte Johnson
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium; (C.J.); (A.H.)
- Research Centre (REVAL), Faculty of Rehabilitation Sciences and Physiotherapy, Hasselt University, 3590 Diepenbeek, Belgium; (K.K.); (P.M.); (E.V.)
| | - Katrijn Klingels
- Research Centre (REVAL), Faculty of Rehabilitation Sciences and Physiotherapy, Hasselt University, 3590 Diepenbeek, Belgium; (K.K.); (P.M.); (E.V.)
| | - Pieter Meyns
- Research Centre (REVAL), Faculty of Rehabilitation Sciences and Physiotherapy, Hasselt University, 3590 Diepenbeek, Belgium; (K.K.); (P.M.); (E.V.)
| | - Evi Verbecque
- Research Centre (REVAL), Faculty of Rehabilitation Sciences and Physiotherapy, Hasselt University, 3590 Diepenbeek, Belgium; (K.K.); (P.M.); (E.V.)
| | - Ann Hallemans
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium; (C.J.); (A.H.)
| | - Emilia Biffi
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (E.B.); (C.P.); (A.C.)
| | - Caterina Piazza
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (E.B.); (C.P.); (A.C.)
| | - Alessandro Crippa
- Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Italy; (E.B.); (C.P.); (A.C.)
| |
Collapse
|
3
|
Wang Y, Chen Z, Cai Z, Ao W, Li Q, Xu M, Zhou S. Exploring Graph Theory Mechanisms of Fluid Intelligence in the DLPFC: Insights From Resting-State fNIRS Across Various Time Windows. Brain Behav 2025; 15:e70386. [PMID: 40022279 PMCID: PMC11870832 DOI: 10.1002/brb3.70386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/01/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Brain imaging technologies can measure fluid intelligence (gF) levels more directly, objectively, and dynamically, compared to traditional questionnaire scales. To clarify the temporal mechanisms of graph theory in measuring gF, this study investigated the relationship between graph theoretical indicators in the dorsolateral prefrontal cortex (DLPFC) and gF levels under various time windows. METHODS Using 30-min resting-state fNIRS (rs-fNIRS) data and Raven's Advanced Progressive Matrices from 116 healthy participants, the relationship between individual gF levels and DLPFC brain signals was analyzed using average degree (AD) and global efficiency (Eglob). RESULTS AD and Eglob in the resting-state DLPFC were significantly negatively correlated with the RAPM score. Considering the effectiveness and efficiency of gF measurement, a 2-min data collection might suffice, while for Eglob, more than 15-min collection was more effective. CONCLUSION These findings help clarify brain indicators and demonstrate the effectiveness of rs-fNIRS in intelligence measurement, providing a theoretical and practical basis for portable and objective gF assessment .
Collapse
Affiliation(s)
- Yuemeng Wang
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Department of PsychologyJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
| | - Zhencai Chen
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Department of PsychologyJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Key Laboratory of Emotional Disorders Detection and Rehabilitation, Jiangxi Provincial Department of EducationJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
| | - Ziqi Cai
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Department of PsychologyJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
| | - Wenqun Ao
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Department of PsychologyJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
| | - Qi Li
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Department of PsychologyJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
| | - Ming Xu
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Department of PsychologyJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
| | - Suyun Zhou
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of Traditional Chinese MedicineJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Department of PsychologyJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
- Key Laboratory of Emotional Disorders Detection and Rehabilitation, Jiangxi Provincial Department of EducationJiangxi University of Chinese MedicineNanchangJiangxi provinceChina
| |
Collapse
|
4
|
Ren B, Ren P, Luo W, Xin J. A Brain Network Analysis Model for Motion Sickness in Electric Vehicles Based on EEG and fNIRS Signal Fusion. SENSORS (BASEL, SWITZERLAND) 2024; 24:6613. [PMID: 39460093 PMCID: PMC11510973 DOI: 10.3390/s24206613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Motion sickness is a common issue in electric vehicles, significantly impacting passenger comfort. This study aims to develop a functional brain network analysis model by integrating electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals to evaluate motion sickness symptoms. During real-world testing with the Feifan F7 series of new energy-electric vehicles from SAIC Motor Corp, data were collected from 32 participants. The EEG signals were divided into four frequency bands: delta-range, theta-range, alpha-range, and beta-range, and brain oxygenation variation was calculated from the fNIRS signals. Functional connectivity between brain regions was measured to construct functional brain network models for motion sickness analysis. A motion sickness detection model was developed using a graph convolutional network (GCN) to integrate EEG and fNIRS data. Our results show significant differences in brain functional connectivity between participants in motion and non-motion sickness states. The model that combined fNIRS data with high-frequency EEG signals achieved the best performance, improving the F1 score by 11.4% compared to using EEG data alone and by 8.2% compared to using fNIRS data alone. These results highlight the effectiveness of integrating EEG and fNIRS signals using GCN for motion sickness detection. They demonstrate the model's superiority over single-modality approaches, showcasing its potential for real-world applications in electric vehicles.
Collapse
Affiliation(s)
- Bin Ren
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China;
- Zhejiang Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Pengyu Ren
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China;
| | - Wenfa Luo
- SAIC Motor R&D Innovation Headquarters, SAIC Motor Corporation Limited, Shanghai 201804, China; (W.L.); (J.X.)
| | - Jingze Xin
- SAIC Motor R&D Innovation Headquarters, SAIC Motor Corporation Limited, Shanghai 201804, China; (W.L.); (J.X.)
| |
Collapse
|
5
|
Pinti P, Dina LM, Smith TJ. Ecological functional near-infrared spectroscopy in mobile children: using short separation channels to correct for systemic contamination during naturalistic neuroimaging. NEUROPHOTONICS 2024; 11:045004. [PMID: 39380715 PMCID: PMC11460616 DOI: 10.1117/1.nph.11.4.045004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
Significance The advances and miniaturization in functional near-infrared spectroscopy (fNIRS) instrumentation offer the potential to move the classical laboratory-based cognitive neuroscience investigations into more naturalistic settings. Wearable and mobile fNIRS devices also provide a novel child-friendly means to image functional brain activity in freely moving toddlers and preschoolers. Measuring brain activity in more ecologically valid settings with fNIRS presents additional challenges, such as the increased impact of physiological interferences. One of the most popular methods for minimizing such interferences is to regress out short separation channels from the long separation channels [i.e., superficial signal regression (SSR)]. Although this has been extensively investigated in adults, little is known about the impact of systemic changes on the fNIRS signals recorded in children in either classical or novel naturalistic experiments. Aim We aim to investigate if extracerebral physiological changes occur in toddlers and preschoolers and whether SSR can help minimize these interferences. Approach We collected fNIRS data from 3- to 7-year-olds during a conventional computerized static task and in a dynamic naturalistic task in an immersive virtual reality (VR) cave automatic virtual environment. Results Our results show that superficial signal contamination data are present in young children as in adults. Importantly, we find that SSR helps in improving the localization of functional brain activity, both in the computerized task and, to a larger extent, in the dynamic VR task. Conclusions Following these results, we formulate suggestions to advance the field of developmental neuroimaging with fNIRS, particularly in ecological settings.
Collapse
Affiliation(s)
- Paola Pinti
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Larisa M. Dina
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- King’s College London, Department of Psychology, London, United Kingdom
| | - Tim J. Smith
- University of London, Birkbeck, Department of Psychological Sciences, London, United Kingdom
- University of the Arts London, Creative Computing Institute, London, United Kingdom
| |
Collapse
|
6
|
Curzel F, Tillmann B, Ferreri L. Lights on music cognition: A systematic and critical review of fNIRS applications and future perspectives. Brain Cogn 2024; 180:106200. [PMID: 38908228 DOI: 10.1016/j.bandc.2024.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Research investigating the neural processes related to music perception and production constitutes a well-established field within the cognitive neurosciences. While most neuroimaging tools have limitations in studying the complexity of musical experiences, functional Near-Infrared Spectroscopy (fNIRS) represents a promising, relatively new tool for studying music processes in both laboratory and ecological settings, which is also suitable for both typical and pathological populations across development. Here we systematically review fNIRS studies on music cognition, highlighting prospects and potentialities. We also include an overview of fNIRS basic theory, together with a brief comparison to characteristics of other neuroimaging tools. Fifty-nine studies meeting inclusion criteria (i.e., using fNIRS with music as the primary stimulus) are presented across five thematic sections. Critical discussion of methodology leads us to propose guidelines of good practices aiming for robust signal analyses and reproducibility. A continuously updated world map is proposed, including basic information from studies meeting the inclusion criteria. It provides an organized, accessible, and updatable reference database, which could serve as a catalyst for future collaborations within the community. In conclusion, fNIRS shows potential for investigating cognitive processes in music, particularly in ecological contexts and with special populations, aligning with current research priorities in music cognition.
Collapse
Affiliation(s)
- Federico Curzel
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France.
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France; LEAD CNRS UMR5022, Université de Bourgogne-Franche Comté, Dijon, Bourgogne-Franche Comté 21000, France.
| | - Laura Ferreri
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, Lombardia 27100, Italy.
| |
Collapse
|
7
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
8
|
Karunakaran KD, Pascale M, Ozana N, Potter K, Pachas GN, Evins AE, Gilman JM. Intoxication due to Δ9-tetrahydrocannabinol is characterized by disrupted prefrontal cortex activity. Neuropsychopharmacology 2024; 49:1481-1490. [PMID: 38714786 PMCID: PMC11251178 DOI: 10.1038/s41386-024-01876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/10/2024]
Abstract
Neural states of impairment from intoxicating substances, including cannabis, are poorly understood. Cannabinoid 1 receptors, the main target of Δ9-tetrahydrocannabinol (THC), the primary intoxicating cannabinoid in cannabis, are densely localized within prefrontal cortex; therefore, prefrontal brain regions are key locations to examine brain changes that characterize acute intoxication. We conducted a double-blind, randomized, cross-over study in adults, aged 18-55 years, who use cannabis regularly, to determine the effects of acute intoxication on prefrontal cortex resting-state measures, assessed with portable functional near-infrared spectroscopy. Participants received oral THC (10-80 mg, individually dosed to overcome tolerance and achieve acute intoxication) and identical placebo, randomized for order; 185 adults were randomized and 128 completed both study days and had usable data. THC was associated with expected increases in subjective intoxication ratings (ES = 35.30, p < 0.001) and heart rate (ES = 11.15, p = 0.001). THC was associated with decreased correlations and anticorrelations in static resting-state functional connectivity within the prefrontal cortex relative to placebo, with weakest correlations and anticorrelations among those who reported greater severity of intoxication (RSFC between medial PFC-ventromedial PFC and DEQ scores, r = 0.32, p < 0.001; RSFC between bilateral mPFC and DEQ scores, r = -0.28, p = 0.001). Relative to placebo, THC was associated with increased variability (or reduced stability) in dynamic resting-state functional connectivity of the prefrontal cortex at p = 0.001, consistent across a range of window sizes. Finally, using frequency power spectrum analyses, we observed that relative to placebo, THC was associated with widespread reduced spectral power within the prefrontal cortex across the 0.073-0.1 Hz frequency range at p < 0.039. These neural features suggest a disruptive influence of THC on the neural dynamics of the prefrontal cortex and may underlie cognitive impairing effects of THC that are detectable with portable imaging. This study is registered in Clinicaltrials.gov (NCT03655717).
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael Pascale
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
| | - Nisan Ozana
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Faculty of Engineering and The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Kevin Potter
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gladys N Pachas
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - A Eden Evins
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jodi M Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
9
|
Moffat R, Cross ES. Awareness of embodiment enhances enjoyment and engages sensorimotor cortices. Hum Brain Mapp 2024; 45:e26786. [PMID: 38994692 PMCID: PMC11240146 DOI: 10.1002/hbm.26786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Whether in performing arts, sporting, or everyday contexts, when we watch others move, we tend to enjoy bodies moving in synchrony. Our enjoyment of body movements is further enhanced by our own prior experience with performing those movements, or our 'embodied experience'. The relationships between movement synchrony and enjoyment, as well as embodied experience and movement enjoyment, are well known. The interaction between enjoyment of movements, synchrony, and embodiment is less well understood, and may be central for developing new approaches for enriching social interaction. To examine the interplay between movement enjoyment, synchrony, and embodiment, we asked participants to copy another person's movements as accurately as possible, thereby gaining embodied experience of movement sequences. Participants then viewed other dyads performing the same or different sequences synchronously, and we assessed participants' recognition of having performed these sequences, as well as their enjoyment of each movement sequence. We used functional near-infrared spectroscopy to measure cortical activation over frontotemporal sensorimotor regions while participants performed and viewed movements. We found that enjoyment was greatest when participants had mirrored the sequence and recognised it, suggesting that awareness of embodiment may be central to enjoyment of synchronous movements. Exploratory analyses of relationships between cortical activation and enjoyment and recognition implicated the sensorimotor cortices, which subserve action observation and aesthetic processing. These findings hold implications for clinical research and therapies seeking to foster successful social interaction.
Collapse
Affiliation(s)
- Ryssa Moffat
- Professorship for Social Brain Sciences, ETH ZurichZurichSwitzerland
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Emily S. Cross
- Professorship for Social Brain Sciences, ETH ZurichZurichSwitzerland
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- MARCS InstituteWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
10
|
Zhou T, Ye Y, Zhu Q, Vann W, Du J. Neural dynamics of delayed feedback in robot teleoperation: insights from fNIRS analysis. Front Hum Neurosci 2024; 18:1338453. [PMID: 38952645 PMCID: PMC11215083 DOI: 10.3389/fnhum.2024.1338453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction As robot teleoperation increasingly becomes integral in executing tasks in distant, hazardous, or inaccessible environments, operational delays remain a significant obstacle. These delays, inherent in signal transmission and processing, adversely affect operator performance, particularly in tasks requiring precision and timeliness. While current research has made strides in mitigating these delays through advanced control strategies and training methods, a crucial gap persists in understanding the neurofunctional impacts of these delays and the efficacy of countermeasures from a cognitive perspective. Methods This study addresses the gap by leveraging functional Near-Infrared Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated haptic feedback on cognitive activity and motor coordination under delayed conditions. In a human-subject experiment (N = 41), sensory feedback was manipulated to observe its influences on various brain regions of interest (ROIs) during teleoperation tasks. The fNIRS data provided a detailed assessment of cerebral activity, particularly in ROIs implicated in time perception and the execution of precise movements. Results Our results reveal that the anchoring condition, which provided immediate simulated haptic feedback with a delayed visual cue, significantly optimized neural functions related to time perception and motor coordination. This condition also improved motor performance compared to the asynchronous condition, where visual and haptic feedback were misaligned. Discussion These findings provide empirical evidence about the neurofunctional basis of the enhanced motor performance with simulated synthetic force feedback in the presence of teleoperation delays. The study highlights the potential for immediate haptic feedback to mitigate the adverse effects of operational delays, thereby improving the efficacy of teleoperation in critical applications.
Collapse
Affiliation(s)
- Tianyu Zhou
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Yang Ye
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Qi Zhu
- Communications Technology Laboratory, Public Safety Communications Research Division, Advanced Communications Research Group, National Institute of Standards and Technology, Boulder, CO, United States
| | - William Vann
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Jing Du
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
MacLennan RJ, Hernandez-Sarabia JA, Reese SM, Shields JE, Smith CM, Stute K, Collyar J, Olmos AA, Danielson TL, MacLennan DL, Pagan JI, Girts RM, Harmon KK, Coker N, Carr JC, Ye X, Perry JW, Stock MS, DeFreitas JM. fNIRS is capable of distinguishing laterality of lower body contractions. Exp Brain Res 2024; 242:1115-1126. [PMID: 38483567 DOI: 10.1007/s00221-024-06798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/31/2024] [Indexed: 07/13/2024]
Abstract
The use of functional near-infrared spectroscopy (fNIRS) for brain imaging during human movement continues to increase. This technology measures brain activity non-invasively using near-infrared light, is highly portable, and robust to motion artifact. However, the spatial resolution of fNIRS is lower than that of other imaging modalities. It is unclear whether fNIRS has sufficient spatial resolution to differentiate nearby areas of the cortex, such as the leg areas of the motor cortex. Therefore, the purpose of this study was to determine fNIRS' ability to discern laterality of lower body contractions. Activity in the primary motor cortex was recorded in forty participants (mean = 23.4 years, SD = 4.5, female = 23, male = 17) while performing unilateral lower body contractions. Contractions were performed at 30% of maximal force against a handheld dynamometer. These contractions included knee extension, knee flexion, dorsiflexion, and plantar flexion of the left and right legs. fNIRS signals were recorded and stored for offline processing and analysis. Channels of fNIRS data were grouped into regions of interest, with five tolerance conditions ranging from strict to lenient. Four of five tolerance conditions resulted in significant differences in cortical activation between hemispheres. During right leg contractions, the left hemisphere was more active than the right hemisphere. Similarly, during left leg contractions, the right hemisphere was more active than the left hemisphere. These results suggest that fNIRS has sufficient spatial resolution to distinguish laterality of lower body contractions. This makes fNIRS an attractive technology in research and clinical applications in which laterality of brain activity is required during lower body activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xin Ye
- University of Hartford, West Hartford, USA
| | | | | | | |
Collapse
|
12
|
Ramacciotti MC, Soares Junior RDS, Sato JR, Gualtieri M. Left OFC Activation in Functional Near-Infrared Spectroscopy during an Inhibitory Control Task in an Early Years Sample: Integrating Stress Responses with Cognitive Function and Brain Activation. Dev Neurosci 2024; 47:81-97. [PMID: 38663367 PMCID: PMC11965844 DOI: 10.1159/000539023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/18/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Previous functional near-infrared spectroscopy (fNIRS) studies using Go/No-Go (GNG) tasks have focused on brain activation in relation to cognitive processes, particularly inhibitory control (IC). The results of these studies commonly describe right hemispheric engagement of the dorsolateral, ventromedial, or inferior frontal regions of the prefrontal cortex. Considering that typical healthy cognitive development is negatively correlated with higher cortisol levels (which may alter brain development), the overarching aim of the current study was to investigate how elevated stress (due to unforeseeable events such as the pandemic) impacts early cognitive development. METHOD In this study, we examined fNIRS data collected from a sample of children (aged 2-4 years) during a GNG task relative to the response to stressors measured via hair cortisol concentrations. We acquired data in an ecological setting (Early Childhood Education and Care) during the coronavirus pandemic. RESULTS We found that children with higher stress levels and a less efficient IC recruited more neural terrain and our group-level analysis indicated activation in the left orbitofrontal area during IC performance. CONCLUSIONS A contextual stressor may disrupt accuracy in the executive function of IC early in development. More research efforts are needed to understand better how an orbitofrontal network subserves goal-directed behavior. INTRODUCTION Previous functional near-infrared spectroscopy (fNIRS) studies using Go/No-Go (GNG) tasks have focused on brain activation in relation to cognitive processes, particularly inhibitory control (IC). The results of these studies commonly describe right hemispheric engagement of the dorsolateral, ventromedial, or inferior frontal regions of the prefrontal cortex. Considering that typical healthy cognitive development is negatively correlated with higher cortisol levels (which may alter brain development), the overarching aim of the current study was to investigate how elevated stress (due to unforeseeable events such as the pandemic) impacts early cognitive development. METHOD In this study, we examined fNIRS data collected from a sample of children (aged 2-4 years) during a GNG task relative to the response to stressors measured via hair cortisol concentrations. We acquired data in an ecological setting (Early Childhood Education and Care) during the coronavirus pandemic. RESULTS We found that children with higher stress levels and a less efficient IC recruited more neural terrain and our group-level analysis indicated activation in the left orbitofrontal area during IC performance. CONCLUSIONS A contextual stressor may disrupt accuracy in the executive function of IC early in development. More research efforts are needed to understand better how an orbitofrontal network subserves goal-directed behavior.
Collapse
Affiliation(s)
| | | | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Mirella Gualtieri
- Graduate Program in Neuroscience and Behavior, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Mark JA, Curtin A, Kraft AE, Ziegler MD, Ayaz H. Mental workload assessment by monitoring brain, heart, and eye with six biomedical modalities during six cognitive tasks. FRONTIERS IN NEUROERGONOMICS 2024; 5:1345507. [PMID: 38533517 PMCID: PMC10963413 DOI: 10.3389/fnrgo.2024.1345507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
Introduction The efficiency and safety of complex high precision human-machine systems such as in aerospace and robotic surgery are closely related to the cognitive readiness, ability to manage workload, and situational awareness of their operators. Accurate assessment of mental workload could help in preventing operator error and allow for pertinent intervention by predicting performance declines that can arise from either work overload or under stimulation. Neuroergonomic approaches based on measures of human body and brain activity collectively can provide sensitive and reliable assessment of human mental workload in complex training and work environments. Methods In this study, we developed a new six-cognitive-domain task protocol, coupling it with six biomedical monitoring modalities to concurrently capture performance and cognitive workload correlates across a longitudinal multi-day investigation. Utilizing two distinct modalities for each aspect of cardiac activity (ECG and PPG), ocular activity (EOG and eye-tracking), and brain activity (EEG and fNIRS), 23 participants engaged in four sessions over 4 weeks, performing tasks associated with working memory, vigilance, risk assessment, shifting attention, situation awareness, and inhibitory control. Results The results revealed varying levels of sensitivity to workload within each modality. While certain measures exhibited consistency across tasks, neuroimaging modalities, in particular, unveiled meaningful differences between task conditions and cognitive domains. Discussion This is the first comprehensive comparison of these six brain-body measures across multiple days and cognitive domains. The findings underscore the potential of wearable brain and body sensing methods for evaluating mental workload. Such comprehensive neuroergonomic assessment can inform development of next generation neuroadaptive interfaces and training approaches for more efficient human-machine interaction and operator skill acquisition.
Collapse
Affiliation(s)
- Jesse A. Mark
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Adrian Curtin
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Amanda E. Kraft
- Advanced Technology Laboratories, Lockheed Martin, Arlington, VA, United States
| | - Matthias D. Ziegler
- Advanced Technology Laboratories, Lockheed Martin, Arlington, VA, United States
| | - Hasan Ayaz
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
- Drexel Solutions Institute, Drexel University, Philadelphia, PA, United States
- A. J. Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
14
|
da Silva Soares R, Ramirez-Chavez KL, Tufanoglu A, Barreto C, Sato JR, Ayaz H. Cognitive Effort during Visuospatial Problem Solving in Physical Real World, on Computer Screen, and in Virtual Reality. SENSORS (BASEL, SWITZERLAND) 2024; 24:977. [PMID: 38339693 PMCID: PMC10857420 DOI: 10.3390/s24030977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Spatial cognition plays a crucial role in academic achievement, particularly in science, technology, engineering, and mathematics (STEM) domains. Immersive virtual environments (VRs) have the growing potential to reduce cognitive load and improve spatial reasoning. However, traditional methods struggle to assess the mental effort required for visuospatial processes due to the difficulty in verbalizing actions and other limitations in self-reported evaluations. In this neuroergonomics study, we aimed to capture the neural activity associated with cognitive workload during visuospatial tasks and evaluate the impact of the visualization medium on visuospatial task performance. We utilized functional near-infrared spectroscopy (fNIRS) wearable neuroimaging to assess cognitive effort during spatial-reasoning-based problem-solving and compared a VR, a computer screen, and a physical real-world task presentation. Our results reveal a higher neural efficiency in the prefrontal cortex (PFC) during 3D geometry puzzles in VR settings compared to the settings in the physical world and on the computer screen. VR appears to reduce the visuospatial task load by facilitating spatial visualization and providing visual cues. This makes it a valuable tool for spatial cognition training, especially for beginners. Additionally, our multimodal approach allows for progressively increasing task complexity, maintaining a challenge throughout training. This study underscores the potential of VR in developing spatial skills and highlights the value of comparing brain data and human interaction across different training settings.
Collapse
Affiliation(s)
- Raimundo da Silva Soares
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
- Center of Mathematics Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-405, Brazil;
| | - Kevin L. Ramirez-Chavez
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
| | - Altona Tufanoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
| | - Candida Barreto
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
| | - João Ricardo Sato
- Center of Mathematics Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo 09606-405, Brazil;
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (K.L.R.-C.); (A.T.); (C.B.)
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA
- Drexel Solutions Institute, Drexel University, Philadelphia, PA 19104, USA
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Injury Research and Prevention, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Carius D, Kaminski E, Clauß M, Schewe Y, Ryk L, Ragert P. Quantifying motor adaptation in a sport-specific table tennis setting. Sci Rep 2024; 14:601. [PMID: 38182640 PMCID: PMC10770152 DOI: 10.1038/s41598-023-50927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Studies on motor adaptation aim to better understand the remarkable, largely implicit capacity of humans to adjust to changing environmental conditions. So far, this phenomenon has mainly been investigated in highly controlled laboratory setting, allowing only limited conclusions and consequences for everyday life scenarios. Natural movement tasks performed under externally valid conditions would provide important support on the transferability of recent laboratory findings. Therefore, one major goal of the current study was to create and assess a new table tennis paradigm mapping motor adaptation in a more natural and sport-specific setting. High-speed cinematographic measurements were used to determine target accuracy in a motor adaptation table tennis paradigm in 30 right-handed participants. In addition, we investigated if motor adaptation was affected by temporal order of perturbations (serial vs. random practice). In summary, we were able to confirm and reproduce typical motor adaptation effects in a sport-specific setting. We found, according to previous findings, an increase in target errors with perturbation onset that decreased during motor adaptation. Furthermore, we observed an increase in target errors with perturbation offset (after-effect) that decrease subsequently during washout phase. More importantly, this motor adaptation phenomenon did not differ when comparing serial vs. random perturbation conditions.
Collapse
Affiliation(s)
- Daniel Carius
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany.
| | - Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Martina Clauß
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Yannick Schewe
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Lenja Ryk
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Yang M, Li X, Sang B, Deng X. Age differences in interbrain synchronization during peer cooperation: an EEG hyperscanning study. Cereb Cortex 2023; 33:10614-10623. [PMID: 37615349 DOI: 10.1093/cercor/bhad308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Healthy peer relationships could provide emotional and social support for adolescents experiencing dramatic physical and environmental changes. Examining age differences in cognitive neural processing during peer interaction provides insight into adolescent interpersonal contact and "social brain" development. The present study compared the age differences between adolescents and adults by examining the behavior and interbrain synchronization of pairs in a cooperative computer game task. 32 pairs of adolescents and 31 pairs of adults were recruited as participants. The reaction times and interbrain synchronization of the participants were measured. The results revealed that interbrain synchronization activation following the onset of the "ready signal" was primarily detected in low-frequency bands such as delta and theta. Adolescent pairs' interbrain synchronization activations were significantly higher than those of adult pairs in the anterior and central brain regions, such as the frontal, frontal-central, and parietal lobes. Correlation analysis indicated a positive correlation between occipital region interbrain synchronization and behavioral performance. The findings provide behavioral and neurophysiological evidence for the characteristics of adolescent interpersonal cognitive processing and point to the significance of low-frequency interbrain synchronization in interpersonal coordination.
Collapse
Affiliation(s)
- Meng Yang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinqi Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Biao Sang
- Lab for Educational Big Data and Policymaking, Shanghai Academy of Educational Sciences, Shanghai 200032, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Yoo M, Chun MH, Hong GR, Lee C, Lee JK, Lee A. Effects of Training with a Powered Exoskeleton on Cortical Activity Modulation in Hemiparetic Chronic Stroke Patients: A Randomized Controlled Pilot Trial. Arch Phys Med Rehabil 2023; 104:1620-1629. [PMID: 37295705 DOI: 10.1016/j.apmr.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES To investigate the effects of exoskeleton-assisted gait training in stroke patients. DESIGN Prospective randomized controlled trial. SETTING Rehabilitation department in a single tertiary hospital. PARTICIPANTS Thirty (N=30) chronic stroke patients with Functional Ambulatory Category scale (FAC) between 2 and 4. INTERVENTION Patients were randomly assigned to 1 of 2 groups: training with Healbot G, a wearable powered exoskeleton (Healbot G group; n=15), or treadmill training (control group; n=15). All participants received 30 minutes of training, 10 times per week, for 4 weeks. OUTCOME MEASUREMENTS The primary outcome was oxyhemoglobin level changes, representing cortical activity in both motor cortices using functional near-infrared spectroscopy. The secondary outcomes included FAC, Berg Balance Scale, Motricity Index for the lower extremities (MI-Lower), 10-meter walk test, and gait symmetry ratio (spatial step and temporal symmetry ratio). RESULTS Compared to the control group, during the entire training session, the pre-training and post-training mean cortical activity, and the amount of increment between pre- and post-training were significantly higher in the Healbot G group (∆mean ± SD; pre-training, 0.245±0.119, post-training, 0.697±0.429, between pre- and post-training, 0.471±0.401μmol, P<.001). There was no significant difference in cortical activity between affected- and unaffected hemispheres after Healbot G training. FAC (∆mean ± SD; 0.35 ± 0.50, P=.012), MI-Lower (∆mean ± SD; 7.01 ± 0.14, P=.001), and spatial step gait symmetry ratio (∆mean ± SD; -0.32 ± 0.25, P=.049) were improved significantly in the Healbot G group. CONCLUSION Exoskeleton-assisted gait training induces cortical modulation effect in both motor cortices, a balanced cortical activation pattern with improvements in spatial step symmetry ratio, walking ability, and voluntary strength.
Collapse
Affiliation(s)
- Miran Yoo
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Ga Ram Hong
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Changmin Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - June Kyoung Lee
- Department of Rehabilitation Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do, Republic of Korea
| | - Anna Lee
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Chang H, Sheng Y, Liu J, Yang H, Pan X, Liu H. Noninvasive Brain Imaging and Stimulation in Post-Stroke Motor Rehabilitation: A Review. IEEE Trans Cogn Dev Syst 2023; 15:1085-1101. [DOI: 10.1109/tcds.2022.3232581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hui Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yixuan Sheng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jinbiao Liu
- Research Centre for Augmented Intelligence, Zhejiang Laboratory, Artificial Intelligence Research Institute, Hangzhou, China
| | - Hongyu Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xiangyu Pan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
19
|
do Nascimento DC, Santos da Silva JR, Ara A, Sato JR, Costa L. Hyperscanning fNIRS data analysis using multiregression dynamic models: an illustration in a violin duo. Front Comput Neurosci 2023; 17:1132160. [PMID: 37576070 PMCID: PMC10413103 DOI: 10.3389/fncom.2023.1132160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/13/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Interpersonal neural synchronization (INS) demands a greater understanding of a brain's influence on others. Therefore, brain synchronization is an even more complex system than intrasubject brain connectivity and must be investigated. There is a need to develop novel methods for statistical inference in this context. Methods In this study, motivated by the analysis of fNIRS hyperscanning data, which measure the activity of multiple brains simultaneously, we propose a two-step network estimation: Tabu search local method and global maximization in the selected subgroup [partial conditional directed acyclic graph (DAG) + multiregression dynamic model]. We illustrate this approach in a dataset of two individuals who are playing the violin together. Results This study contributes new tools to the social neuroscience field, which may provide new perspectives about intersubject interactions. Our proposed approach estimates the best probabilistic network representation, in addition to providing access to the time-varying parameters, which may be helpful in understanding the brain-to-brain association of these two players. Discussion The illustration of the violin duo highlights the time-evolving changes in the brain activation of an individual influencing the other one through a data-driven analysis. We confirmed that one player was leading the other given the ROI causal relation toward the other player.
Collapse
Affiliation(s)
| | - José Roberto Santos da Silva
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
- EcMetrics Pesquisa de Mercado, Salvador, Brazil
| | - Anderson Ara
- Departamento de Estatística, Universidade Federal do Parana, Curitiba, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Lilia Costa
- Department of Statistics, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
20
|
Carius D, Herold F, Clauß M, Kaminski E, Wagemann F, Sterl C, Ragert P. Increased Cortical Activity in Novices Compared to Experts During Table Tennis: A Whole-Brain fNIRS Study Using Threshold-Free Cluster Enhancement Analysis. Brain Topogr 2023; 36:500-516. [PMID: 37119404 PMCID: PMC10293405 DOI: 10.1007/s10548-023-00963-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/15/2023] [Indexed: 05/01/2023]
Abstract
There is a growing interest to understand the neural underpinnings of high-level sports performance including expertise-related differences in sport-specific skills. Here, we aimed to investigate whether expertise level and task complexity modulate the cortical hemodynamics of table tennis players. 35 right-handed table tennis players (17 experts/18 novices) were recruited and performed two table tennis strokes (forehand and backhand) and a randomized combination of them. Cortical hemodynamics, as a proxy for cortical activity, were recorded using functional near-infrared spectroscopy, and the behavioral performance (i.e., target accuracy) was assessed via video recordings. Expertise- and task-related differences in cortical hemodynamics were analyzed using nonparametric threshold-free cluster enhancement. In all conditions, table tennis experts showed a higher target accuracy than novices. Furthermore, we observed expertise-related differences in widespread clusters compromising brain areas being associated with sensorimotor and multisensory integration. Novices exhibited, in general, higher activation in those areas as compared to experts. We also identified task-related differences in cortical activity including frontal, sensorimotor, and multisensory brain areas. The present findings provide empirical support for the neural efficiency hypothesis since table tennis experts as compared to novices utilized a lower amount of cortical resources to achieve superior behavioral performance. Furthermore, our findings suggest that the task complexity of different table tennis strokes is mirrored in distinct cortical activation patterns. Whether the latter findings can be useful to monitor or tailor sport-specific training interventions necessitates further investigations.
Collapse
Affiliation(s)
- Daniel Carius
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany.
| | - Fabian Herold
- Faculty of Health Sciences, University of Potsdam, 14476, Potsdam, Germany
| | - Martina Clauß
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - Florian Wagemann
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Clemens Sterl
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, 04109, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| |
Collapse
|
21
|
Chae Y, Lee IS. Central Regulation of Eating Behaviors in Humans: Evidence from Functional Neuroimaging Studies. Nutrients 2023; 15:3010. [PMID: 37447336 PMCID: PMC10347214 DOI: 10.3390/nu15133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Neuroimaging has great potential to provide insight into the neural response to food stimuli. Remarkable advances have been made in understanding the neural activity underlying food perception, not only in normal eating but also in obesity, eating disorders, and disorders of gut-brain interaction in recent decades. In addition to the abnormal brain function in patients with eating disorders compared to healthy controls, new therapies, such as neurofeedback and neurostimulation techniques, have been developed that target the malfunctioning brain regions in patients with eating disorders based on the results of neuroimaging studies. In this review, we present an overview of early and more recent research on the central processing and regulation of eating behavior in healthy and patient populations. In order to better understand the relationship between the gut and the brain as well as the neural mechanisms underlying abnormal ingestive behaviors, we also provide suggestions for future directions to enhance our current methods used in food-related neuroimaging studies.
Collapse
Affiliation(s)
- Younbyoung Chae
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
22
|
Lapanan K, Kantha P, Nantachai G, Hemrungrojn S, Maes M. The prefrontal cortex hemodynamic responses to dual-task paradigms in older adults: A systematic review and meta-analysis. Heliyon 2023; 9:e17812. [PMID: 37519646 PMCID: PMC10372207 DOI: 10.1016/j.heliyon.2023.e17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background Functional near-infrared spectroscopy (fNIRS) is a method to measure cerebral hemodynamics. Determining the changes in prefrontal cortex (PFC) hemodynamics during dual-task paradigms is essential in explaining alterations in physical activities, especially in older adults. Aims To systematically review and meta-analyze the effects of dual-task paradigms on PFC hemodynamics in older adults. Methods The search was conducted in PubMed, Scopus, and Web of Science from inception until March 2023 to identify studies on the effects of dual-task paradigms on PFC hemodynamics. The meta-analysis included variables of cerebral hemodynamics, such as oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HbR). The heterogeneity of the included studies was determined using the I2 statistic. Additionally, subgroup analysis was conducted to compare the effects of different types of cognitive tasks. Results A total of 37 studies were included in the systematic review, 25 studies comprising 2224 older adults were included in the meta-analysis. Our findings showed that inhibitory control and working memory tasks significantly increased HbO2 in the PFC by 0.53 (p < 0.01, 95% CI = 0.37 to 0.70) and 0.13 (p < 0.01, 95% CI = 0.08 to 0.18) μmol/L, respectively. Overall, HbO2 was significantly increased during dual-task paradigms by 0.36 μmol/L (P < 0.01, 95% CI = 0.27 to 0.45). Moreover, dual-task paradigms also decreased HbR in the PFC by 0.04 (P < 0.01, 95% CI = -0.07 to -0.01). Specifically, HbR decreased by 0.08 during inhibitory control tasks (p < 0.01, 95% CI = -0.13 to -0.02), but did not change during working memory tasks. Conclusion Cognitive tasks related to inhibitory control required greater cognitive demands, indicating higher pfc activation during dual-task paradigms in older adults. for clinical implications, the increase in pfc oxygenated hemoglobin and decrease in pfc deoxygenated hemoglobin may help explain why older adults are more likely to fall during daily activities.
Collapse
Affiliation(s)
- Kulvara Lapanan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phunsuk Kantha
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Gallayaporn Nantachai
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Somdet Phra Sangharaj Nyanasamvara Geriatric Hospital, Department of Medical Services, Ministry of Public Health, Chon Buri Province, Thailand
| | - Solaphat Hemrungrojn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychiatry Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
23
|
Schröer L, Cooper RP, Mareschal D. Assessing executive functions in free-roaming 2- to 3-year-olds. Front Psychol 2023; 14:1210109. [PMID: 37457086 PMCID: PMC10338926 DOI: 10.3389/fpsyg.2023.1210109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Core aspects of executive functions (EFs) are known to be related to academic skills such as literacy and numeracy. However, school outcomes may also be related to higher-level functions such as planning. Nevertheless, few studies have considered assessing natural manifestations of higher-level EFs in children who are on the cusp of entering formal schooling. One reason for this is the difficulty of obtaining ecologically valid measures of EFs in preschool-aged children. Method We describe a novel task - building a striped Duplo tower subject to two constraints - designed to assess planning in real-world multi-action situation. Children were instructed to build a tower to a certain height by alternating between two different colors of blocks. Results Performance on one of the constraints in this task was found to vary with age. Importantly, distinct components of multiple constraints planning performance predicted laboratory-based measures of inhibitory control and working memory efficacy. Discussion Thus, this task provides a simple, cheap and effective way of assessing executive function in toddlers through the observation of natural behavior. It also opens up possibilities to investigate the neurodevelopment of EF in the real world.
Collapse
Affiliation(s)
- Lisanne Schröer
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - Richard P. Cooper
- Centre for Cognition, Computation and Modelling, Birkbeck, University of London, London, United Kingdom
| | - Denis Mareschal
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
- Centre for Cognition, Computation and Modelling, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
24
|
Regan C, Heiland EG, Ekblom Ö, Tarassova O, Kjellenberg K, Larsen FJ, Walltott H, Fernström M, Nyberg G, Ekblom MM, Helgadóttir B. Acute effects of nitrate and breakfast on working memory, cerebral blood flow, arterial stiffness, and psychological factors in adolescents: Study protocol for a randomised crossover trial. PLoS One 2023; 18:e0285581. [PMID: 37205681 PMCID: PMC10198498 DOI: 10.1371/journal.pone.0285581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Inorganic nitrate has been shown to acutely improve working memory in adults, potentially by altering cerebral and peripheral vasculature. However, this remains unknown in adolescents. Furthermore, breakfast is important for overall health and psychological well-being. Therefore, this study will investigate the acute effects of nitrate and breakfast on working memory performance, task-related cerebral blood flow (CBF), arterial stiffness, and psychological outcomes in Swedish adolescents. METHODS This randomised crossover trial will recruit at least 43 adolescents (13-15 years old). There will be three experimental breakfast conditions: (1) none, (2) low-nitrate (normal breakfast), and (3) high-nitrate (concentrated beetroot juice with normal breakfast). Working memory (n-back tests), CBF (task-related changes in oxygenated and deoxygenated haemoglobin in the prefrontal cortex), and arterial stiffness (pulse wave velocity and augmentation index) will be measured twice, immediately after breakfast and 130 min later. Measures of psychological factors and salivary nitrate/nitrite will be assessed once before the conditions and at two-time points after the conditions. DISCUSSION This study will provide insight into the acute effects of nitrate and breakfast on working memory in adolescents and to what extent any such effects can be explained by changes in CBF. This study will also shed light upon whether oral intake of nitrate may acutely improve arterial stiffness and psychological well-being, in adolescents. Consequently, results will indicate if nitrate intake from beetroot juice or if breakfast itself could acutely improve cognitive, vascular, and psychological health in adolescents, which can affect academic performance and have implications for policies regarding school meals. TRIAL REGISTRATION The trial has been prospectively registered on 21/02/2022 at https://doi.org/10.1186/ISRCTN16596056. Trial number: ISRCTN16596056.
Collapse
Affiliation(s)
- Callum Regan
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Emerald G. Heiland
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Örjan Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Olga Tarassova
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Karin Kjellenberg
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Filip J. Larsen
- Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Hedda Walltott
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Maria Fernström
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| | - Gisela Nyberg
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Solna, Sweden
| | - Maria M. Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Björg Helgadóttir
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
- Division of Insurance Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
25
|
Cruyt E, De Vriendt P, De Geyter N, Van Leirsberghe J, Santens P, De Baets S, De Letter M, Vlerick P, Calders P, De Pauw R, Oostra K, Van de Velde D. The underpinning of meaningful activities by brain correlates: a systematic review. Front Psychol 2023; 14:1136754. [PMID: 37179882 PMCID: PMC10169732 DOI: 10.3389/fpsyg.2023.1136754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Engaging in meaningful activities contributes to health and wellbeing. Research identifies meaningfulness by analysing retrospective and subjective data such as personal experiences in activities. Objectively measuring meaningful activities by registering the brain (fNIRS, EEG, PET, fMRI) remains poorly investigated. Methods A systematic review using PubMed, Web of Science, CINAHL, and Cochrane Library. Findings Thirty-one studies investigating the correlations between daily activities in adults, their degree of meaningfulness for the participant, and the brain areas involved, were identified. The activities could be classified according to the degree of meaningfulness, using the attributes of meaningfulness described in the literature. Eleven study activities contained all attributes, which means that these can be assumed to be meaningful for the participant. Brain areas involved in these activities were generally related to emotional and affective processing, motivation, and reward. Conclusion Although it is demonstrated that neural correlates of meaningful activities can be measured objectively by neurophysiological registration techniques, "meaning" as such has not yet been investigated explicitly. Further neurophysiological research for objective monitoring of meaningful activities is recommended.
Collapse
Affiliation(s)
- Ellen Cruyt
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
| | - Patricia De Vriendt
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
- Department of Occupational Therapy, Artevelde University of Applied Sciences, Ghent, Belgium
- Mental Health Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nele De Geyter
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
| | - Janne Van Leirsberghe
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Stijn De Baets
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Miet De Letter
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
| | - Peter Vlerick
- Department of Work, Organization and Society, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Patrick Calders
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
| | - Robby De Pauw
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
- Lifestyle and Chronic Diseases, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Kristine Oostra
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
| | - Dominique Van de Velde
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Occupational Therapy Research Group, Physiotherapy and Speech-Language Pathology/Audiology, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
27
|
de Vries LP, van de Weijer MP, Bartels M. A systematic review of the neural correlates of well-being reveals no consistent associations. Neurosci Biobehav Rev 2023; 145:105036. [PMID: 36621584 DOI: 10.1016/j.neubiorev.2023.105036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Findings from behavioral and genetic studies indicate a potential role for the involvement of brain structures and brain functioning in well-being. We performed a systematic review on the association between brain structures or brain functioning and well-being, including 56 studies. The 11 electroencephalography (EEG) studies suggest a larger alpha asymmetry (more left than right brain activation) to be related to higher well-being. The 18 Magnetic Resonance Imaging (MRI) studies, 26 resting-state functional MRI studies and two functional near-infrared spectroscopy (fNIRS) studies identified a wide range of brain regions involved in well-being, but replication across studies was scarce, both in direction and strength of the associations. The inconsistency could result from small sample sizes of most studies and a possible wide-spread network of brain regions with small effects involved in well-being. Future directions include well-powered brain-wide association studies and innovative methods to more reliably measure brain activity in daily life.
Collapse
Affiliation(s)
- Lianne P de Vries
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands.
| | - Margot P van de Weijer
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Shibu CJ, Sreedharan S, Arun KM, Kesavadas C, Sitaram R. Explainable artificial intelligence model to predict brain states from fNIRS signals. Front Hum Neurosci 2023; 16:1029784. [PMID: 36741783 PMCID: PMC9892761 DOI: 10.3389/fnhum.2022.1029784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/21/2022] [Indexed: 01/20/2023] Open
Abstract
Objective: Most Deep Learning (DL) methods for the classification of functional Near-Infrared Spectroscopy (fNIRS) signals do so without explaining which features contribute to the classification of a task or imagery. An explainable artificial intelligence (xAI) system that can decompose the Deep Learning mode's output onto the input variables for fNIRS signals is described here. Approach: We propose an xAI-fNIRS system that consists of a classification module and an explanation module. The classification module consists of two separately trained sliding window-based classifiers, namely, (i) 1-D Convolutional Neural Network (CNN); and (ii) Long Short-Term Memory (LSTM). The explanation module uses SHAP (SHapley Additive exPlanations) to explain the CNN model's output in terms of the model's input. Main results: We observed that the classification module was able to classify two types of datasets: (a) Motor task (MT), acquired from three subjects; and (b) Motor imagery (MI), acquired from 29 subjects, with an accuracy of over 96% for both CNN and LSTM models. The explanation module was able to identify the channels contributing the most to the classification of MI or MT and therefore identify the channel locations and whether they correspond to oxy- or deoxy-hemoglobin levels in those locations. Significance: The xAI-fNIRS system can distinguish between the brain states related to overt and covert motor imagery from fNIRS signals with high classification accuracy and is able to explain the signal features that discriminate between the brain states of interest.
Collapse
Affiliation(s)
- Caleb Jones Shibu
- Department of Computer Science, University of Arizona, Tucson, AZ, United States
| | - Sujesh Sreedharan
- Division of Artificial Internal Organs, Department of Medical Devices Engineering, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - KM Arun
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ranganatha Sitaram
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
29
|
Xiang MQ, Lin L, Song YT, Hu M, Hou XH. Reduced left dorsolateral prefrontal activation in problematic smartphone users during the Stroop task: An fNIRS study. Front Psychiatry 2023; 13:1097375. [PMID: 36699489 PMCID: PMC9868828 DOI: 10.3389/fpsyt.2022.1097375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The widespread use of smartphones has triggered concern over problematic smartphone use (PSPU), as well as the need to elucidate its underlying mechanisms. However, the correlation between cortical activation and deficient inhibitory control in PSPU remains unclear. Methods This study examined inhibitory control using the color-word matching Stroop task and its cortical-activation responses using functional near-infrared spectroscopy (fNIRS) in college students with PSPU (n = 56) compared with a control group (n = 54). Results At the behavioral level, Stroop interference, coupled with reaction time, was significantly greater in the PSPU group than in the control group. Changes in oxygenated hemoglobin (Oxy-Hb) signals associated with Stroop interference were significantly increased in the left ventrolateral prefrontal cortex, left frontopolar area, and bilateral dorsolateral prefrontal cortex (DLPFC). Moreover, the PSPU group had lower Oxy-Hb signal changes associated with Stroop interference in the left-DLPFC, relative to controls. Discussion These results provide first behavioral and neuroscientific evidence using event-related fNIRS method, to our knowledge, that college students with PSPU may have a deficit in inhibitory control associated with lower cortical activation in the left-DLPFC.
Collapse
Affiliation(s)
- Ming-Qiang Xiang
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Key Lab of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Long- Lin
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
| | - Yun-Ting Song
- Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Min Hu
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Key Lab of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Xiao-Hui Hou
- School of Sport and Health, Guangzhou Sport University, Guangzhou, China
- Guangdong Key Lab of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
30
|
Arredondo MM. Shining a light on cultural neuroscience: Recommendations on the use of fNIRS to study how sociocultural contexts shape the brain. CULTURAL DIVERSITY & ETHNIC MINORITY PSYCHOLOGY 2023; 29:106-117. [PMID: 34291971 PMCID: PMC8782924 DOI: 10.1037/cdp0000469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a portable neuroimaging technique that may serve as a methodological tool for studying how sociocultural contexts can shape the human brain and impact cognition and behavior. The use of fNIRS in community-based research may (a) advance theoretical knowledge in psychology and neuroscience, particularly regarding underrepresented ethnic-racial communities; (b) increase diversity in samples; and (c) provide neurobiological evidence of sociocultural factors supporting human development. The review aims to introduce the use of fNIRS, including its practicalities and limitations, to new adopters inquiring how sociocultural inputs affect the brain. The review begins with an introduction to cultural neuroscience, and a review on the use of fNIRS follows. Next, benefits and guidelines to the design of fNIRS research in naturalistic environments (in the community or in the field) using a cultural lens are discussed. Strengths-based and community-based approaches in cultural neuroscience are recommended throughout. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
|
31
|
Debracque C, Gruber T, Lacoste R, Meguerditchian A, Grandjean D. Cerebral Activity in Female Baboons ( Papio anubis) During the Perception of Conspecific and Heterospecific Agonistic Vocalizations: a Functional Near Infrared Spectroscopy Study. AFFECTIVE SCIENCE 2022; 3:783-791. [PMID: 36519140 PMCID: PMC9743891 DOI: 10.1007/s42761-022-00164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/27/2022] [Indexed: 05/02/2023]
Abstract
UNLABELLED The "voice areas" in the superior temporal cortex have been identified in both humans and non-human primates as selective to conspecific vocalizations only (i.e., expressed by members of our own species), suggesting its old evolutionary roots across the primate lineage. With respect to non-human primate species, it remains unclear whether the listening of vocal emotions from conspecifics leads to similar or different cerebral activations when compared to heterospecific calls (i.e., expressed by another primate species) triggered by the same emotion. Using a neuroimaging technique rarely employed in monkeys so far, functional Near Infrared Spectroscopy, the present study investigated in three lightly anesthetized female baboons (Papio anubis), temporal cortex activities during exposure to agonistic vocalizations from conspecifics and from other primates (chimpanzees-Pan troglodytes), and energy matched white noises in order to control for this low-level acoustic feature. Permutation test analyses on the extracted OxyHemoglobin signal revealed great inter-individual differences on how conspecific and heterospecific vocal stimuli were processed in baboon brains with a cortical response recorded either in the right or the left temporal cortex. No difference was found between emotional vocalizations and their energy-matched white noises. Despite the phylogenetic gap between Homo sapiens and African monkeys, modern humans and baboons both showed a highly heterogeneous brain process for the perception of vocal and emotional stimuli. The results of this study do not exclude that old evolutionary mechanisms for vocal emotional processing may be shared and inherited from our common ancestor. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42761-022-00164-z.
Collapse
Affiliation(s)
- Coralie Debracque
- Neuroscience of Emotion and Affective Dynamics Lab, Faculty of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Chemin Des Mines 9, 1202 Geneva, Switzerland
| | - Thibaud Gruber
- Neuroscience of Emotion and Affective Dynamics Lab, Faculty of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Chemin Des Mines 9, 1202 Geneva, Switzerland
| | - Romain Lacoste
- Station de Primatologie-Celphedia, CNRS UARS846, Rousset-Sur-Arc, France
| | - Adrien Meguerditchian
- Station de Primatologie-Celphedia, CNRS UARS846, Rousset-Sur-Arc, France
- Laboratoire de Psychologie Cognitive UMR7290, CNRS, Université Aix-Marseille, Marseille, France
| | - Didier Grandjean
- Neuroscience of Emotion and Affective Dynamics Lab, Faculty of Psychology and Educational Sciences and Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Chemin Des Mines 9, 1202 Geneva, Switzerland
| |
Collapse
|
32
|
Chen Y, Wan A, Mao M, Sun W, Song Q, Mao D. Tai Chi practice enables prefrontal cortex bilateral activation and gait performance prioritization during dual-task negotiating obstacle in older adults. Front Aging Neurosci 2022; 14:1000427. [PMID: 36466597 PMCID: PMC9716214 DOI: 10.3389/fnagi.2022.1000427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/31/2022] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND With aging, the cognitive function of the prefrontal cortex (PFC) declined, postural control weakened, and fall risk increased. As a mind-body exercise, regular Tai Chi practice could improve postural control and effectively prevent falls; however, underlying brain mechanisms remained unclear, which were shed light on by analyzing the effect of Tai Chi on the PFC in older adults by means of functional near-infrared spectroscopy (fNIRS). METHODS 36 healthy older adults without Tai Chi experience were divided randomly into Tai Chi group and Control group. The experiment was conducted four times per week for 16 weeks; 27 participants remained and completed the experiment. Negotiating obstacle task (NOT) and negotiating obstacle with cognitive task (NOCT) were performed pre- and post-intervention, and Brodmann area 10 (BA10) was detected using fNIRS for hemodynamic response. A three-dimensional motion capture system measured walking speed. RESULTS After intervention in the Tai Chi group under NOCT, the HbO2 concentration change value (ΔHbO2) in BA10 was significantly greater (right BA10: p = 0.002, left BA10: p = 0.001), walking speed was significantly faster (p = 0.040), and dual-task cost was significantly lower than pre-intervention (p = 0.047). ΔHbO2 in BA10 under NOCT was negatively correlated with dual-task cost (right BA10: r = -0.443, p = 0.021, left BA10: r = -0.448, p = 0.019). There were strong negative correlations between ΔHbO2 and ΔHbR under NOCT either pre-intervention (left PFC r = -0.841, p < 0.001; right PFC r = -0.795, p < 0.001) or post-intervention (left PFC r = -0.842, p < 0.001; right PFC r = -0.744, p < 0.001). CONCLUSION Tai Chi practice might increase the cognitive resources in older adults through the PFC bilateral activation to prioritize gait performance during negotiating obstacles under a dual-task condition.
Collapse
Affiliation(s)
- Yan Chen
- College of Sport and Health, Shandong Sport University, Jinan, Shandong, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Aiying Wan
- College of Sport and Health, Shandong Sport University, Jinan, Shandong, China
| | - Min Mao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Sun
- College of Sport and Health, Shandong Sport University, Jinan, Shandong, China
| | - Qipeng Song
- College of Sport and Health, Shandong Sport University, Jinan, Shandong, China
| | - Dewei Mao
- College of Sport and Health, Shandong Sport University, Jinan, Shandong, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
33
|
Huang R, Hong KS, Yang D, Huang G. Motion artifacts removal and evaluation techniques for functional near-infrared spectroscopy signals: A review. Front Neurosci 2022; 16:878750. [PMID: 36263362 PMCID: PMC9576156 DOI: 10.3389/fnins.2022.878750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
With the emergence of an increasing number of functional near-infrared spectroscopy (fNIRS) devices, the significant deterioration in measurement caused by motion artifacts has become an essential research topic for fNIRS applications. However, a high requirement for mathematics and programming limits the number of related researches. Therefore, here we provide the first comprehensive review for motion artifact removal in fNIRS aiming to (i) summarize the latest achievements, (ii) present the significant solutions and evaluation metrics from the perspective of application and reproduction, and (iii) predict future topics in the field. The present review synthesizes information from fifty-one journal articles (screened according to three criteria). Three hardware-based solutions and nine algorithmic solutions are summarized, and their application requirements (compatible signal types, the availability for online applications, and limitations) and extensions are discussed. Five metrics for noise suppression and two metrics for signal distortion were synthesized to evaluate the motion artifact removal methods. Moreover, we highlight three deficiencies in the existing research: (i) The balance between the use of auxiliary hardware and that of an algorithmic solution is not clarified; (ii) few studies mention the filtering delay of the solutions, and (iii) the robustness and stability of the solution under extreme application conditions are not discussed.
Collapse
Affiliation(s)
- Ruisen Huang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
- *Correspondence: Keum-Shik Hong,
| | - Dalin Yang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Guanghao Huang
- Institute for Future, School of Automation, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
da Silva Soares R, Ambriola Oku AY, Barreto CSF, Ricardo Sato J. Applying functional near-infrared spectroscopy and eye-tracking in a naturalistic educational environment to investigate physiological aspects that underlie the cognitive effort of children during mental rotation tests. Front Hum Neurosci 2022; 16:889806. [PMID: 36072886 PMCID: PMC9442578 DOI: 10.3389/fnhum.2022.889806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Spatial cognition is related to academic achievement in science, technology, engineering, and mathematics (STEM) domains. Neuroimaging studies suggest that brain regions' activation might be related to the general cognitive effort while solving mental rotation tasks (MRT). In this study, we evaluate the mental effort of children performing MRT tasks by measuring brain activation and pupil dilation. We use functional near-infrared spectroscopy (fNIRS) concurrently to collect brain hemodynamic responses from children's prefrontal cortex (PFC) and an Eye-tracking system to measure pupil dilation during MRT. Thirty-two healthy students aged 9-11 participated in this experiment. Behavioral measurements such as task performance on geometry problem-solving tests and MRT scores were also collected. The results were significant positive correlations between the children's MRT and geometry problem-solving test scores. There are also significant positive correlations between dorsolateral PFC (dlPFC) hemodynamic signals and visuospatial task performances (MRT and geometry problem-solving scores). Moreover, we found significant activation in the amplitude of deoxy-Hb variation on the dlPFC and that pupil diameter increased during the MRT, suggesting that both physiological responses are related to mental effort processes during the visuospatial task. Our findings indicate that children with more mental effort under the task performed better. The multimodal approach to monitoring students' mental effort can be of great interest in providing objective feedback on cognitive resource conditions and advancing our comprehension of the neural mechanisms that underlie cognitive effort. Hence, the ability to detect two distinct mental states of rest or activation of children during the MRT could eventually lead to an application for investigating the visuospatial skills of young students using naturalistic educational paradigms.
Collapse
Affiliation(s)
- Raimundo da Silva Soares
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
- Graduate Program in Neuroscience and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Amanda Yumi Ambriola Oku
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Cândida S. F. Barreto
- South African National Research Foundation Research Chair, Faculty of Education, University of Johannesburg, Johannesburg, South Africa
| | - João Ricardo Sato
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
35
|
Morimoto S, Minagawa Y. Effects of Hemodynamic Differences on the Assessment of Inter-Brain Synchrony Between Adults and Infants. Front Psychol 2022; 13:873796. [PMID: 35719520 PMCID: PMC9205639 DOI: 10.3389/fpsyg.2022.873796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The simultaneous recording of brain activity in two or more people, termed hyperscanning, is an emerging field of research investigating the neural basis of social interaction. Hyperscanning studies of adult-infant dyads (e.g., parent and infant) have great potential to provide insights into how social functions develop. In particular, taking advantage of functional near-infrared spectroscopy (fNIRS) for its spatial resolution and invulnerability to motion artifacts, adult-infant fNIRS may play a major role in this field. However, there remains a problem in analyzing hyperscanning data between adult and young populations. Namely, there are intrinsic differences in hemodynamic time latencies depending on age, and the peak latency of the hemodynamic response function (HRF) is longer in younger populations. Despite this fact, the effects of such differences on quantified synchrony have not yet been examined. Consequently, the present study investigated the influence of intrinsic hemodynamic differences on wavelet coherence for assessing brain synchrony, and further examined the statistical removal of these effects through simulation experiments. First, we assumed a social signal model, where one counterpart of the dyad (e.g., infant) sends a social signal to the other (e.g., parent), which eventually results in simultaneous brain activation. Based on this model, simulated fNIRS activation sequences were synthesized by convolving boxcar event sequences with HRFs. We set two conditions for the event: synchronized and asynchronized event conditions. We also modeled the HRFs of adults and infants by referring to previous studies. After preprocessing with additional statistical processing, we calculated the wavelet coherence for each synthesized fNIRS activation sequence pair. The simulation results showed that the wavelet coherence in the synchronized event condition was attenuated for the combination of different HRFs. We also confirmed that prewhitening via an autoregressive filter could recover the attenuation of wavelet coherence in the 0.03-0.1 Hz frequency band, which was regarded as being associated with synchronous neural activity. Our results showed that variability in hemodynamics affected the analysis of inter-brain synchrony, and that the application of prewhitening is critical for such evaluations between adult and young populations.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Keio University Global Research Institute, Keio University, Tokyo, Japan
| | | |
Collapse
|
36
|
Visser A, Büchel D, Lehmann T, Baumeister J. Continuous table tennis is associated with processing in frontal brain areas: an EEG approach. Exp Brain Res 2022; 240:1899-1909. [PMID: 35467129 PMCID: PMC9142473 DOI: 10.1007/s00221-022-06366-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022]
Abstract
Coordinative challenging exercises in changing environments referred to as open-skill exercises seem to be beneficial on cognitive function. Although electroencephalographic research allows to investigate changes in cortical processing during movement, information about cortical dynamics during open-skill exercise is lacking. Therefore, the present study examines frontal brain activation during table tennis as an open-skill exercise compared to cycling exercise and a cognitive task. 21 healthy young adults conducted three blocks of table tennis, cycling and n-back task. Throughout the experiment, cortical activity was measured using 64-channel EEG system connected to a wireless amplifier. Cortical activity was analyzed calculating theta power (4-7.5 Hz) in frontocentral clusters revealed from independent component analysis. Repeated measures ANOVA was used to identify within subject differences between conditions (table tennis, cycling, n-back; p < .05). ANOVA revealed main-effects of condition on theta power in frontal (p < .01, ηp2 = 0.35) and frontocentral (p < .01, ηp2 = 0.39) brain areas. Post-hoc tests revealed increased theta power in table tennis compared to cycling in frontal brain areas (p < .05, d = 1.42). In frontocentral brain areas, theta power was significant higher in table tennis compared to cycling (p < .01, d = 1.03) and table tennis compared to the cognitive task (p < .01, d = 1.06). Increases in theta power during continuous table tennis may reflect the increased demands in perception and processing of environmental stimuli during open-skill exercise. This study provides important insights that support the beneficial effect of open-skill exercise on brain function and suggest that using open-skill exercise may serve as an intervention to induce activation of the frontal cortex.
Collapse
Affiliation(s)
- Anton Visser
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Warburger Str. 100, 33100, Paderborn, Germany.
| | - D Büchel
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Warburger Str. 100, 33100, Paderborn, Germany
| | - T Lehmann
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Warburger Str. 100, 33100, Paderborn, Germany
| | - J Baumeister
- Exercise Science and Neuroscience Unit, Department Exercise and Health, Paderborn University, Warburger Str. 100, 33100, Paderborn, Germany
| |
Collapse
|
37
|
Ortega-Martinez A, Von Lühmann A, Farzam P, Rogers D, Mugler EM, Boas DA, Yücel MA. Multivariate Kalman filter regression of confounding physiological signals for real-time classification of fNIRS data. NEUROPHOTONICS 2022; 9:025003. [PMID: 35692628 PMCID: PMC9174890 DOI: 10.1117/1.nph.9.2.025003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/17/2022] [Indexed: 05/13/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) is a noninvasive technique for measuring hemodynamic changes in the human cortex related to neural function. Due to its potential for miniaturization and relatively low cost, fNIRS has been proposed for applications, such as brain-computer interfaces (BCIs). The relatively large magnitude of the signals produced by the extracerebral physiology compared with the ones produced by evoked neural activity makes real-time fNIRS signal interpretation challenging. Regression techniques incorporating physiologically relevant auxiliary signals such as short separation channels are typically used to separate the cerebral hemodynamic response from the confounding components in the signal. However, the coupling of the extra-cerebral signals is often noninstantaneous, and it is necessary to find the proper delay to optimize nuisance removal. Aim: We propose an implementation of the Kalman filter with time-embedded canonical correlation analysis for the real-time regression of fNIRS signals with multivariate nuisance regressors that take multiple delays into consideration. Approach: We tested our proposed method on a previously acquired finger tapping dataset with the purpose of classifying the neural responses as left or right. Results: We demonstrate computationally efficient real-time processing of 24-channel fNIRS data (400 samples per second per channel) with a two order of selective magnitude decrease in cardiac signal power and up to sixfold increase in the contrast-to-noise ratio compared with the nonregressed signals. Conclusion: The method provides a way to obtain better distinction of brain from non-brain signals in real time for BCI application with fNIRS.
Collapse
Affiliation(s)
| | - Alexander Von Lühmann
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Berlin Institute of Technology, Machine Learning Department, Berlin, Germany
| | - Parya Farzam
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - De’Ja Rogers
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Emily M. Mugler
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
| |
Collapse
|
38
|
Gilman JM, Schmitt WA, Potter K, Kendzior B, Pachas GN, Hickey S, Makary M, Huestis MA, Evins AE. Identification of ∆9-tetrahydrocannabinol (THC) impairment using functional brain imaging. Neuropsychopharmacology 2022; 47:944-952. [PMID: 34999737 PMCID: PMC8882180 DOI: 10.1038/s41386-021-01259-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023]
Abstract
The primary cannabinoid in cannabis, Δ9-tetrahydrocannabinol (THC), causes intoxication and impaired function, with implications for traffic, workplace, and other situational safety risks. There are currently no evidence-based methods to detect cannabis-impaired driving, and current field sobriety tests with gold-standard, drug recognition evaluations are resource-intensive and may be prone to bias. This study evaluated the capability of a simple, portable imaging method to accurately detect individuals with THC impairment. In this double-blind, randomized, cross-over study, 169 cannabis users, aged 18-55 years, underwent functional near-infrared spectroscopy (fNIRS) before and after receiving oral THC and placebo, at study visits one week apart. Impairment was defined by convergent classification by consensus clinical ratings and an algorithm based on post-dose tachycardia and self-rated "high." Our primary outcome, prefrontal cortex (PFC) oxygenated hemoglobin concentration (HbO), was increased after THC only in participants operationalized as impaired, independent of THC dose. ML models using fNIRS time course features and connectivity matrices identified impairment with 76.4% accuracy, 69.8% positive predictive value (PPV), and 10% false-positive rate using convergent classification as ground truth, which exceeded Drug Recognition Evaluator-conducted expanded field sobriety examination (67.8% accuracy, 35.4% PPV, and 35.4% false-positive rate). These findings demonstrate that PFC response activation patterns and connectivity produce a neural signature of impairment, and that PFC signal, measured with fNIRS, can be used as a sole input to ML models to objectively determine impairment from THC intoxication at the individual level. Future work is warranted to determine the specificity of this classifier to acute THC impairment.ClinicalTrials.gov Identifier: NCT03655717.
Collapse
Affiliation(s)
- Jodi M Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - William A Schmitt
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kevin Potter
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Gladys N Pachas
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sarah Hickey
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
| | - Meena Makary
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Faculty of Engineering, Cairo University, Cairo, Egypt
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - A Eden Evins
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Martin AR, Tetreault L, Nouri A, Curt A, Freund P, Rahimi-Movaghar V, Wilson JR, Fehlings MG, Kwon BK, Harrop JS, Davies BM, Kotter MRN, Guest JD, Aarabi B, Kurpad SN. Imaging and Electrophysiology for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 9]. Global Spine J 2022; 12:130S-146S. [PMID: 34797993 PMCID: PMC8859711 DOI: 10.1177/21925682211057484] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVE The current review aimed to describe the role of existing techniques and emerging methods of imaging and electrophysiology for the management of degenerative cervical myelopathy (DCM), a common and often progressive condition that causes spinal cord dysfunction and significant morbidity globally. METHODS A narrative review was conducted to summarize the existing literature and highlight future directions. RESULTS Anatomical magnetic resonance imaging (MRI) is well established in the literature as the key imaging tool to identify spinal cord compression, disc herniation/bulging, and inbuckling of the ligamentum flavum, thus facilitating surgical planning, while radiographs and computed tomography (CT) provide complimentary information. Electrophysiology techniques are primarily used to rule out competing diagnoses. However, signal change and measures of cord compression on conventional MRI have limited utility to characterize the degree of tissue injury, which may be helpful for diagnosis, prognostication, and repeated assessments to identify deterioration. Early translational studies of quantitative imaging and electrophysiology techniques show potential of these methods to more accurately reflect changes in spinal cord microstructure and function. CONCLUSION Currently, clinical management of DCM relies heavily on anatomical MRI, with additional contributions from radiographs, CT, and electrophysiology. Novel quantitative assessments of microstructure, perfusion, and function have the potential to transform clinical practice, but require robust validation, automation, and standardization prior to uptake.
Collapse
Affiliation(s)
- Allan R Martin
- Department of Neurological Surgery, 8789University of California Davis, Davis, CA, USA
| | - Lindsay Tetreault
- Department of Neurology, 5894New York University, Langone Health, Graduate Medical Education, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Geneva, Switzerland
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6529Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, 1479University of Maryland, Baltimore, MD, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| |
Collapse
|
40
|
Nogueira MG, Silvestrin M, Barreto CSF, Sato JR, Mesquita RC, Biazoli C, Baptista AF. Differences in brain activity between fast and slow responses on psychomotor vigilance task: an fNIRS study. Brain Imaging Behav 2022; 16:1563-1574. [PMID: 35091973 DOI: 10.1007/s11682-021-00611-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Attention is a basic human function underlying every other cognitive process. It is demonstrated in the functional Magnetic Resonance Imaging literature that frontoparietal networks are involved with attentive performance while default mode networks are involved with inattentive performance. Yet, it is still not clear whether similar results would be found with functional Near-Infrared Spectroscopy. The goal of our study was to investigate differences in hemodynamic activity measured by functional Near-Infrared Spectroscopy between fast and slow responses on a simple sustained attention task both before and after stimulus onset. Thirty healthy adults took part in the study. Our results have shown differences between fast and slow responses only on channels over medial frontal cortex and inferior parietal cortex (p < 0,05). These differences were observed both before and after stimulus presentation. It is discussed that functional Near-Infrared Spectroscopy is a good tool to investigate the frontoparietal network and its relationship with performance in attention tasks; it could be used to further investigate other approaches on attention, such as the dual network model of cognitive control and brain states views based on complex systems analysis; and finally, it could be used to investigate attention in naturalistic settings.
Collapse
Affiliation(s)
- Mateus G Nogueira
- Center for Mathematics, Computation and Cognition, UFABC - Universidade Federal do ABC -SP, Avenida dos Estados, 5001, Bloco B, Sala 803, São Bernardo do Campo, Brazil
| | - Mateus Silvestrin
- Center for Mathematics, Computation and Cognition, UFABC - Universidade Federal do ABC -SP, Avenida dos Estados, 5001, Bloco B, Sala 803, São Bernardo do Campo, Brazil
| | - Cândida S F Barreto
- Center for Mathematics, Computation and Cognition, UFABC - Universidade Federal do ABC -SP, Avenida dos Estados, 5001, Bloco B, Sala 803, São Bernardo do Campo, Brazil
| | - João Ricardo Sato
- Center for Mathematics, Computation and Cognition, UFABC - Universidade Federal do ABC -SP, Avenida dos Estados, 5001, Bloco B, Sala 803, São Bernardo do Campo, Brazil
| | | | - Claudinei Biazoli
- Center for Mathematics, Computation and Cognition, UFABC - Universidade Federal do ABC -SP, Avenida dos Estados, 5001, Bloco B, Sala 803, São Bernardo do Campo, Brazil
| | - Abrahão F Baptista
- Center for Mathematics, Computation and Cognition, UFABC - Universidade Federal do ABC -SP, Avenida dos Estados, 5001, Bloco B, Sala 803, São Bernardo do Campo, Brazil.
| |
Collapse
|
41
|
Braun Janzen T, Koshimori Y, Richard NM, Thaut MH. Rhythm and Music-Based Interventions in Motor Rehabilitation: Current Evidence and Future Perspectives. Front Hum Neurosci 2022; 15:789467. [PMID: 35111007 PMCID: PMC8801707 DOI: 10.3389/fnhum.2021.789467] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Research in basic and clinical neuroscience of music conducted over the past decades has begun to uncover music’s high potential as a tool for rehabilitation. Advances in our understanding of how music engages parallel brain networks underpinning sensory and motor processes, arousal, reward, and affective regulation, have laid a sound neuroscientific foundation for the development of theory-driven music interventions that have been systematically tested in clinical settings. Of particular significance in the context of motor rehabilitation is the notion that musical rhythms can entrain movement patterns in patients with movement-related disorders, serving as a continuous time reference that can help regulate movement timing and pace. To date, a significant number of clinical and experimental studies have tested the application of rhythm- and music-based interventions to improve motor functions following central nervous injury and/or degeneration. The goal of this review is to appraise the current state of knowledge on the effectiveness of music and rhythm to modulate movement spatiotemporal patterns and restore motor function. By organizing and providing a critical appraisal of a large body of research, we hope to provide a revised framework for future research on the effectiveness of rhythm- and music-based interventions to restore and (re)train motor function.
Collapse
Affiliation(s)
- Thenille Braun Janzen
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Yuko Koshimori
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Nicole M. Richard
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Faculty of Music, Belmont University, Nashville, TN, United States
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michael H. Thaut,
| |
Collapse
|
42
|
Akimoto M, Tanaka T, Ito J, Kubota Y, Seiyama A. Inter-Brain Synchronization During Sandplay Therapy: Individual Analyses. Front Psychol 2021; 12:723211. [PMID: 34887797 PMCID: PMC8650609 DOI: 10.3389/fpsyg.2021.723211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
Interactions between the client (Cl) and therapist (Th) evolve therapeutic relationships in psychotherapy. An interpersonal link or therapeutic space is implicitly developed, wherein certain important elements are expressed and shared. However, neural basis of psychotherapy, especially of non-verbal modalities, have scarcely been explored. Therefore, we examined the neural backgrounds of such therapeutic alliances during sandplay, a powerful art/play therapy technique. Real-time and simultaneous measurement of hemodynamics was conducted in the prefrontal cortex (PFC) of Cl-Th pairs participating in sandplay and subsequent interview sessions through multichannel near-infrared spectroscopy. As sandplay is highly individualized, and no two sessions and products (sandtrays) are the same, we expected variation in interactive patterns in the Cl–Th pairs. Nevertheless, we observed a statistically significant correlation between the spatio-temporal patterns in signals produced by the homologous regions of the brains. During the sandplay condition, significant correlations were obtained in the lateral PFC and frontopolar (FP) regions in the real Cl-Th pairs. Furthermore, a significant correlation was observed in the FP region for the interview condition. The correlations found in our study were explained as a “remote” synchronization (i.e., unconnected peripheral oscillators synchronizing through a hub maintaining free desynchronized dynamics) between two subjects in a pair, possibly representing the neural foundation of empathy, which arises commonly in sandplay therapy (ST).
Collapse
Affiliation(s)
- Michiko Akimoto
- Faculty of Human Sciences, Toyo Eiwa University, Yokohama, Japan
| | - Takuma Tanaka
- Faculty of Data Science, Shiga University, Hikone, Japan
| | - Junko Ito
- Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Japan
| | - Akitoshi Seiyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Janssen TW, Grammer JK, Bleichner MG, Bulgarelli C, Davidesco I, Dikker S, Jasińska KK, Siugzdaite R, Vassena E, Vatakis A, Zion‐Golumbic E, van Atteveldt N. Opportunities and Limitations of Mobile Neuroimaging Technologies in Educational Neuroscience. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2021; 15:354-370. [PMID: 35875415 PMCID: PMC9292610 DOI: 10.1111/mbe.12302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/18/2021] [Accepted: 09/01/2021] [Indexed: 05/20/2023]
Abstract
As the field of educational neuroscience continues to grow, questions have emerged regarding the ecological validity and applicability of this research to educational practice. Recent advances in mobile neuroimaging technologies have made it possible to conduct neuroscientific studies directly in naturalistic learning environments. We propose that embedding mobile neuroimaging research in a cycle (Matusz, Dikker, Huth, & Perrodin, 2019), involving lab-based, seminaturalistic, and fully naturalistic experiments, is well suited for addressing educational questions. With this review, we take a cautious approach, by discussing the valuable insights that can be gained from mobile neuroimaging technology, including electroencephalography and functional near-infrared spectroscopy, as well as the challenges posed by bringing neuroscientific methods into the classroom. Research paradigms used alongside mobile neuroimaging technology vary considerably. To illustrate this point, studies are discussed with increasingly naturalistic designs. We conclude with several ethical considerations that should be taken into account in this unique area of research.
Collapse
Affiliation(s)
- Tieme W.P. Janssen
- Department of Clinical, Neuro‐ & Developmental Psychology, Vrije Universiteit
| | - Jennie K. Grammer
- Graduate School of Education and Information Studies, University of California Los Angeles
| | | | - Chiara Bulgarelli
- Centre for Brain and Cognitive Development, Birkbeck University of London
| | - Ido Davidesco
- Department of Educational Psychology, University of Connecticut
| | | | - Kaja K. Jasińska
- Department of Applied Psychology and Human Development, University of Toronto
| | | | - Eliana Vassena
- Donders Institute for Brain, Cognition and Behaviour, Radboud University
| | | | | | | |
Collapse
|
44
|
An Overview on Cognitive Function Enhancement through Physical Exercises. Brain Sci 2021; 11:brainsci11101289. [PMID: 34679354 PMCID: PMC8534220 DOI: 10.3390/brainsci11101289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022] Open
Abstract
This review is extensively focused on the enhancement of cognitive functions while performing physical exercises categorized into cardiovascular exercises, resistance training, martial arts, racquet sports, dancing and mind-body exercises. Imaging modalities, viz. functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), have been included in this review. This review indicates that differences are present in cognitive functioning while changing the type of physical activity performed. This study concludes that employing fNIRS helps overcome certain limitations of fMRI. Further, the effects of physical activity on a diverse variety of the population, from active children to the old people, are discussed.
Collapse
|
45
|
Huo C, Xu G, Li W, Xie H, Zhang T, Liu Y, Li Z. A review on functional near-infrared spectroscopy and application in stroke rehabilitation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Carius D, Kenville R, Maudrich D, Riechel J, Lenz H, Ragert P. Cortical processing during table tennis - an fNIRS study in experts and novices. Eur J Sport Sci 2021; 22:1315-1325. [PMID: 34228601 DOI: 10.1080/17461391.2021.1953155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among the many factors that determine top athletic performance, little is known about the contribution of the brain. With the present study, we aimed to uncover aspects of this role by examining modulatory differences in brain processing as a function of expertise and task complexity in table tennis. For this purpose, 28 right-handed volunteers (14 experts and 14 novices) performed two table tennis strokes in a standardized manner. Hemodynamic response alterations reflecting neuronal activation were recorded during task execution using functional near-infrared spectroscopy (fNIRS) and analyzed within and between groups. Our results showed localized activation patterns in motor areas (primary motor cortex (M1), premotor cortex (PMC), and inferior parietal cortex (IPC)) for experts and novices. Compared to novices, experts completed more table tennis strokes and showed a significant increase in hemodynamic response alterations in channels corresponding to motor areas. Furthermore, we found significant correlations between the number of strokes and hemodynamic response magnitudes in individual channels of M1, PMC, and IPC. Taken together, our findings show that table tennis performance is accompanied by extensive activation of M1, PMC, and IPC. Furthermore, the observed difference in behavioral performance between experts and novices was associated with increased activation in M1, PMC, and IPC. We postulate that these differences in brain processing between experts and novices potentially imply modulatory distinctions related to increased movement speed or frequency but may also reflect an increased task familiarity of the experts.
Collapse
Affiliation(s)
- Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dennis Maudrich
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Jan Riechel
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Hannes Lenz
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
47
|
Beishon L, Panerai RB. The Neurovascular Unit in Dementia: An Opinion on Current Research and Future Directions. Front Aging Neurosci 2021; 13:721937. [PMID: 34393765 PMCID: PMC8355558 DOI: 10.3389/fnagi.2021.721937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,National Institute for Health Research Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
48
|
Trambaiolli LR, Cassani R, Mehler DMA, Falk TH. Neurofeedback and the Aging Brain: A Systematic Review of Training Protocols for Dementia and Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:682683. [PMID: 34177558 PMCID: PMC8221422 DOI: 10.3389/fnagi.2021.682683] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
Dementia describes a set of symptoms that occur in neurodegenerative disorders and that is characterized by gradual loss of cognitive and behavioral functions. Recently, non-invasive neurofeedback training has been explored as a potential complementary treatment for patients suffering from dementia or mild cognitive impairment. Here we systematically reviewed studies that explored neurofeedback training protocols based on electroencephalography or functional magnetic resonance imaging for these groups of patients. From a total of 1,912 screened studies, 10 were included in our final sample (N = 208 independent participants in experimental and N = 81 in the control groups completing the primary endpoint). We compared the clinical efficacy across studies, and evaluated their experimental designs and reporting quality. In most studies, patients showed improved scores in different cognitive tests. However, data from randomized controlled trials remains scarce, and clinical evidence based on standardized metrics is still inconclusive. In light of recent meta-research developments in the neurofeedback field and beyond, quality and reporting practices of individual studies are reviewed. We conclude with recommendations on best practices for future studies that investigate the effects of neurofeedback training in dementia and cognitive impairment.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- Basic Neuroscience Division, McLean Hospital - Harvard Medical School, Boston, MA, United States
| | - Raymundo Cassani
- Institut National de la Recherche Scientifique - Energy, Materials, and Telecommunications Centre (INRS-EMT), University of Québec, Montréal, QC, Canada
| | - David M A Mehler
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiago H Falk
- Institut National de la Recherche Scientifique - Energy, Materials, and Telecommunications Centre (INRS-EMT), University of Québec, Montréal, QC, Canada
| |
Collapse
|
49
|
Dybvik H, Steinert M. Real-World fNIRS Brain Activity Measurements during Ashtanga Vinyasa Yoga. Brain Sci 2021; 11:742. [PMID: 34204979 PMCID: PMC8229690 DOI: 10.3390/brainsci11060742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is often praised for its portability and robustness towards motion artifacts. While an increasing body of fNIRS research in real-world environments is emerging, most fNIRS studies are still conducted in laboratories, and do not incorporate larger movements performed by participants. This study extends fNIRS applications in real-world environments by conducting a single-subject observational study of a yoga practice with considerable movement (Ashtanga Vinyasa Yoga) in a participant's natural environment (their apartment). The results show differences in cognitive load (prefrontal cortex activation) when comparing technically complex postures to relatively simple ones, but also some contrasts with surprisingly little difference. This study explores the boundaries of real-world cognitive load measurements, and contributes to the empirical knowledge base of using fNIRS in realistic settings. To the best of our knowledge, this is the first demonstration of fNIRS brain imaging recorded during any moving yoga practice. Future work with fNIRS should take advantage of this by accomplishing studies with considerable real-world movement.
Collapse
Affiliation(s)
- Henrikke Dybvik
- TrollLABS, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | | |
Collapse
|
50
|
Gong A, Gu F, Nan W, Qu Y, Jiang C, Fu Y. A Review of Neurofeedback Training for Improving Sport Performance From the Perspective of User Experience. Front Neurosci 2021; 15:638369. [PMID: 34127921 PMCID: PMC8195869 DOI: 10.3389/fnins.2021.638369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Neurofeedback training (NFT) is a non-invasive, safe, and effective method of regulating the nerve state of the brain. Presently, NFT is widely used to prevent and rehabilitate brain diseases and improve an individual's external performance. Among the various NFT methods, NFT to improve sport performance (SP-NFT) has become an important research and application focus worldwide. Several studies have shown that the method is effective in improving brain function and motor control performance. However, appropriate reviews and prospective directions for this technology are lacking. This paper proposes an SP-NFT classification method based on user experience, classifies and discusses various SP-NFT research schemes reported in the existing literature, and reviews the technical principles, application scenarios, and usage characteristics of different SP-NFT schemes. Several key issues in SP-NFT development, including the factors involved in neural mechanisms, scheme selection, learning basis, and experimental implementation, are discussed. Finally, directions for the future development of SP-NFT, including SP-NFT based on other electroencephalograph characteristics, SP-NFT integrated with other technologies, and SP-NFT commercialization, are suggested. These discussions are expected to provide some valuable ideas to researchers in related fields.
Collapse
Affiliation(s)
- Anmin Gong
- School of Information Engineering, Engineering University of People's Armed Police, Xi'an, China
| | - Feng Gu
- School of Information Engineering, Engineering University of People's Armed Police, Xi'an, China
| | - Wenya Nan
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai, China
| | - Yi Qu
- School of Information Engineering, Engineering University of People's Armed Police, Xi'an, China
| | - Changhao Jiang
- Key Laboratory of Sports Performance Evaluation and Technical Analysis, Capital Institute of Physical Education, Beijing, China
| | - Yunfa Fu
- School of Automation and Information Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|