1
|
Liu X, Chen G, Cheng Z, Feng Y, Cui W, Gao L, Cai X, Wang Y. Increased iron deposition in subcortical nuclear mass in treatment naïve transgender women: An exploratory quantitative susceptibility mapping study. J Affect Disord 2025; 383:267-274. [PMID: 40294822 DOI: 10.1016/j.jad.2025.04.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/06/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVE The aim of this study was to investigate altered iron deposition in deep brain regions of transgender women (TW) population using quantitative susceptibility mapping (QSM). MATERIAL & METHOD 45 TW, 28 cisgender men (CM) and 18 cisgender women (CW) were prospectively recruited. All participants underwent a 3.0T magnetic resonance imaging of the brain. QSM post-processing technique was applied to obtain susceptibility value for regions of the caudate, putamen, internal globus pallidus, external globus pallidus, ventral pallidum, nucleus accumbens, substantia nigra pars compacta, substantia nigra pars reticulata, red nucleus, subthalamic nucleus and dentate nucleus. The analysis of covariance was used to investigate the iron deposition differences between three groups controlling for age and education. The false discovery rate (FDR) was used for multiple comparison correction. RESULTS After correcting for FDR, the TW group showed increased susceptibility value in the left internal globus pallidus compared to the CM group. There were no significantly different susceptibility value between the TW and the CW groups after correcting for FDR. CONCLUSION The iron deposition in the internal globus pallidus region of TW was higher than that of CM, and there was no significant difference between TW and CW, Further investigation is warranted to gain a more comprehensive understanding of cerebral iron dysregulation in transgender people and its associated physiological mechanisms.
Collapse
Affiliation(s)
- Xu Liu
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Guanmao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of MR, Zhongshan City People's Hospital, Zhongshan, China
| | - Zhongyuan Cheng
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Youzhen Feng
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Wei Cui
- GE Healthcare, MR Research, China
| | - Lvfen Gao
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xiangran Cai
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Angelopoulou E, Androni X, Villa C, Hatzimanolis A, Scarmeas N, Papageorgiou S. Blood-based biomarkers in mild behavioral impairment: an updated overview. Front Neurol 2025; 16:1534193. [PMID: 39980634 PMCID: PMC11839432 DOI: 10.3389/fneur.2025.1534193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
Identifying individuals at-risk for dementia is one of the critical objectives of current research efforts, highlighting the need for simple, cost-effective, and minimally invasive biomarkers. Mild behavioral impairment (MBI), characterized by the emergence of persistent neuropsychiatric manifestations in older adults, has attracted increasing attention as a potential early indicator of cognitive decline and dementia. A growing number of studies have recently begun to explore the relationship between MBI and several blood-based biomarkers associated with Alzheimer's disease (AD) pathology, neurodegeneration, as well as systemic metabolic and inflammatory dysregulation. In this context, MBI has been associated with lower plasma Aβ42/Αβ40 ratio, higher plasma phosphorylated tau at threonine 181 (p-tau181), increased neurofilament light chain (NfL) levels, as well as disturbances in metabolic markers, including homocysteine, insulin and ferritin, suggesting a multifaceted neurobiological basis for this syndrome. These findings offer insights into the underlying pathophysiology of MBI, and connection between neuropsychiatric symptoms and progression of AD. In this narrative review, we aim to summarize and critically discuss the emerging literature evidence linking MBI to blood-based biomarkers, hoping to shed more light on MBI's pathophysiology, its connection to AD-related neurobiology, as well as its potential practical utility for predicting cognitive impairment, guiding early interventions and managing the risk for dementia.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Aiginiteio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Xenia Androni
- 1st Department of Neurology, Aiginiteio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alexandros Hatzimanolis
- 1st Department of Psychiatry, Aiginiteio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginiteio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis Papageorgiou
- 1st Department of Neurology, Aiginiteio University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Guo Y, Mao H, Chen K, Dou W, Wang X. Impaired iron metabolism and cerebral perfusion patterns in unilateral middle cerebral artery stenosis or occlusion: Insights from quantitative susceptibility mapping. J Neuroradiol 2025; 52:101233. [PMID: 39547329 DOI: 10.1016/j.neurad.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND PURPOSE Cerebral hypoperfusion caused by stenosis or occlusion of the middle cerebral artery (MCA) may be followed by impaired iron metabolism. We explored the association between iron changes of gray matter (GM) nuclei subregions and different cerebral perfusion patterns in patients with chronic unilateral middle cerebral artery (MCA) stenosis or occlusion using quantitative susceptibility imaging (QSM). METHODS Sixty-one patients with unilateral MCA stenosis or occlusion were recruited and scored with Alberta-Stroke-Program-Early-CT-Score (ASPECTS) based on relative cerebral blood flow (rCBF) measurements to calculate the number of corresponding hypoperfusion subregions, and then divided into an extensive-hypoperfusion group (EH group), regional-hypoperfusion group (RH group), and normal-perfusion group (Control group) accordingly. The measured magnetic susceptibility of GM nuclei subregions was compared between the lesion and contralateral side for each group and among the three groups. Correlation analysis was performed to assess the relationships of magnetic susceptibility of GM nuclei with mean rCBF, National-Institutes-of-Health-stroke-scale (NIHSS) and modified-Rankin-scale (mRS) scores. RESULTS Magnetic susceptibility in the putamen (PU) and globus pallidus (GP) at the lesion side was higher in the EH and RH groups compared with the contralateral side (all P < 0.05). Susceptibility in the lesion side PU and GP showed negative correlations with mean rCBF and positive correlations with NIHSS and mRS scores (all P < 0.05). CONCLUSION Our findings demonstrate that chronic cerebral hypoperfusion might be one cause of cerebral abnormal iron metabolism. In addition, magnetic susceptibility of PU and GP seems to be correlated with stroke scale scores, suggesting that iron deposition may play an important role in neurologic deficits after ischemic stroke.
Collapse
Affiliation(s)
- Yu Guo
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No.16766, Jingshi Rd, Jinan 250014, Shandong Province, PR China
| | - Huimin Mao
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, PR China
| | - Kunjian Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No.16766, Jingshi Rd, Jinan 250014, Shandong Province, PR China
| | - Weiqiang Dou
- MR Research, GE Healthcare, Beijing 10076, PR China.
| | - Xinyi Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No.16766, Jingshi Rd, Jinan 250014, Shandong Province, PR China.
| |
Collapse
|
4
|
Du W, Tang B, Liu S, Zhang W, Lui S. Causal associations between iron levels in subcortical brain regions and psychiatric disorders: a Mendelian randomization study. Transl Psychiatry 2025; 15:19. [PMID: 39843424 PMCID: PMC11754438 DOI: 10.1038/s41398-025-03231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/06/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Despite observational studies linking brain iron levels to psychiatric disorders, the exact causal relationship remains poorly understood. This study aims to examine the relationship between iron levels in specific subcortical brain regions and the risk of psychiatric disorders. Utilizing two-sample Mendelian randomization (MR) analysis, this study investigates the causal associations between iron level changes in 16 subcortical nuclei and eight major psychiatric disorders, including schizophrenia (SCZ), major depressive disorder (MDD), autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, bipolar disorder, anxiety disorders, obsessive-compulsive disorder, and insomnia. The genetic instrumental variables linked to iron levels and psychiatric disorders were derived from the genome-wide association studies data of the UK Biobank Brain Imaging and Psychiatric Genomics Consortium. Bidirectional causal estimation was primarily obtained using the inverse variance weighting (IVW) method. Iron levels in the left substantia nigra showed a negative association with the risk of MDD (ORIVW = 0.94, 95% CI = 0.91-0.97, p < 0.001) and trends with risk of SCZ (ORIVW = 0.90, 95% CI = 0.82-0.98, p = 0.020). Conversely, iron levels in the left putamen were positively associated with the risk of ASD (ORIVW = 1.11, 95% CI = 1.04-1.19, p = 0.002). Additionally, several bidirectional trends were observed between subcortical iron levels and the risk for psychiatric disorders. Lower iron levels in the left substantia nigra may increase the risk of MDD, and potentially increase the risk of SCZ, indicating a potential shared pathogenic mechanism. Higher iron levels in the left putamen may lead to the development of ASD. The observed bidirectional trends between subcortical iron levels and psychiatric disorders, indicate the importance of the underlying biomechanical interactions between brain iron regulation and these disorders.
Collapse
Grants
- Nos. 82120108014, and 82071908 National Natural Science Foundation of China (National Science Foundation of China)
- Nos. 82471959, and 82101998 National Natural Science Foundation of China (National Science Foundation of China)
- No. 2021JDTD0002 Department of Science and Technology of Sichuan Province (Sichuan Provincial Department of Science and Technology)
- National Key R&D Program of China (Project Nos. 2022YFC2009901, 2022YFC2009900), Chengdu Science and Technology Office, major technology application demonstration project (Project Nos. 2022-YF09-00062-SN, 2022-GH03-00017-HZ), the Fundamental Research Funds for the Central Universities (Project Nos. ZYGX2022YGRH008) and the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Project Nos. ZYGD23003 and ZYAI24010).
- Sichuan Science and Technology Program (No. 2024NSFSC1794), Fundamental Research Funds for the Central Universities (Project Nos. 2023SCUH0064)
Collapse
Affiliation(s)
- Wei Du
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Senhao Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Qi X, Zhang R, Zhu H, Luo J, Zhang Q, Wang W, Wang T, Zhang D. Dietary Iron Intake and Mental and Behavioral Disorders Due to Use of Tobacco: A UK Biobank Study. Nutrients 2024; 17:39. [PMID: 39796473 PMCID: PMC11722800 DOI: 10.3390/nu17010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Over 1 billion smokers worldwide, one-third of whom have mental and behavioral disorders, exist. However, factors influencing mental and behavioral disorders due to the use of tobacco remain largely unexplored. This study aims to investigate the relationship between dietary iron intake and mental and behavioral disorders due to the use of tobacco. METHODS Using large population cohort data from the UK Biobank (500,000 participants at 22 assessment centers between 2006 and 2010), we employed logistic and Cox regression analyses to explore both cross-sectional and longitudinal associations between dietary iron intake and mental and behavioral disorders due to the use of tobacco. Additionally, we assessed the nonlinear relationship between dietary iron intake and these disorders using restricted cubic spline plots. RESULTS Logistic regression analysis indicated that dietary iron intake was negatively associated with mental and behavioral disorders due to the use of tobacco. The Cox regression results supported a protective effect of increased dietary iron intake against these disorders. Stratified and sensitivity analyses were consistent with the primary findings. Restricted cubic spline plots revealed a nonlinear relationship between dietary iron intake and mental and behavioral disorders due to the use of tobacco. In the total sample, as well as in both age groups and the male subgroup, the risk reduction rate initially accelerated before slowing down. In contrast, the risk reduction rate in the female group declined rapidly at first and then leveled off. CONCLUSIONS This study demonstrates that dietary iron intake has a protective effect against mental and behavioral disorders due to the use of tobacco, revealing a nonlinear association between these two traits. These findings provide important insights for the profilaxy and treatment of mental and behavioral disorders due to the use of tobacco in the future.
Collapse
Affiliation(s)
- Xueting Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (X.Q.); (R.Z.); (J.L.); (Q.Z.); (W.W.); (D.Z.)
| | - Ronghui Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (X.Q.); (R.Z.); (J.L.); (Q.Z.); (W.W.); (D.Z.)
| | - Hailong Zhu
- Department of Operations Management, Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266033, China;
| | - Jia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (X.Q.); (R.Z.); (J.L.); (Q.Z.); (W.W.); (D.Z.)
| | - Qiuge Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (X.Q.); (R.Z.); (J.L.); (Q.Z.); (W.W.); (D.Z.)
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (X.Q.); (R.Z.); (J.L.); (Q.Z.); (W.W.); (D.Z.)
| | - Tong Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (X.Q.); (R.Z.); (J.L.); (Q.Z.); (W.W.); (D.Z.)
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (X.Q.); (R.Z.); (J.L.); (Q.Z.); (W.W.); (D.Z.)
| |
Collapse
|
6
|
Khormi I, Fazlollahi A, Al-iedani O, Vidyasagar R, Ayton S, Alshehri A, Paton B, Ramadan S, Lechner-Scott J. Quantitative susceptibility mapping of the fear circuit: Associations with silent symptoms in relapsing-remitting multiple sclerosis. Neuroradiol J 2024:19714009241303123. [PMID: 39631056 PMCID: PMC11618841 DOI: 10.1177/19714009241303123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Background: Multiple sclerosis (MS) is a long-term autoimmune inflammatory disorder that affects the central nervous system leading to neurodegeneration, and can involve a variety of symptoms. These symptoms can include fatigue, anxiety, depression, and cognitive decline, which may be silent. The objective of this study was to explore changes in brain iron deposition in people with relapsing-remitting MS (pw-RRMS) compared to healthy controls (HCs), with a particular focus on regions of fear circuit. Additionally, the study aimed to evaluate relationship between iron deposition in these areas and clinical measurements. Methods: Pw-RRMS and HCs participants underwent brain MRI scans using quantitative susceptibility mapping (QSM) to assess iron deposition in the fear circuit between the two groups. The study analyzed correlations between brain susceptibility changes and clinical measurements. Results: We recruited 35 pw-RRMS (mean age = 46.7 ± 11 years; median EDSS = 2.5) and 18 HCs (mean age = 40.6 ± 17.8 years). Our research revealed significant increases in QSM signals relating to iron deposition in pw-RRMS compared to HCs, whole fear circuit (β = 5.82, p < 0.001), caudate (β = 21.48, p < 0.001), and putamen (β = 17.53, p = 0.03), showing the greatest difference. The whole fear circuit and particularly the caudate are strongly associated with fatigue in pw-RRMS. QSM values in the anterior cingulate cortex significantly differed between pw-RRMS with normal and abnormal depression scores (p = 0.007). Conclusions: These results strengthen the relationship between increased iron deposition in fear circuit regions and specific silent symptoms in pw-RRMS. However, further studies are required to confirm these findings and clarify the implications of iron accumulation in MS pathophysiology.
Collapse
Affiliation(s)
- Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Applied Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Amir Fazlollahi
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oun Al-iedani
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Rishma Vidyasagar
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Radiology, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Bryan Paton
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
7
|
Chen L, Yang Y, Zhang N, Che H, Wang Z, Han J, Wen M. DHA and EPA alleviate depressive-like behaviors in chronic sleep-deprived mice: Involvement of iron metabolism, oligodendrocyte-lipids peroxidation and the LCN2-NLRP3 signaling axis. Free Radic Biol Med 2024; 225:654-664. [PMID: 39447994 DOI: 10.1016/j.freeradbiomed.2024.10.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Mounting evidence suggests that eicosapentaenoic acid (EPA) is superior to docosahexaenoic acid (DHA) in the treatment of depression, but the underlying mechanisms remain elusive. In the present study, the effect of DHA and EPA on depressive-like behaviors was investigated in chronic sleep-deprived (CSD) mice. Following the administration of EPA or DHA, investigations were conducted on depression-like behavior, myelin damage, iron dyshomeostasis, oligodendrocyte-lipids peroxidation, and neuroinflammation. As anticipated, EPA was more effective than DHA in ameliorating CSD-induced depression by increasing center preference and immobility time and concurrently shortening immobility latency. Both DHA and EPA mitigated myelin damage with EPA demonstrating superior benefits characterized by higher levels of Olig2, MBP, and FTH, as well as decreased oligodendrocyte-lipid peroxidation. The inhibition of activated astrocytes and the associated LCN2-NLRP3 signaling pathway was observed following both EPA and DHA supplementation. However, the inhibitory effect was more pronounced with EPA. Additionally, EPA outperformed DHA in mitigating microglial activation and M1/M2 polarization imbalance. Overall, this present study provides valuable insights into the anti-depressive effects of DHA and EPA, highlighting their role in inhibiting oligodendrocyte-lipids peroxidation and the LCN2-NLRP3 axis and corroborating the superiority of EPA in mediating antidepressant effects.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, Shandong Province, China
| | - Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, Shandong Province, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, Shandong Province, China
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, Shandong Province, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, Shandong Province, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, 252059, Shandong Province, China; Pet Nutrition Research and Development Center Gambol Pet Group Co.,Ltd, Liaocheng, 252000, Shandong Province, China.
| |
Collapse
|
8
|
Schulze M, Coghill D, Lux S, Philipsen A, Silk T. Assessing Brain Iron and Its Relationship to Cognition and Comorbidity in Children With Attention-Deficit/Hyperactivity Disorder With Quantitative Susceptibility Mapping. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00250-7. [PMID: 39218036 DOI: 10.1016/j.bpsc.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Quantitative susceptibility mapping is a neuroimaging technique that detects local changes in magnetic susceptibility induced by brain iron. Brain iron and the dopaminergic system are linked because iron is an important cofactor for dopamine synthesis. Attention-deficit/hyperactivity disorder (ADHD) is associated with dysregulation of dopaminergic transmission. Therefore, we applied quantitative susceptibility mapping on subcortical structures to study potential alterations in brain iron and its impact on cognition and mental health in children with ADHD. METHODS Quantitative susceptibility mapping data (3T) of 111 participants (nADHD = 58, mean [SD] age = 13.2 [0.63] years; nControl = 53, mean [SD] age = 13.2 [0.51] years) were analyzed. Subcortical regional brain iron values were extracted. Analysis of variance was used to examine group differences for each region of interest. For dimensional approaches, Pearson correlation analysis was performed across the cohort to examine the association of brain iron with symptoms, mental health, and cognition. RESULTS No significant differences were found in iron susceptibility between children with ADHD and control children, between children with persistent ADHD and those with remitted ADHD, or between medicated and medication-naïve children. An unexpected finding was that children with an internalizing disorder had significantly higher iron susceptibility, but the result did not survive multiple comparison correction. Higher brain iron was associated with sustained attention, but not inhibition, IQ, or working memory. CONCLUSIONS This is the first study to address brain iron susceptibility and its association with comorbidities and cognition in ADHD. Alterations in brain iron may not fully account for a diagnosis of ADHD but may be an indicator of internalizing problems in children. Alterations in brain iron content in children were linked to detrimental sustained attention and may represent developmental variation in cognition.
Collapse
Affiliation(s)
- Marcel Schulze
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - David Coghill
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia; Department of Mental Health, The Royal Children's Hospital, Parkville Victoria, Australia; Neurodevelopment and Disability Research, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tim Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Liang W, Zhou B, Miao Z, Liu X, Liu S. Abnormality in Peripheral and Brain Iron Contents and the Relationship with Grey Matter Volumes in Major Depressive Disorder. Nutrients 2024; 16:2073. [PMID: 38999819 PMCID: PMC11243628 DOI: 10.3390/nu16132073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Major depressive disorder (MDD) is a prevalent mental illness globally, yet its etiology remains largely elusive. Recent interest in the scientific community has focused on the correlation between the disruption of iron homeostasis and MDD. Prior studies have revealed anomalous levels of iron in both peripheral blood and the brain of MDD patients; however, these findings are not consistent. This study involved 95 MDD patients aged 18-35 and 66 sex- and age-matched healthy controls (HCs) who underwent 3D-T1 and quantitative susceptibility mapping (QSM) sequence scans to assess grey matter volume (GMV) and brain iron concentration, respectively. Plasma ferritin (pF) levels were measured in a subset of 49 MDD individuals and 41 HCs using the Enzyme-linked immunosorbent assay (ELISA), whose blood data were simultaneously collected. We hypothesize that morphological brain changes in MDD patients are related to abnormal regulation of iron levels in the brain and periphery. Multimodal canonical correlation analysis plus joint independent component analysis (MCCA+jICA) algorithm was mainly used to investigate the covariation patterns between the brain iron concentration and GMV. The results of "MCCA+jICA" showed that the QSM values in bilateral globus pallidus and caudate nucleus of MDD patients were lower than HCs. While in the bilateral thalamus and putamen, the QSM values in MDD patients were higher than in HCs. The GMV values of these brain regions showed a significant positive correlation with QSM. The GMV values of bilateral putamen were found to be increased in MDD patients compared with HCs. A small portion of the thalamus showed reduced GMV values in MDD patients compared to HCs. Furthermore, the region of interest (ROI)-based comparison results in the basal ganglia structures align with the outcomes obtained from the "MCCA+jICA" analysis. The ELISA results indicated that the levels of pF in MDD patients were higher than those in HCs. Correlation analysis revealed that the increase in pF was positively correlated with the iron content in the left thalamus. Finally, the covariation patterns obtained from "MCCA+jICA" analysis as classification features effectively differentiated MDD patients from HCs in the support vector machine (SVM) model. Our findings indicate that elevated peripheral ferritin in MDD patients may disrupt the normal metabolism of iron in the brain, leading to abnormal changes in brain iron levels and GMV.
Collapse
Affiliation(s)
- Wenjia Liang
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhongyan Miao
- Department of Radiology, Shandong Mental Health Center, Shandong University, Jinan 250014, Shandong, China
| | - Xi Liu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan 250014, Shandong, China
| | - Shuwei Liu
- Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
10
|
Zhang X, Li H, Wang H, Zhang Q, Deng X, Zhang S, Wang L, Guo C, Zhao F, Yin Y, Zhou T, Zhong J, Feng H, Chen W, Zhang J, Feng H, Hu R. Iron/ROS/Itga3 mediated accelerated depletion of hippocampal neural stem cell pool contributes to cognitive impairment after hemorrhagic stroke. Redox Biol 2024; 71:103086. [PMID: 38367510 PMCID: PMC10883838 DOI: 10.1016/j.redox.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/11/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
Hemorrhagic stroke, specifically intracerebral hemorrhage (ICH), has been implicated in the development of persistent cognitive impairment, significantly compromising the quality of life for affected individuals. Nevertheless, the precise underlying mechanism remains elusive. Here, we report for the first time that the accumulation of iron within the hippocampus, distal to the site of ICH in the striatum, is causally linked to the observed cognitive impairment with both clinical patient data and animal model. Both susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM) demonstrated significant iron accumulation in the hippocampus of ICH patients, which is far from the actual hematoma. Logistical regression analysis and multiple linear regression analysis identified iron level as an independent risk factor with a negative correlation with post-ICH cognitive impairment. Using a mouse model of ICH, we demonstrated that iron accumulation triggers an excessive activation of neural stem cells (NSCs). This overactivation subsequently leads to the depletion of the NSC pool, diminished neurogenesis, and the onset of progressive cognitive dysfunction. Mechanistically, iron accumulation elevated the levels of reactive oxygen species (ROS), which downregulated the expression of Itga3. Notably, pharmacological chelation of iron accumulation or scavenger of aberrant ROS levels, as well as conditionally overexpressed Itga3 in NSCs, remarkably attenuated the exhaustion of NSC pool, abnormal neurogenesis and cognitive decline in the mouse model of ICH. Together, these results provide molecular insights into ICH-induced cognitive impairment, shedding light on the value of maintaining NSC pool in preventing cognitive dysfunction in patients with hemorrhagic stroke or related conditions.
Collapse
Affiliation(s)
- Xuyang Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Haomiao Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xueyun Deng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China; Department of Neurosurgery, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chao Guo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fengchun Zhao
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yi Yin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Tengyuan Zhou
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Zhang
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
11
|
Bilgic B, Costagli M, Chan KS, Duyn J, Langkammer C, Lee J, Li X, Liu C, Marques JP, Milovic C, Robinson SD, Schweser F, Shmueli K, Spincemaille P, Straub S, van Zijl P, Wang Y. Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro-magnetic tissue properties study group. Magn Reson Med 2024; 91:1834-1862. [PMID: 38247051 PMCID: PMC10950544 DOI: 10.1002/mrm.30006] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.
Collapse
Affiliation(s)
- Berkin Bilgic
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Kwok-Shing Chan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jeff Duyn
- Advanced MRI Section, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Carlos Milovic
- School of Electrical Engineering (EIE), Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute at the University at Buffalo, Buffalo, New York, USA
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Pascal Spincemaille
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Wang
- MRI Research Institute, Departments of Radiology and Biomedical Engineering, Cornell University, New York, New York, USA
| |
Collapse
|
12
|
Shibukawa S, Kan H, Honda S, Wada M, Tarumi R, Tsugawa S, Tobari Y, Maikusa N, Mimura M, Uchida H, Nakamura Y, Nakajima S, Noda Y, Koike S. Alterations in subcortical magnetic susceptibility and disease-specific relationship with brain volume in major depressive disorder and schizophrenia. Transl Psychiatry 2024; 14:164. [PMID: 38531856 DOI: 10.1038/s41398-024-02862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.
Collapse
Affiliation(s)
- Shuhei Shibukawa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.
- The International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.
| |
Collapse
|
13
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Hu H, Zhou J, Fang W, Chen HH, Jiang WH, Pu XY, Xu XQ, Gu WH, Wu FY. Increased brain iron in patients with thyroid-associated ophthalmopathy: a whole-brain analysis. Front Endocrinol (Lausanne) 2023; 14:1268279. [PMID: 38034014 PMCID: PMC10687634 DOI: 10.3389/fendo.2023.1268279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Background To investigate the whole-brain iron deposition alternations in patients with thyroid-associated ophthalmopathy (TAO) using quantitative susceptibility mapping (QSM). Methods Forty-eight patients with TAO and 33 healthy controls (HCs) were enrolled. All participants underwent brain magnetic resonance imaging scans and clinical scale assessments. QSM values were calculated and compared between TAO and HCs groups using a voxel-based analysis. A support vector machine (SVM) analysis was performed to evaluate the performance of QSM values in differentiating patients with TAO from HCs. Results Compared with HCs, patients with TAO showed significantly increased QSM values in the bilateral caudate nucleus (CN), left thalamus (TH), left cuneus, left precuneus, right insula and right middle frontal gyrus. In TAO group, QSM values in left TH were positively correlated with Hamilton Depression Rating Scale (HDRS) scores (r = 0.414, p = 0.005). The QSM values in right CN were negatively correlated with Montreal Cognitive Assessment (MoCA) scores (r = -0.342, p = 0.021). Besides that, a nearly negative correlation was found between QSM values in left CN and MoCA scores (r = -0.286, p = 0.057). The SVM model showed a good performance in distinguishing patients with TAO from the HCs (area under the curve, 0.958; average accuracy, 90.1%). Conclusion Patients with TAO had significantly increased iron deposition in brain regions corresponding to known visual, emotional and cognitive deficits. QSM values could serve as potential neuroimaging markers of TAO.
Collapse
Affiliation(s)
- Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Fang
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, Taicang, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiong-Ying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Gu
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, Taicang, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
16
|
Zeng T, Li J, Xie L, Dong Z, Chen Q, Huang S, Xie S, Lai Y, Li J, Yan W, Wang Y, Xie Z, Hu C, Zhang J, Kuang S, Song Y, Gao L, Lv Z. Nrf2 regulates iron-dependent hippocampal synapses and functional connectivity damage in depression. J Neuroinflammation 2023; 20:212. [PMID: 37735410 PMCID: PMC10512501 DOI: 10.1186/s12974-023-02875-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal iron overload contributes to synaptic damage and neuropsychiatric disorders. However, the molecular mechanisms underlying iron deposition in depression remain largely unexplored. Our study aims to investigate how nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) ameliorates hippocampal synaptic dysfunction and reduces brain functional connectivity (FC) associated with excessive iron in depression. We treated mice with chronic unpredictable mild stress (CUMS) with the iron chelator deferoxamine mesylate (DFOM) and a high-iron diet (2.5% carbonyl iron) to examine the role of iron overload in synaptic plasticity. The involvement of Nrf2 in iron metabolism and brain function was assessed using molecular biological techniques and in vivo resting-state functional magnetic resonance imaging (rs-fMRI) through genetic deletion or pharmacologic activation of Nrf2. The results demonstrated a significant correlation between elevated serum iron levels and impaired hippocampal functional connectivity (FC), which contributed to the development of depression-induced CUMS. Iron overload plays a crucial role in CUMS-induced depression and synaptic dysfunction, as evidenced by the therapeutic effects of a high-iron diet and DFOM. The observed iron overload in this study was associated with decreased Nrf2 levels and increased expression of transferrin receptors (TfR). Notably, inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Nrf2-/- mice exhibited compromised FC within the limbic system and the basal ganglia, particularly in the hippocampus, and inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Activation of Nrf2 restored iron homeostasis and reversed vulnerability to depression. Mechanistically, we further identified that Nrf2 deletion promoted iron overload via upregulation of TfR and downregulation of ferritin light chain (FtL), leading to BDNF-mediated synapse damage in the hippocampus. Therefore, our findings unveil a novel role for Nrf2 in regulating iron homeostasis while providing mechanistic insights into poststress susceptibility to depression. Targeting Nrf2-mediated iron metabolism may offer promising strategies for developing more effective antidepressant therapies.
Collapse
Affiliation(s)
- Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
- Department of Brain Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Lingpeng Xie
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Chen
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Weixin Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - YuHua Wang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Changlei Hu
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Jiayi Zhang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Yuhong Song
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
17
|
Ravanfar P, Rushmore RJ, Lyall AE, Cropley V, Makris N, Desmond P, Velakoulis D, Shenton ME, Bush AI, Rossell SL, Pantelis C, Syeda WT, Phillipou A. Investigation of brain iron in anorexia nervosa, a quantitative susceptibility mapping study. J Eat Disord 2023; 11:142. [PMID: 37605216 PMCID: PMC10441741 DOI: 10.1186/s40337-023-00870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Anorexia nervosa (AN) is a potentially fatal psychiatric condition, associated with structural brain changes such as gray matter volume loss. The pathophysiological mechanisms for these changes are not yet fully understood. Iron is a crucial element in the development and function of the brain. Considering the systemic alterations in iron homeostasis in AN, we hypothesized that brain iron would be altered as a possible factor associated with structural brain changes in AN. METHODS In this study, we used quantitative susceptibility mapping (QSM) magnetic resonance imaging to investigate brain iron in current AN (c-AN) and weight-restored AN compared with healthy individuals. Whole-brain voxel wise comparison was used to probe areas with possible group differences. Further, the thalamus, caudate nucleus, putamen, nucleus accumbens, hippocampus, and amygdala were selected as the regions of interest (ROIs) for ROI-based comparison of mean QSM values. RESULTS Whole-brain voxel-wise and ROI-based comparison of QSM did not reveal any differences between groups. Exploratory analyses revealed a correlation between higher regional QSM (higher iron) and lower body mass index, higher illness severity, longer illness duration, and younger age at onset in the c-AN group. CONCLUSIONS This study did not find evidence of altered brain iron in AN compared to healthy individuals. However, the correlations between clinical variables and QSM suggest a link between brain iron and weight status or biological processes in AN, which warrants further investigation.
Collapse
Affiliation(s)
- Parsa Ravanfar
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Royal Melbourne Hospital, Level 3, Alan Gilbert Building, 161 Barry ST, Carlton South, VIC, 3053, Australia.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - R Jarrett Rushmore
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Morphometric Analysis (CMA), Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Royal Melbourne Hospital, Level 3, Alan Gilbert Building, 161 Barry ST, Carlton South, VIC, 3053, Australia
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Morphometric Analysis (CMA), Massachusetts General Hospital, Charlestown, MA, USA
| | - Patricia Desmond
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Royal Melbourne Hospital, Level 3, Alan Gilbert Building, 161 Barry ST, Carlton South, VIC, 3053, Australia
- Neuropsychiatry, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health and Brain Sciences, Swinburne University, Hawthorn, VIC, Australia
- Department of Mental Health, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Royal Melbourne Hospital, Level 3, Alan Gilbert Building, 161 Barry ST, Carlton South, VIC, 3053, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Warda T Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Royal Melbourne Hospital, Level 3, Alan Gilbert Building, 161 Barry ST, Carlton South, VIC, 3053, Australia
| | - Andrea Phillipou
- Department of Mental Health, St Vincent's Hospital, Melbourne, VIC, Australia
- Orygen, Melbourne, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
- Department of Psychological Sciences, Swinburne University of Technology, Melbourne, Australia
- Department of Mental Health, Austin Health, Melbourne, Australia
| |
Collapse
|
18
|
Yu JJ, Li C, Qian ZM, Liu Y. Brain iron deposition is positively correlated with cognitive impairment in patients with chronic cerebral hypoperfusion: a MRI susceptibility mapping study. Clin Radiol 2023; 78:601-607. [PMID: 37003892 DOI: 10.1016/j.crad.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 04/03/2023]
Abstract
AIM To investigate the relationship of brain iron deposition with cognitive impairment in patients with chronic cerebral hypoperfusion (CHP). MATERIALS AND METHODS Brain iron deposition was detected using quantitative susceptibility mapping (QSM), and cognitive function by neuropsychological tests including the Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Activities of Daily Living (ADLs), and verbal fluency tests in a total of 40 participants, 23 with CHP and 17 age- and sex-matched healthy participants without CHP (controls). RESULTS The neuropsychological tests revealed that cognitive impairment (p<0.05) and susceptibility values (p<0.05) of the bilateral hippocampus (HP) and substantia nigra (SN) in CHP patients were significantly higher than those of the controls. The susceptibility values of bilateral HP and left putamen correlated closely with the scores of neuropsychological tests in the CHP patients (p<0.05, r2>0.1). The susceptibility values in the left putamen and bilateral HP were significantly higher in CHP patients with mild cognitive impairment (MCI; n=8) than those of CHP patients without MCI (n=15; p<0.05). CONCLUSIONS The present findings indicated that brain iron deposition in specific areas may be responsible for the cognitive impairment in CHP patients, and that QSM is a useful tool to determine brain iron, predicting cognitive impairment in CHP patients.
Collapse
Affiliation(s)
- J-J Yu
- Department of Pain and Rehabilitation, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing 400038, China
| | - C Li
- Department of Medical Imaging, Chongqing University Central Hospital, Chongqing, China
| | - Z-M Qian
- Institute of Translational & Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, JS 226019, China.
| | - Y Liu
- Department of Pain and Rehabilitation, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing 400038, China.
| |
Collapse
|
19
|
Jakary A, Lupo JM, Mackin S, Yin A, Murray D, Yang T, Mukherjee P, Larson P, Xu D, Eisendrath S, Luks T, Li Y. Evaluation of major depressive disorder using 7 Tesla phase sensitive neuroimaging before and after mindfulness-based cognitive therapy. J Affect Disord 2023; 335:383-391. [PMID: 37192691 DOI: 10.1016/j.jad.2023.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE We applied 7 Tesla phase sensitive imaging to evaluate the impact of brain iron levels on depression severity and cognitive function in individuals with major depressive disorder (MDD) treated with mindfulness-based cognitive therapy (MBCT). METHODS Seventeen unmedicated MDD participants underwent MRI, evaluation of depression severity, and cognitive testing before and after receiving MBCT, compared to fourteen healthy controls (HC). Local field shift (LFS) values, measures of brain iron levels, were derived from phase images in the putamen, caudate, globus pallidus (GP), anterior cingulate cortex (ACC) and thalamus. RESULTS Compared to the HC group, the MDD group had significantly lower baseline LFS (indicative of higher iron) in the left GP and left putamen and had a higher number of subjects with impairment in a test of information processing speed. In the MDD group, lower LFS values in the left and right ACC, right putamen, right GP, and right thalamus were significantly associated with depression severity; and lower LFS in the right GP was correlated with worse performance on measures of attention. All MBCT participants experienced depression relief. MBCT treatment also significantly improved executive function and attention. MBCT participants with lower baseline LFS values in the right caudate experienced significantly greater improvement in depression severity with treatment; and those with lower LFS values in the right ACC, right caudate, and right GB at baseline performed better on measures of verbal learning and memory after MBCT. CONCLUSIONS Our study highlights the potential contribution of subtle differences in brain iron to MDD symptoms and their successful treatment.
Collapse
Affiliation(s)
- Angela Jakary
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Scott Mackin
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Audrey Yin
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Donna Murray
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Tony Yang
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Peder Larson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Stuart Eisendrath
- Department of Psychiatry and Behavioral Sciences, UCSF, San Francisco, CA, United States of America
| | - Tracy Luks
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America
| | - Yan Li
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States of America.
| |
Collapse
|
20
|
Zhang H, He L, Li S, Zhai M, Ma S, Jin G, Li M, Zhou F, Tian H, Nuerkaman T, Sun Q, Zhang Y, Hou J, Sun G, Yin S. Cerebral iron deficiency may induce depression through downregulation of the hippocampal glucocorticoid-glucocorticoid receptor signaling pathway. J Affect Disord 2023; 332:125-135. [PMID: 37001697 DOI: 10.1016/j.jad.2023.03.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Iron is a trace essential element to sustain the normal neurological function of human. Many researches had reported the involvement of iron deficiency (ID) in neural development and cognitive functions. However, the role of ID in pathogenesis of depression and its underlying mechanism are still unclear. METHODS In this study, we first used chronic unpredicted mild stress (CUMS) and iron deprivation mouse models to clarify the pathogenesis role of cerebral ID in depression. Then the role of hippocampal glucocorticoid (GC)-glucocorticoid receptor (GR) pathway in cerebral ID induced depression were elucidated in iron deprivation mice and iron deficiency anemia patients. RESULTS Our results revealed that both CUMS and iron deprivation could induce cerebral ID in mice, and combination of iron deprivation and CUMS could accelerate the onset and aggravate the symptoms of depression in mice. In hippocampus, ID led to neuronal injury and neurogenesis decrease, which might be related to downregulation of GC-GR signaling pathway caused GR dysfunction, thereby inhibiting the negative feedback regulation function of hippocampus on hypothalamic-pituitary-adrenal (HPA) axis. Moreover, the overactivity of HPA axis in iron deprivation mice and iron deficiency anemia patients also confirmed GR dysfunction. LIMITATIONS Iron deprivation led to food and water intake decrease of mice, which may affect the behavioral test. In addition, we mainly evaluated the role of hippocampal ID in depression, and the number of iron deficiency anemia patients was limited. CONCLUSIONS Our results identified that cerebral iron homeostasis was a key factor for maintaining mental stability.
Collapse
Affiliation(s)
- Hong Zhang
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lian He
- Department of Pathology, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Songfei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Manhuayun Zhai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Minyan Li
- Department of Hematology, General Hospital of Northern Theater Command, Shenyang 11016, China
| | - Fan Zhou
- Department of Hematology, General Hospital of Northern Theater Command, Shenyang 11016, China
| | - Hua Tian
- Department of Hematology, General Hospital of Northern Theater Command, Shenyang 11016, China
| | - Tuohutanguli Nuerkaman
- School of Life science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiruo Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jincai Hou
- Pharmaceutical Research Institute, Shineway Pharmaceutical Co., Ltd, Beijing 100000, China
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China.
| |
Collapse
|
21
|
Goodyear BG, Heidari F, Ingram RJM, Cortese F, Sharifi N, Kaplan GG, Ma C, Panaccione R, Sharkey KA, Swain MG. Multimodal Brain MRI of Deep Gray Matter Changes Associated With Inflammatory Bowel Disease. Inflamm Bowel Dis 2023; 29:405-416. [PMID: 35590449 PMCID: PMC9977255 DOI: 10.1093/ibd/izac089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Behavioral symptoms, including mood disorders, substantially impact the quality of life of patients with inflammatory bowel disease (IBD), even when clinical remission is achieved. Here, we used multimodal magnetic resonance imaging (MRI) to determine if IBD is associated with changes in the structure and function of deep gray matter brain regions that regulate and integrate emotional, cognitive, and stress responses. METHODS Thirty-five patients with ulcerative colitis (UC) or Crohn's disease (CD) and 32 healthy controls underwent 3 Tesla MRIs to assess volume, neural activity, functional connection strength (connectivity), inflammation, and neurodegeneration of key deep gray matter brain regions (thalamus, caudate, pallidum, putamen, amygdala, hippocampus, and hypothalamus) involved in emotional, cognitive and stress processing. Associations with sex, presence of pain, disease activity, and C-reactive protein (CRP) concentration were examined. RESULTS Significantly increased activity and functional connectivity were observed in cognitive and emotional processing brain regions, including parts of the limbic system, basal ganglia, and hypothalamus of IBD patients compared with healthy controls. Inflammatory bowel disease patients exhibited significantly increased volumes of the amygdala and hypothalamus, as well as evidence of neurodegeneration in the putamen and pallidum. Hippocampal neural activity was increased in IBD patients with active disease. The volume of the thalamus was positively correlated with CRP concentration and was increased in females experiencing pain. CONCLUSIONS Patients with IBD exhibit functional and structural changes in the limbic and striatal systems. These changes may be targets for assessing or predicting the response to therapeutic interventions aimed at improving comorbid emotional and cognitive symptoms.
Collapse
Affiliation(s)
- Bradley G Goodyear
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada.,The Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Faranak Heidari
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Richard J M Ingram
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Filomeno Cortese
- The Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Nastaran Sharifi
- The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Gilaad G Kaplan
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Ma
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Remo Panaccione
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,The Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mark G Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,The Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,The Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Han S, Zheng R, Li S, Zhou B, Jiang Y, Fang K, Wei Y, Wen B, Pang J, Li H, Zhang Y, Chen Y, Cheng J. Altered structural covariance network of nucleus accumbens is modulated by illness duration and severity of symptom in depression. J Affect Disord 2023; 324:334-340. [PMID: 36608848 DOI: 10.1016/j.jad.2022.12.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
The differential structural covariance of nucleus accumbens (NAcc), playing a vital role in etiology and treatment, remains unclear in depression. We aimed to investigate whether structural covariance of NAcc was altered and how it was modulated by illness duration and severity of symptom measured with Hamilton Depression scale (HAMD). T1-weighted anatomical images of never-treated first-episode patients with depression (n = 195) and matched healthy controls (HCs, n = 78) were acquired. Gray matter volumes were calculated using voxel-based morphometry analysis for each subject. Then, we explored abnormal structural covariance of NAcc and how the abnormality was modulated by illness duration and severity of symptom. Patients with depression exhibited altered structural covariance of NAcc connected to key brain regions in reward system including the medial orbitofrontal cortex, amygdala, insula, parahippocampa gyrus, precuneus, thalamus, hippocampus and cerebellum. In addition, the structural covariance of the NAcc was distinctly modulated by illness duration and the severity of symptom in patients with depression. What is more, the structural covariance of the NAcc connected to hippocampus was modulated by these two factors at the same time. These results elucidate altered structural covariance of the NAcc and its distinct modulation of illness duration and severity of symptom.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Keke Fang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China
| | - Jianyue Pang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Hengfen Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China; Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, China; Engineering Research Center of medical imaging intelligent diagnosis and treatment of Henan Province, China; Key Laboratory of Magnetic Resonance and Brain function of Henan Province, China; Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, China; Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, China; Henan Engineering Research Center of Brain Function Development and Application, China.
| |
Collapse
|
23
|
Tan H, Hubertus S, Thomas S, Lee AM, Gerhardt S, Gerchen MF, Sommer WH, Kiefer F, Schad L, Vollstädt-Klein S. Association between iron accumulation in the dorsal striatum and compulsive drinking in alcohol use disorder. Psychopharmacology (Berl) 2023; 240:249-257. [PMID: 36577866 PMCID: PMC9879829 DOI: 10.1007/s00213-022-06301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
RATIONALE Brain iron accumulation has been observed in neuropsychiatric disorders and shown to be related to neurodegeneration. OBJECTIVES In this study, we used quantitative susceptibility mapping (QSM), an emerging MRI technique developed for quantifying tissue magnetic susceptibility, to examine brain iron accumulation in individuals with alcohol use disorder (AUD) and its relation to compulsive drinking. METHODS Based on our previous projects, QSM was performed as a secondary analysis with gradient echo sequence images, in 186 individuals with AUD and 274 healthy participants. Whole-brain susceptibility values were calculated with morphology-enabled dipole inversion and referenced to the cerebrospinal fluid. Then, the susceptibility maps were compared between AUD individuals and healthy participants. The relationship between drinking patterns and susceptibility was explored. RESULTS Whole-brain analyses showed that the susceptibility in the dorsal striatum (putamen and caudate) among AUD individuals was higher than healthy participants and was positively related to the Obsessive Compulsive Drinking Scale (OCDS) scores and the amount of drinking in the past three months. CONCLUSIONS Increased susceptibility suggests higher iron accumulation in the dorsal striatum in AUD. This surrogate for the brain iron level was linearly associated with the compulsive drinking pattern and the recent amount of drinking, which provides us a new clinical perspective in relation to brain iron accumulation, and also might indicate an association of AUD with neuroinflammation as a consequence of brain iron accumulation. The iron accumulation in the striatum is further relevant for functional imaging studies in AUD by potentially producing signal dropout and artefacts in fMRI images.
Collapse
Affiliation(s)
- Haoye Tan
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Simon Hubertus
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sebastian Thomas
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Alycia M. Lee
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sarah Gerhardt
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Martin Fungisai Gerchen
- grid.7700.00000 0001 2190 4373Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.455092.fBernstein Center for Computational Neuroscience Heidelberg/Mannheim, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Department of Psychology, Heidelberg University, 69117 Heidelberg, Germany
| | - Wolfgang H. Sommer
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Institute of Psychopharmacology, Central Institute of Mental Health, Heidelberg University, 68159 Mannheim, Germany ,Bethania Hospital for Psychiatry, Psychosomatics, and Psychotherapy, Greifswald, Germany
| | - Falk Kiefer
- grid.7700.00000 0001 2190 4373Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany ,grid.7700.00000 0001 2190 4373Feuerlein Center on Translational Addiction Medicine, Heidelberg University, 69117 Heidelberg, Germany
| | - Lothar Schad
- grid.7700.00000 0001 2190 4373Computer Assisted Clinical Medicine, Medical Faculty of Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany. .,Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty of Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
24
|
Mandal PK, Gaur S, Roy RG, Samkaria A, Ingole R, Goel A. Schizophrenia, Bipolar and Major Depressive Disorders: Overview of Clinical Features, Neurotransmitter Alterations, Pharmacological Interventions, and Impact of Oxidative Stress in the Disease Process. ACS Chem Neurosci 2022; 13:2784-2802. [PMID: 36125113 DOI: 10.1021/acschemneuro.2c00420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Psychiatric disorders are one of the leading causes of disability worldwide and affect the quality of life of both individuals and the society. The current understanding of these disorders points toward receptor dysfunction and neurotransmitter imbalances in the brain. Treatment protocols are hence oriented toward normalizing these imbalances and ameliorating the symptoms. However, recent literature has indicated the possible role of depleted levels of antioxidants like glutathione (GSH) as well as an alteration in the levels of the pro-oxidant, iron in the pathogenesis of major psychiatric diseases, viz., schizophrenia (Sz), bipolar disorder (BD), and major depressive disorder (MDD). This review aims to highlight the involvement of oxidative stress (OS) in these psychiatric disorders. An overview of the clinical features, neurotransmitter abnormalities, and pharmacological treatments concerning these psychiatric disorders has also been presented. Furthermore, it attempts to synthesize literature from existing magnetic resonance spectroscopy (MRS) and quantitative susceptibility mapping (QSM) studies for these disorders, assessing GSH and iron, respectively. This manuscript is a sincere attempt to stimulate research discussion to advance the knowledge base for further understanding of the pathoetiology of Sz, BD, and MDD.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India.,The Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3052, Australia
| | - Shradha Gaur
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Rimil Guha Roy
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| | | | - Anshika Goel
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Manesar, Haryana 122050, India
| |
Collapse
|
25
|
Nakhid D, McMorris C, Sun H, Gibbard WB, Tortorelli C, Lebel C. Brain volume and magnetic susceptibility differences in children and adolescents with prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:1797-1807. [PMID: 36016464 DOI: 10.1111/acer.14928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can negatively affect brain development thereby increasing the risk of cognitive deficits, behavioral challenges, and mental health problems. Brain iron is important for a number of physiological processes for healthy brain development. Animal studies show that PAE reduced brain iron; however, this has not been investigated in human children with PAE. METHODS We studied 20 children and adolescents with PAE and 44 unexposed children and adolescents aged 7.5 to 15 years. All children underwent quantitative susceptibility mapping and T1-weighted magnetic resonance imaging scans. Susceptibility and volume measurements of the caudate, putamen, pallidum, thalamus, amygdala, hippocampus, and nucleus accumbens were extracted using FreeSurfer. ANCOVAs were used to compare volume and susceptibility between groups for each region of interest, controlling for age and gender. For structures where susceptibility differed by group, we also tested for an association between intelligence quotient (IQ) and susceptibility. RESULTS There were no significant group differences in susceptibility after multiple comparison correction, though the PAE group had higher susceptibility in the thalamus compared to unexposed participants before correction (p = 0.032, q = 0.230). There was no association between IQ and thalamus susceptibility. The PAE group had significantly lower volume in the bilateral caudate, bilateral pallidum, and left putamen. CONCLUSIONS These findings suggest susceptibility may be altered in children and adolescents with PAE, though more research is needed. Volume reductions are consistent with previous literature and likely underlie cognitive and behavioral deficits associated with PAE.
Collapse
Affiliation(s)
- Daphne Nakhid
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,School and Applied Child Psychology, Werklund School of Education, University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Hongfu Sun
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
| | - William Benton Gibbard
- Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Christina Tortorelli
- Department of Child Studies and Social Work, Mount Royal University, Calgary, Alberta, Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Uzungil V, Tran H, Aitken C, Wilson C, Opazo CM, Li S, Payet JM, Mawal CH, Bush AI, Hale MW, Hannan AJ, Renoir T. Novel Antidepressant-Like Properties of the Iron Chelator Deferiprone in a Mouse Model of Depression. Neurotherapeutics 2022; 19:1662-1685. [PMID: 35861925 PMCID: PMC9606181 DOI: 10.1007/s13311-022-01257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/17/2022] Open
Abstract
Depressed individuals who carry the short allele for the serotonin-transporter-linked promotor region of the gene are more vulnerable to stress and have reduced response to first-line antidepressants such as selective serotonin reuptake inhibitors. Since depression severity has been reported to correlate with brain iron levels, the present study aimed to characterise the potential antidepressant properties of the iron chelator deferiprone. Using the serotonin transporter knock-out (5-HTT KO) mouse model, we assessed the behavioural effects of acute deferiprone on the Porsolt swim test (PST) and novelty-suppressed feeding test (NSFT). Brain and blood iron levels were also measured following acute deferiprone. To determine the relevant brain regions activated by deferiprone, we then measured c-Fos expression and applied network-based analyses. We found that deferiprone reduced immobility time in the PST in 5-HTT KO mice and reduced latency to feed in the NSFT in both genotypes, suggesting potential antidepressant-like effects. There was no effect on brain or blood iron levels following deferiprone treatment, potentially indicating an acute iron-independent mechanism. Deferiprone reversed the increase in c-Fos expression induced by swim stress in 5-HTT KO mice in the lateral amygdala. Functional network analyses suggest that hub regions of activity in mice treated with deferiprone include the caudate putamen and prefrontal cortex. The PST-induced increase in network modularity in wild-type mice was not observed in 5-HTT KO mice. Altogether, our data show that the antidepressant-like effects of deferiprone could be acting via an iron-independent mechanism and that these therapeutic effects are underpinned by changes in neuronal activity in the lateral amygdala.
Collapse
Affiliation(s)
- Volkan Uzungil
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Harvey Tran
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Connor Aitken
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carey Wilson
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carlos M Opazo
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Shanshan Li
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Celeste H Mawal
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony J Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
27
|
Duan X, Xie Y, Zhu X, Chen L, Li F, Feng G, Li L. Quantitative Susceptibility Mapping of Brain Iron Deposition in Patients With Recurrent Depression. Psychiatry Investig 2022; 19:668-675. [PMID: 36059056 PMCID: PMC9441458 DOI: 10.30773/pi.2022.0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Recurrence is the most significant feature of depression and the relationship between iron and recurrent depression is still lack of direct evidence in vivo. METHODS Twenty-one patients with depression and twenty control subjects were included. Gradient-recalled echo, T1 and T2 images were acquired using a 3.0T MRI system. After quantitative susceptibility mapping were reconstructed and standardized, a whole-brain and the regions of interest were respectively analyzed. RESULTS Significant increases in susceptibility were found in multiple recurrent depression patients, which involved several brain regions (frontal lobes, temporal lobe structures, occipital lobes hippocampal regions, putamen, thalamus, cingulum, and cerebellum). Interestingly, no susceptibility changes after treatment compared to pre-treatment (all p>0.05) and no significant correlation between susceptibility and Hamilton Depression Rating Scale were found. Besides, it was close to significance that those with a higher relapse frequency or a longer mean duration of single episode had a higher susceptibility in the putamen, thalamus, and hippocampus. Further studies showed susceptibility across the putamen (ρ2=0.27, p<0.001), thalamus (ρ2=0.21, p<0.001), and hippocampus (ρ2=0.19, p<0.001) were strongly correlated with total course of disease onset. CONCLUSION Brain iron deposition is related to the total course of disease onset, but not the severity of depression, which suggest that brain iron deposition may be a sign of brain damage in multiple recurrent depression.
Collapse
Affiliation(s)
- Xinxiu Duan
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yuhang Xie
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiufang Zhu
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Lei Chen
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Feng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lei Li
- Department of Radiology, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
28
|
Harada T, Kudo K, Fujima N, Yoshikawa M, Ikebe Y, Sato R, Shirai T, Bito Y, Uwano I, Miyata M. Quantitative Susceptibility Mapping: Basic Methods and Clinical Applications. Radiographics 2022; 42:1161-1176. [PMID: 35522577 DOI: 10.1148/rg.210054] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quantitative susceptibility mapping (QSM), one of the advanced MRI techniques for evaluating magnetic susceptibility, offers precise quantitative measurements of spatial distributions of magnetic susceptibility. Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and is a substance-specific value. Recently, QSM has been widely used to estimate various levels of substances in the brain, including iron, hemosiderin, and deoxyhemoglobin (paramagnetism), as well as calcification (diamagnetism). By visualizing iron distribution in the brain, it is possible to identify anatomic structures that are not evident on conventional images and to evaluate various neurodegenerative diseases. It has been challenging to apply QSM in areas outside the brain because of motion artifacts from respiration and heartbeats, as well as the presence of fat, which has a different frequency to the proton. In this review, the authors provide a brief overview of the theoretical background and analyze methods of converting MRI phase images to QSM. Moreover, we provide an overview of the current clinical applications of QSM. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Taisuke Harada
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Kohsuke Kudo
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Noriyuki Fujima
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Masato Yoshikawa
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Yohei Ikebe
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Ryota Sato
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Toru Shirai
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Yoshitaka Bito
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Ikuko Uwano
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| | - Mari Miyata
- From the Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan (T.H., K.K., M.Y.); Center for Cause of Death Investigation (T.H.) and Global Center for Biomedical Science and Engineering (K.K.), Faculty of Medicine, Hokkaido University, Sapporo, Japan; Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan (T.H., K.K., N.F., M.Y., Y.I.); Innovative Technology Laboratory, Fujifilm Healthcare Corporation, Tokyo, Japan (R.S., T.S.); Fujifilm Healthcare Corporation, Chiba, Japan (Y.B.); Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan (I.U.); and Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan (M.M.)
| |
Collapse
|
29
|
Wang F, Zhang M, Li Y, Li Y, Gong H, Li J, Zhang Y, Zhang C, Yan F, Sun B, He N, Wei H. Alterations in brain iron deposition with progression of late-life depression measured by magnetic resonance imaging (MRI)-based quantitative susceptibility mapping. Quant Imaging Med Surg 2022; 12:3873-3888. [PMID: 35782236 PMCID: PMC9246724 DOI: 10.21037/qims-21-1137] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/19/2022] [Indexed: 08/27/2023]
Abstract
BACKGROUND Previous studies have revealed abnormality of iron deposition in the brain of patients with depression. The progression of iron deposition associated with depression remains to be elucidated. METHODS This is a longitudinal study. We explored brain iron deposition with disease progression in 20 patients older than 55 years with depression and on antidepressants, using magnetic resonance imaging (MRI)-based quantitative susceptibility mapping (QSM). Magnetic susceptibility values of the whole brain were compared between baseline and approximately one-year follow-up scans using permutation testing. Furthermore, we examined the relationship of changes between the susceptibility values and disease improvement using Spearman's partial correlation analysis, controlling for age, gender, and the visit interval. RESULTS Compared to the initial scan, increased magnetic susceptibility values were found in the medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (dACC), occipital areas, habenula, brainstem, and cerebellum (P<0.05, corrected). The susceptibility values decreased in the dorsal part of the mPFC, middle and posterior cingulate cortex (MCC and PCC), right postcentral gyrus, right inferior parietal lobule, right precuneus, right supramarginal gyrus, left lingual gyrus, left dorsal striatum, and right thalamus (P<0.05, corrected). Notably, the increase in susceptibility values at the mPFC and dACC negatively correlated with the changes in depression scores, as calculated using the Hamilton Depression Scale (HAMD) (r=-0.613, P=0.009), and the increase in susceptibility values at the cerebellum and habenula negatively correlated with the changes in cognitive scores, which were calculated using the Mini-Mental State Examination (MMSE) (cerebellum: r=-0.500, P=0.041; habenula: r=-0.588, P=0.013). Additionally, the decreased susceptibility values at the white matter near the mPFC (anterior corona radiata) also correlated with the changes in depression scores (r=-0.541, P=0.025), and the decreased susceptibility values at the left lingual gyrus correlated with the changes in cognitive scores (r=-0.613, P=0.009). CONCLUSIONS Our study identified brain areas where iron deposition changed with the progression of depression while on antidepressants. The linear relationship of changes in the magnetic susceptibility values in the mPFC, dACC, and some subcortical areas with changes in depression symptoms and cognitive functions of patients is highlighted. Our results strengthen the understanding of the alterations of brain iron levels associated with disease progression in patients with late-life depression.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yufei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hengfen Gong
- Department of Psychiatry, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Wang C, Martins-Bach AB, Alfaro-Almagro F, Douaud G, Klein JC, Llera A, Fiscone C, Bowtell R, Elliott LT, Smith SM, Tendler BC, Miller KL. Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging. Nat Neurosci 2022; 25:818-831. [PMID: 35606419 PMCID: PMC9174052 DOI: 10.1038/s41593-022-01074-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
A key aim in epidemiological neuroscience is identification of markers to assess brain health and monitor therapeutic interventions. Quantitative susceptibility mapping (QSM) is an emerging magnetic resonance imaging technique that measures tissue magnetic susceptibility and has been shown to detect pathological changes in tissue iron, myelin and calcification. We present an open resource of QSM-based imaging measures of multiple brain structures in 35,273 individuals from the UK Biobank prospective epidemiological study. We identify statistically significant associations of 251 phenotypes with magnetic susceptibility that include body iron, disease, diet and alcohol consumption. Genome-wide associations relate magnetic susceptibility to 76 replicating clusters of genetic variants with biological functions involving iron, calcium, myelin and extracellular matrix. These patterns of associations include relationships that are unique to QSM, in particular being complementary to T2* signal decay time measures. These new imaging phenotypes are being integrated into the core UK Biobank measures provided to researchers worldwide, creating the potential to discover new, non-invasive markers of brain health.
Collapse
Affiliation(s)
- Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Aurea B Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Johannes C Klein
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - Cristiana Fiscone
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Brain Iron and Mental Health Symptoms in Youth with and without Prenatal Alcohol Exposure. Nutrients 2022; 14:nu14112213. [PMID: 35684012 PMCID: PMC9183007 DOI: 10.3390/nu14112213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/18/2022] Open
Abstract
Prenatal alcohol exposure (PAE) negatively affects brain development and increases the risk of poor mental health. We investigated if brain volumes or magnetic susceptibility, an indirect measure of brain iron, were associated with internalizing or externalizing symptoms in youth with and without PAE. T1-weighted and quantitative susceptibility mapping (QSM) MRI scans were collected for 19 PAE and 40 unexposed participants aged 7.5–15 years. Magnetic susceptibility and volume of basal ganglia and limbic structures were extracted using FreeSurfer. Internalizing and Externalizing Problems were assessed using the Behavioural Assessment System for Children (BASC-2-PRS). Susceptibility in the nucleus accumbens was negatively associated with Internalizing Problems, while amygdala susceptibility was positively associated with Internalizing Problems across groups. PAE moderated the relationship between thalamus susceptibility and internalizing symptoms as well as the relationship between putamen susceptibility and externalizing symptoms. Brain volume was not related to internalizing or externalizing symptoms. These findings highlight that brain iron is related to internalizing and externalizing symptoms differently in some brain regions for youth with and without PAE. Atypical iron levels (high or low) may indicate mental health issues across individuals, and iron in the thalamus may be particularly important for behavior in individuals with PAE.
Collapse
|
32
|
Pilmeyer J, Huijbers W, Lamerichs R, Jansen JFA, Breeuwer M, Zinger S. Functional MRI in major depressive disorder: A review of findings, limitations, and future prospects. J Neuroimaging 2022; 32:582-595. [PMID: 35598083 PMCID: PMC9540243 DOI: 10.1111/jon.13011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 02/02/2023] Open
Abstract
Objective diagnosis and prognosis in major depressive disorder (MDD) remains a challenge due to the absence of biomarkers based on physiological parameters or medical tests. Numerous studies have been conducted to identify functional magnetic resonance imaging‐based biomarkers of depression that either objectively differentiate patients with depression from healthy subjects, predict personalized treatment outcome, or characterize biological subtypes of depression. While there are some findings of consistent functional biomarkers, there is still lack of robust data acquisition and analysis methodology. According to current findings, primarily, the anterior cingulate cortex, prefrontal cortex, and default mode network play a crucial role in MDD. Yet, there are also less consistent results and the involvement of other regions or networks remains ambiguous. We further discuss image acquisition, processing, and analysis limitations that might underlie these inconsistencies. Finally, the current review aims to address and discuss possible remedies and future opportunities that could improve the search for consistent functional imaging biomarkers of depression. Novel acquisition techniques, such as multiband and multiecho imaging, and neural network‐based cleaning approaches can enhance the signal quality in limbic and frontal regions. More comprehensive analyses, such as directed or dynamic functional features or the identification of biological depression subtypes, can improve objective diagnosis or treatment outcome prediction and mitigate the heterogeneity of MDD. Overall, these improvements in functional MRI imaging techniques, processing, and analysis could advance the search for biomarkers and ultimately aid patients with MDD and their treatment course.
Collapse
Affiliation(s)
- Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands
| | - Willem Huijbers
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Philips Research, Eindhoven, The Netherlands
| | - Rolf Lamerichs
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands.,Philips Research, Eindhoven, The Netherlands
| | - Jacobus F A Jansen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marcel Breeuwer
- Philips Healthcare, Best, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands
| |
Collapse
|
33
|
Jellen LC, Lewis MM, Du G, Wang X, Galvis MLE, Krzyzanowski S, Capan CD, Snyder AM, Connor JR, Kong L, Mailman RB, Brundin P, Brundin L, Huang X. Low plasma serotonin linked to higher nigral iron in Parkinson's disease. Sci Rep 2021; 11:24384. [PMID: 34934078 PMCID: PMC8692322 DOI: 10.1038/s41598-021-03700-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
A growing body of evidence suggests nigral iron accumulation plays an important role in the pathophysiology of Parkinson's disease (PD), contributing to dopaminergic neuron loss in the substantia nigra pars compacta (SNc). Converging evidence suggests this accumulation might be related to, or increased by, serotonergic dysfunction, a common, often early feature of the disease. We investigated whether lower plasma serotonin in PD is associated with higher nigral iron. We obtained plasma samples from 97 PD patients and 89 controls and MRI scans from a sub-cohort (62 PD, 70 controls). We measured serotonin concentrations using ultra-high performance liquid chromatography and regional iron content using MRI-based quantitative susceptibility mapping. PD patients had lower plasma serotonin (p < 0.0001) and higher nigral iron content (SNc: p < 0.001) overall. Exclusively in PD, lower plasma serotonin was correlated with higher nigral iron (SNc: r(58) = - 0.501, p < 0.001). This correlation was significant even in patients newly diagnosed (< 1 year) and stronger in the SNc than any other region examined. This study reveals an early, linear association between low serotonin and higher nigral iron in PD patients, which is absent in controls. This is consistent with a serotonin-iron relationship in the disease process, warranting further studies to determine its cause and directionality.
Collapse
Affiliation(s)
- Leslie C Jellen
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mechelle M Lewis
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Guangwei Du
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Xi Wang
- Public Health Sciences, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Martha L Escobar Galvis
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Stanislaw Krzyzanowski
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Colt D Capan
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Amanda M Snyder
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - James R Connor
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lan Kong
- Public Health Sciences, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Richard B Mailman
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Lena Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Xuemei Huang
- Department of Neurology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA.
- Department of Pharmacology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA.
- Departments of Neurosurgery and Radiology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA.
- Department of Kinesiology, Penn State University-Milton S. Hershey Medical Center, Hershey, PA, USA.
- Translational Brain Research Center, Penn State University-Hershey Medical Center, 500 University Dr., Mail Code H037, Hershey, PA, 17033, USA.
| |
Collapse
|
34
|
Xu M, Guo Y, Cheng J, Xue K, Yang M, Song X, Feng Y, Cheng J. Brain iron assessment in patients with First-episode schizophrenia using quantitative susceptibility mapping. NEUROIMAGE-CLINICAL 2021; 31:102736. [PMID: 34186296 PMCID: PMC8254125 DOI: 10.1016/j.nicl.2021.102736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
Patients with first-episode schizophrenia had significantly decreased QSM values in the bilateral substantia nigra, left red nucleus and left thalamus. Patients with first-episode schizophrenia had significantly increased regional volumes in the bilateral putamen and bilateral substantia nigra. QSM provides superior sensitivity over R2* mapping in the evaluation of schizophrenia-related iron alterations. QSM values in regions that showed intergroup differences did not exhibited significant correlations with PANSS scores.
Purpose Decreased serum ferritin level was recently found in schizophrenia. Whether the brain iron concentration in schizophrenia exists abnormality is of research significance. Quantitative susceptibility mapping (QSM) was used in this study to assess brain iron changes in the grey matter nuclei of patients with first-episode schizophrenia. Methods The local ethics committee approved the study, and all subjects gave written informed consent. Thirty patients with first-episode schizophrenia and 30 age and gender-matched healthy controls were included in this study. QSM and effective transverse relaxation rate (R2*) maps were reconstructed from a three-dimensional multi-echo gradient-echo sequence. The inter-group differences of regional QSM values, R2* values and volumes were calculated in the grey matter nuclei, including bilateral caudate nucleus, putamen, globus pallidus, substantia nigra, red nucleus, and thalamus. The diagnostic performance of QSM and R2* was evaluated using receiver operating characteristic curve. The correlations between regional iron variations and clinical PANSS (Positive and Negative Syndrome Scale) scores were assessed using partial correlation analysis. Results Compared to healthy controls, patients with first-episode schizophrenia had significantly decreased QSM values (less paramagnetic) in the bilateral substantia nigra, left red nucleus and left thalamus (p < 0.05, FDR correction). QSM proved more sensitive than R2* regarding inter-group differences. The highest diagnostic performance for first-episode schizophrenia was observed in QSM value of the left substantia nigra (area under the curve, AUC = 0.718, p = 0.004). Regional volumes of bilateral putamen and bilateral substantia nigra were increased (p < 0.05, FDR correction) in first-episode schizophrenia. However, both QSM and R2* values did not show significant correlations with PANSS scores (p > 0.05). Conclusion This study reveals decreased iron concentration in grey matter nuclei of patients with first-episode schizophrenia. QSM provides superior sensitivity over R2* in the evaluation of schizophrenia-related brain iron changes. It demonstrated that QSM may be a potential biomarker for further understanding the pathophysiological mechanism of first-episode schizophrenia.
Collapse
Affiliation(s)
- Man Xu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yihao Guo
- MR Collaboration, Siemens Healthcare Ltd, Guangzhou, China
| | - Junying Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Xue
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Yang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Key Laboratory of Mental Health of the Ministry of Education & Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
35
|
Kim S, Jang HJ, Myung W, Kim K, Cha S, Lee H, Cho SK, Kim B, Ha TH, Kim JW, Kim DK, Stahl EA, Won HH. Heritability estimates of individual psychological distress symptoms from genetic variation. J Affect Disord 2019; 252:413-420. [PMID: 31003110 DOI: 10.1016/j.jad.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/16/2019] [Accepted: 04/06/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Psychological distress symptoms are associated with an increased risk of psychiatric disorders and medical illness. Although psychological distress is influenced by environmental factors, such as socioeconomic status, lifetime events, or interpersonal relationships, substantial interindividual variation also exists. However, heritability and genetic determinants of distress are poorly understood. METHODS In the Korean Genome and Epidemiology Study sample (n = 12,680), we estimated the heritability of individual psychological distress symptoms using the GCTA-REML method and carried out a genome-wide association study of individual psychological distress symptoms showing significant heritability. RESULTS We found three psychological distress items showing significant heritability: subjective well-being (9%), fatigue and appetite (11%), and enjoying daily life (8%). Additionally, we found genome-wide significant associations of rs6735649 located between STEAP3 and C1QL2 on chromosome 2 with subjective well-being (P = 1.32 × 10-8, odds ratio [OR] = 1.18, 95% confidence interval [CI]: 1.12-1.25) and rs35543418 located between SYT16 and KCNH5 on chromosome 14 with enjoying daily life (P = 1.33 × 10-8, OR = 1.59, 95% CI: 1.35-1.86). LIMITATIONS The lack of replication in independent cohorts and longitudinal assessment of distress may limit generalizability. CONCLUSIONS Our results indicate that distress symptoms are partly heritable. Further analysis in larger cohorts investigating gene-environment interactions is required to identify genetic variants that explain the proportion of variation in distress.
Collapse
Affiliation(s)
- Soyeon Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyeok-Jae Jang
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - Kiwon Kim
- Department of Psychiatry, Veteran Health Service Medical Center, Seoul, South Korea
| | - Soojin Cha
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Hyewon Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Sung Kweon Cho
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; Molecular Genetic Epidemiology Section, National Cancer Institute (NCI), Frederick, MD, USA
| | - Beomsu Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Tae Hyon Ha
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eli Ayumi Stahl
- Department of Genetics and Genomic Sciences, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea.
| |
Collapse
|
36
|
Zhang W, Zhou Y, Li Q, Xu J, Yan S, Cai J, Jiaerken Y, Lou M. Brain Iron Deposits in Thalamus Is an Independent Factor for Depressive Symptoms Based on Quantitative Susceptibility Mapping in an Older Adults Community Population. Front Psychiatry 2019; 10:734. [PMID: 31681043 PMCID: PMC6803490 DOI: 10.3389/fpsyt.2019.00734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 09/12/2019] [Indexed: 12/02/2022] Open
Abstract
Objectives: With the trend of an aging population, an increasing prevalence of late-life depression has been identified. Several studies demonstrated that iron deposition was significantly related to the severity of symptoms in patients with depression. However, whether brain iron deposits influence depressive symptoms is so far unclear in the community of older adults. We measured iron deposition in deep intracranial nucleus by quantitative susceptibility mapping (QSM) and aimed to explore the relationship between iron deposition and depressive symptoms. Methods: We reviewed the data of a community population from CIRCLE study, which is a single-center prospective observational study that enrolled individuals above 40 years old with cerebral small vessel disease (SVD), while free of known dementia or stroke. We evaluated regional iron deposits on QSM, measured the volume of white matter hyperintensities (WMHs) on T2 fluid-attenuated inversion recovery, and assessed depressive symptoms by Hamilton depression scale (HDRS). We defined depressive symptom as HDRS > 7. Results: A total of 185 participants were enrolled. Participants in depressive symptom group had higher QSM value in thalamus than control group (18.79 ± 14.94 vs 13.29 ± 7.64, p = 0.003). The QSM value in the thalamus was an independent factor for the presence of depressive symptoms (OR = 1.055; 95% CI: 1.011-1.100; p = 0.013). The regional QSM values in other areas were not associated with HDRS score (all p > 0.05). No significant correlations were observed between WMHs volume and HDRS score (p > 0.05), or regional QSM values and WMHs volume (all p > 0.05). Conclusions: Our study demonstrated that iron deposits in the thalamus were related to the depressive symptoms in older adults.
Collapse
Affiliation(s)
- Wenhua Zhang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qingqing Li
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jinjin Xu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shenqiang Yan
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jinsong Cai
- Department of Radiology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Lin F, Prince MR, Spincemaille P, Wang Y. Patents on Quantitative Susceptibility Mapping (QSM) of Tissue Magnetism. Recent Pat Biotechnol 2019; 13:90-113. [PMID: 30556508 DOI: 10.2174/1872208313666181217112745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) depicts biodistributions of tissue magnetic susceptibility sources, including endogenous iron and calcifications, as well as exogenous paramagnetic contrast agents and probes. When comparing QSM with simple susceptibility weighted MRI, QSM eliminates blooming artifacts and shows reproducible tissue susceptibility maps independent of field strength and scanner manufacturer over a broad range of image acquisition parameters. For patient care, QSM promises to inform diagnosis, guide surgery, gauge medication, and monitor drug delivery. The Bayesian framework using MRI phase data and structural prior knowledge has made QSM sufficiently robust and accurate for routine clinical practice. OBJECTIVE To address the lack of a summary of US patents that is valuable for QSM product development and dissemination into the MRI community. METHOD We searched the USPTO Full-Text and Image Database for patents relevant to QSM technology innovation. We analyzed the claims of each patent to characterize the main invented method and we investigated data on clinical utility. RESULTS We identified 17 QSM patents; 13 were implemented clinically, covering various aspects of QSM technology, including the Bayesian framework, background field removal, numerical optimization solver, zero filling, and zero-TE phase. CONCLUSION Our patent search identified patents that enable QSM technology for imaging the brain and other tissues. QSM can be applied to study a wide range of diseases including neurological diseases, liver iron disorders, tissue ischemia, and osteoporosis. MRI manufacturers can develop QSM products for more seamless integration into existing MRI scanners to improve medical care.
Collapse
Affiliation(s)
- Feng Lin
- School of Law, City University of Hong Kong, Hong Kong, China
| | - Martin R Prince
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
38
|
Abstract
Renal transplantation is the therapy of choice for patients with end-stage renal diseases. Improvement of immunosuppressive therapy has significantly increased the half-life of renal allografts over the past decade. Nevertheless, complications can still arise. An early detection of allograft dysfunction is mandatory for a good outcome. New advances in magnetic resonance imaging (MRI) have enabled the noninvasive assessment of different functional renal parameters in addition to anatomic imaging. Most of these techniques were widely tested on renal allografts in past decades and a lot of clinical data are available. The following review summarizes the comprehensive, functional MRI techniques for the noninvasive assessment of renal allograft function and highlights their potential for the investigations of different etiologies of graft dysfunction.
Collapse
|
39
|
关 基, 冯 衍. [Quantitative magnetic resonance imaging of brain iron deposition: comparison between quantitative susceptibility mapping and transverse relaxation rate (R2*) mapping]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:305-311. [PMID: 29643036 PMCID: PMC6744171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 10/15/2023]
Abstract
OBJECTIVE To evaluate the accuracy and sensitivity of quantitative susceptibility mapping (QSM) and transverse relaxation rate (R2*) mapping in the measurement of brain iron deposition. METHODS Super paramagnetic iron oxide (SPIO) phantoms and mouse models of Parkinson's disease (PD) related to iron deposition in the substantia nigra (SN) underwent 7.0 T magnetic resonance (MR) scans (Bruker, 70/16) with a multi-echo 3D gradient echo sequence, and the acquired data were processed to obtain QSM and R2*. Linear regression analysis was performed for susceptibility and R2* in the SPIO phantoms containing 5 SPIO concentrations (30, 15, 7.5, 3.75 and 1.875 µg/mL) to evaluate the accuracy of QSM and R2* in quantitative iron analysis. The sensitivities of QSM and R2* mapping in quantitative detection of brain iron deposition were assessed using mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) in comparison with the control mice. RESULTS In SPIO phantoms, QSM provided a higher accuracy than R2* mapping and their goodness-of-fit coefficients (R2) were 0.98 and 0.89, respectively. In the mouse models of PD and control mice, the susceptibility of the SN was significantly higher in the PD models (5.19∓1.58 vs 2.98∓0.88, n=5; P<0.05), while the R2* values were similar between the two groups (20.22∓0.94 vs 19.74∓1.75; P=0.60). CONCLUSION QSM allows more accurate and sensitive detection of brain iron deposition than R2*, and the susceptibility derived by QSM can be a potentially useful biomarker for studying PD.
Collapse
Affiliation(s)
- 基景 关
- />南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - 衍秋 冯
- />南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
40
|
关 基, 冯 衍. [Quantitative magnetic resonance imaging of brain iron deposition: comparison between quantitative susceptibility mapping and transverse relaxation rate (R2*) mapping]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:305-311. [PMID: 29643036 PMCID: PMC6744171 DOI: 10.3969/j.issn.1673-4254.2018.03.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To evaluate the accuracy and sensitivity of quantitative susceptibility mapping (QSM) and transverse relaxation rate (R2*) mapping in the measurement of brain iron deposition. METHODS Super paramagnetic iron oxide (SPIO) phantoms and mouse models of Parkinson's disease (PD) related to iron deposition in the substantia nigra (SN) underwent 7.0 T magnetic resonance (MR) scans (Bruker, 70/16) with a multi-echo 3D gradient echo sequence, and the acquired data were processed to obtain QSM and R2*. Linear regression analysis was performed for susceptibility and R2* in the SPIO phantoms containing 5 SPIO concentrations (30, 15, 7.5, 3.75 and 1.875 µg/mL) to evaluate the accuracy of QSM and R2* in quantitative iron analysis. The sensitivities of QSM and R2* mapping in quantitative detection of brain iron deposition were assessed using mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) in comparison with the control mice. RESULTS In SPIO phantoms, QSM provided a higher accuracy than R2* mapping and their goodness-of-fit coefficients (R2) were 0.98 and 0.89, respectively. In the mouse models of PD and control mice, the susceptibility of the SN was significantly higher in the PD models (5.19∓1.58 vs 2.98∓0.88, n=5; P<0.05), while the R2* values were similar between the two groups (20.22∓0.94 vs 19.74∓1.75; P=0.60). CONCLUSION QSM allows more accurate and sensitive detection of brain iron deposition than R2*, and the susceptibility derived by QSM can be a potentially useful biomarker for studying PD.
Collapse
Affiliation(s)
- 基景 关
- />南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - 衍秋 冯
- />南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|