1
|
Caramés JM, Reigal RE, Morales-Sánchez V, Pastrana-Brincones JL, Anguera MT, Hernández-Mendo A. Neuropsychological analysis of anxiety and executive control of motor patterns in athletes and non-athletes. Front Psychol 2024; 15:1424152. [PMID: 38939223 PMCID: PMC11210333 DOI: 10.3389/fpsyg.2024.1424152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Even simple tapping tasks require cognitive processes. Some variants of the Finger Tapping Test (FTT) may reveal cognitive aspects associated with frontal processing, including executive functions such as inhibition, or emotional aspects such as anxiety. A context of particular interest for the application of cognitive-motor-anxiety interactions is sports. Although athletes generally exhibit better anxiety levels, they may experience heightened anxiety before important competitions. The problem lies in determining whether the application of anxiety control techniques can be useful in pre-competition situations, given the lack of quick and easy methods to detect if an athlete is experiencing anxiety at a particular moment. Methods This exploratory study evaluated anxiety using online versions of questionnaires (ISRA, the Competitive State Anxiety Inventory-2, and STAI) and applied a variant of the FTT to 204 participants, both athletes and non-athletes. The scores were compared and correlated. Results Athletes exhibited lower general anxiety and greater cognitive resistance to interference (better cognitive inhibition). Non-athletes displayed a particular parameter in the FTT variant that differed from the one obtained by athletes and exhibited higher anxiety levels. In the athletes' group only, anxiety was correlated with a specific parameter of the FTT task. Discussion Our conclusion is that this parameter holds potential relevance in elite sports performance to detect if an athlete is experiencing anxiety. It could be of particular interest in psychological interventions in sports. Further investigation is warranted to fully explore this potential.
Collapse
Affiliation(s)
- José María Caramés
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology and Speech Therapy, University of Malaga, Málaga, Spain
| | - Rafael E. Reigal
- Department of Social Psychology, Social Anthropology, Social Work and Social Services, University of Malaga, Málaga, Spain
| | - Verónica Morales-Sánchez
- Department of Social Psychology, Social Anthropology, Social Work and Social Services, University of Malaga, Málaga, Spain
| | - José Luis Pastrana-Brincones
- School of Computer Science and Engineering, University of Málaga, Málaga, Spain
- Department of Computer and Information Sciences, College of Arts and Sciences at the University of St. Thomas, Saint Paul, MN, United States
| | - M. Teresa Anguera
- Faculty of Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Antonio Hernández-Mendo
- Department of Social Psychology, Social Anthropology, Social Work and Social Services, University of Malaga, Málaga, Spain
| |
Collapse
|
2
|
Parimoo S, Grady C, Olsen R. Age-related Differences in Response Inhibition Are Mediated by Frontoparietal White Matter but Not Functional Activity. J Cogn Neurosci 2024; 36:1184-1205. [PMID: 38579242 DOI: 10.1162/jocn_a_02159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Healthy older adults often exhibit lower performance but increased functional recruitment of the frontoparietal control network during cognitive control tasks. According to the cortical disconnection hypothesis, age-related changes in the microstructural integrity of white matter may disrupt inter-regional neuronal communication, which in turn can impair behavioral performance. Here, we use fMRI and diffusion-weighted imaging to determine whether age-related differences in white matter microstructure contribute to frontoparietal over-recruitment and behavioral performance during a response inhibition (go/no-go) task in an adult life span sample (n = 145). Older and female participants were slower (go RTs) than younger and male participants, respectively. However, participants across all ages were equally accurate on the no-go trials, suggesting some participants may slow down on go trials to achieve high accuracy on no-go trials. Across the life span, functional recruitment of the frontoparietal network within the left and right hemispheres did not vary as a function of age, nor was it related to white matter fractional anisotropy (FA). In fact, only frontal FA and go RTs jointly mediated the association between age and no-go accuracy. Our results therefore suggest that frontal white matter cortical "disconnection" is an underlying driver of age-related differences in cognitive control, and white matter FA may not fully explain functional task-related activation in the frontoparietal network during the go/no-go task. Our findings add to the literature by demonstrating that white matter may be more important for certain cognitive processes in aging than task-related functional activation.
Collapse
Affiliation(s)
- Shireen Parimoo
- University of Toronto
- Rotman Research Institute, Baycrest, Toronto, Canada
| | - Cheryl Grady
- University of Toronto
- Rotman Research Institute, Baycrest, Toronto, Canada
| | - Rosanna Olsen
- University of Toronto
- Rotman Research Institute, Baycrest, Toronto, Canada
| |
Collapse
|
3
|
Ribeiro M, Yordanova YN, Noblet V, Herbet G, Ricard D. White matter tracts and executive functions: a review of causal and correlation evidence. Brain 2024; 147:352-371. [PMID: 37703295 DOI: 10.1093/brain/awad308] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.
Collapse
Affiliation(s)
- Monica Ribeiro
- Service de neuro-oncologie, Hôpital La Pitié-Salpêtrière, Groupe Hospitalier Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
| | - Yordanka Nikolova Yordanova
- Service de neurochirurgie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
| | - Vincent Noblet
- ICube, IMAGeS team, Université de Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| | - Guillaume Herbet
- Praxiling, UMR 5267, CNRS, Université Paul Valéry Montpellier 3, 34090 Montpellier, France
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- Institut Universitaire de France
| | - Damien Ricard
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
- Département de neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
4
|
Moon JM, Dufner TJ, Wells AJ. Evaluating the effects of PeakATP ® supplementation on visuomotor reaction time and cognitive function following high-intensity sprint exercise. Front Nutr 2023; 10:1237678. [PMID: 37599676 PMCID: PMC10436484 DOI: 10.3389/fnut.2023.1237678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The purpose of this study was to examine the effects of 14-days adenosine 5'-triphosphate (ATP) supplementation (PeakATP®) on reaction time (RT), multiple object tracking speed (MOT), mood and cognition. Twenty adults (22.3 ± 4.4 yrs., 169.9 ± 9.5 cm, 78.7 ± 14.6 kg) completed two experimental trials in a double-blind, counter-balanced, crossover design. Subjects were randomized to either PeakATP® (400 mg) or placebo (PLA) and supplemented for 14-days prior to each trial. During each trial, subjects completed a three-minute all-out test on a cycle ergometer (3MT), with measures of visuomotor RT [Dynavision D2 Proactive (Mode A) and Reactive (Mode B) tasks], MOT (Neurotracker), mood (Profile of Mood States Questionnaire; POMS) and cognition (Automated Neuropsychological Assessment Metrics; ANAM) occurring before (PRE), immediately post (IP) and 60 min post-3MT (60P). Subjects ingested an acute dose of the assigned supplement 30 min prior to completing PRE assessments for each trial. Trials were separated by a 14-day washout period. PeakATP® significantly attenuated declines in hits (p = 0.006, ηp2 = 0.235) and average RT (AvgRT, p = 0.006, ηp2 = 0.236) in Mode A, significantly improved AvgRT (p = 0.039, ηp2 = 0.174) in Mode B, and significantly reduced the total number of misses (p = 0.005, ηp2 = 0.343) in Mode B. No differences between treatments were noted for MOT, POMS or ANAM variables. In conclusion, these results indicate that PeakATP® maintains proactive RT and improves reactive RT following high-intensity sprint exercise suggesting that supplemental ATP may mitigate exercise induced cognitive dysfunction.
Collapse
Affiliation(s)
| | | | - Adam J. Wells
- Exercise Physiology, Intervention, and Collaboration Lab, School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
5
|
Pacheco-Barrios K, Cardenas-Rojas A, de Melo PS, Marduy A, Gonzalez-Mego P, Castelo-Branco L, Mendes AJ, Vásquez-Ávila K, Teixeira PE, Gianlorenco ACL, Fregni F. Home-based transcranial direct current stimulation (tDCS) and motor imagery for phantom limb pain using statistical learning to predict treatment response: an open-label study protocol. PRINCIPLES AND PRACTICE OF CLINICAL RESEARCH (2015) 2021; 7:8-22. [PMID: 35434309 PMCID: PMC9009528 DOI: 10.21801/ppcrj.2021.74.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Background Phantom limb pain (PLP) management has been a challenge due to its response heterogeneity and lack of treatment access. This study will evaluate the feasibility of a remotely home-based M1 anodal tDCS combined with motor imagery in phantom limb patients and assess the preliminary efficacy, safety, and predictors of response of this therapy. Methods This is a pilot, single-arm, open-label trial in which we will recruit 10 subjects with phantom limb pain. The study will include 20 sessions. All participants will receive active anodal M1 tDCS combined with phantom limb motor imagery training. Our primary outcome will be the acceptability and feasibility of this combined intervention. Moreover, we will assess preliminary clinical (pain intensity) and physiological (motor inhibition tasks and heart rate variability) changes after treatment. Finally, we will implement a supervised statistical learning (SL) model to identify predictors of treatment response (to tDCS and phantom limb motor imagery) in PLP patients. We will also use data from our previous clinical trial (total observations=224 [n=112 x timepoints = 2)) for our statistical learning algorithms. The new prospective data from this open-label study will be used as an independent test dataset. Discussion This protocol proposes to assess the feasibility of a novel, neuromodulatory combined intervention that will allow the design of larger remote clinical trials, thus increasing access to safe and effective treatments for PLP patients. Moreover, this study will allow us to identify possible predictors of pain response and PLP clinical endotypes.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Paulo S. de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Paola Gonzalez-Mego
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Luis Castelo-Branco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Augusto J. Mendes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Karen Vásquez-Ávila
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Paulo E.P. Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Anna Carolyna Lepesteur Gianlorenco
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Department of Physical Therapy, Federal University of Sao Carlos, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
6
|
Schmitz JM, Suchting R, Green CE, Webber HE, Vincent J, Moeller FG, Lane SD. The effects of combination levodopa-ropinirole on cognitive improvement and treatment outcome in individuals with cocaine use disorder: A bayesian mediation analysis. Drug Alcohol Depend 2021; 225:108800. [PMID: 34102508 DOI: 10.1016/j.drugalcdep.2021.108800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic cocaine users show impairments in cognitive processes associated with dopamine (DA) circuitry. Medications aimed at bolstering cognitive functions via DA modulation might enhance treatment outcome. METHODS The trial used a double-blind, double-dummy, parallel-group design with four treatment arms comparing placebo (PLC) to levodopa/carbidopa 800 mg/200 mg alone (LR0), levodopa plus extended release (XR) ropinirole 2 mg (LR2) or XR ropinirole 4 mg (LR4). Adults (n = 110) with cocaine use disorder attended thrice weekly clinic visits for 10 weeks. Potential cognitive mediators assessed at week 5 consisted of measures of decision-making (Iowa Gambling Task, Risky Decision-Making Task), attention/impulsivity (Immediate Memory Task), motivation (Progressive Ratio task), and cognitive control (Cocaine Stoop task). The primary outcome measure was the treatment effectiveness score (TES) calculated as the number of cocaine-negative urines collected from weeks 6-10. RESULTS Bayesian mediation examined indirect and total effects of the relationships between each active treatment (compared to PLC) and TES. Total (direct) effects were supported for LR0 and LR2, but not for LR4. Indirect effects were tested for each mediator. Notably, 22.3 % and 35.4 % of the total effects of LR0 and LR2 on TES were mediated by changes in attention/impulsivity. CONCLUSIONS The hypothesized mediation effect was strongest for levodopa plus 2 mg ropinirole, indicating that this DA medication combination predicted change (improvement) in attention/impulsivity, which in turn predicted change (reduction) in cocaine use. This finding provides modest support for cognitive enhancement as a target for medications to treat cocaine use disorder.
Collapse
Affiliation(s)
- Joy M Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Robert Suchting
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Charles E Green
- Department of Pediatrics - Center for Clinical Research and Evidence-Based Medicine, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson - UTHealth Graduate School of Biomedical Sciences, Program in Neuroscience, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heather E Webber
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica Vincent
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Scott D Lane
- Faillace Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
7
|
Chai Y, Ji C, Coloigner J, Choi S, Balderrama M, Vu C, Tamrazi B, Coates T, Wood JC, O'Neil SH, Lepore N. Tract-specific analysis and neurocognitive functioning in sickle cell patients without history of overt stroke. Brain Behav 2021; 11:e01978. [PMID: 33434353 PMCID: PMC7994688 DOI: 10.1002/brb3.1978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. SCD patients are at increased risks for strokes and neurocognitive deficit, even though neurovascular screening and treatments have lowered the rate of overt strokes. Tract-specific analysis (TSA) is a statistical method to evaluate microstructural WM damage in neurodegenerative disorders, using diffusion tensor imaging (DTI). METHODS We utilized TSA and compared 11 major brain WM tracts between SCD patients with no history of overt stroke, anemic controls, and healthy controls. We additionally examined the relationship between the most commonly used DTI metric of WM tracts and neurocognitive performance in the SCD patients and healthy controls. RESULTS Disruption of WM microstructure orientation-dependent metrics for the SCD patients was found in the genu of the corpus callosum (CC), cortico-spinal tract, inferior fronto-occipital fasciculus, right inferior longitudinal fasciculus, superior longitudinal fasciculus, and left uncinate fasciculus. Neurocognitive performance indicated slower processing speed and lower response inhibition skills in SCD patients compared to controls. TSA abnormalities in the CC were significantly associated with measures of processing speed, working memory, and executive functions. CONCLUSION Decreased DTI-derived metrics were observed on six tracts in chronically anemic patients, regardless of anemia subtype, while two tracks with decreased measures were unique to SCD patients. Patients with WMHs had more significant FA abnormalities. Decreased FA values in the CC significantly correlated with all nine neurocognitive tests, suggesting a critical importance for CC in core neurocognitive processes.
Collapse
Affiliation(s)
- Yaqiong Chai
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Chaoran Ji
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Julie Coloigner
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Division of CardiologyChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Soyoung Choi
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Melissa Balderrama
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Hematology, Oncology, and Blood and Marrow TransplantationChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Chau Vu
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Benita Tamrazi
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Thomas Coates
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Hematology, Oncology, and Blood and Marrow TransplantationChildren's Hospital Los AngelesLos AngelesCAUSA
| | - John C. Wood
- Division of CardiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Sharon H. O'Neil
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of NeurologyChildren's Hospital Los AngelesLos AngelesCAUSA
- The Saban Research InstituteChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Natasha Lepore
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
8
|
Garcia-Egan PM, Preston-Campbell RN, Salminen LE, Heaps-Woodruff JM, Balla L, Cabeen RP, Laidlaw DH, Conturo TE, Paul RH. Behavioral inhibition corresponds to white matter fiber bundle integrity in older adults. Brain Imaging Behav 2020; 13:1602-1611. [PMID: 31209835 DOI: 10.1007/s11682-019-00144-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Little is known about the contribution of white matter integrity to inhibitory cognitive control, particularly in healthy aging. The present study examines the correspondence between white matter fiber bundle length and behavioral inhibition in 37 community-dwelling older adults (aged 51-78 years). Participants underwent neuroimaging with 3 Tesla MRI, and completed a behavioral test of inhibition (i.e., Go/NoGo task). Quantitative tractography derived from diffusion tensor imaging (qtDTI) was used to measure white matter fiber bundle lengths (FBLs) in tracts known to innervate frontal brain regions, including the anterior corpus callosum (AntCC), the cingulate gyrus segment of the cingulum bundle (CING), uncinate fasciculus (UNC), and the superior longitudinal fasciculus (SLF). Performance on the Go/NoGo task was measured by the number of commission errors standardized to reaction time. Hierarchical regression models revealed that shorter FBLs in the CING (p < 0.05) and the bilateral UNC (p < 0.01) were associated with lower inhibitory performance after adjusting for multiple comparisons, supporting a disconnection model of response inhibition in older adults. Prospective longitudinal studies are needed to examine the evolution of inhibitory errors in older adult populations and potential for therapeutic intervention.
Collapse
Affiliation(s)
- Paola M Garcia-Egan
- Department of Psychological Sciences, University of Missouri, St. Louis, MO, 63121, USA
| | | | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | | | - Lila Balla
- Missouri Institute of Mental Health, St. Louis, MO, 63134, USA
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, LosAngeles, CA, 90033, USA
| | - David H Laidlaw
- Department of Computer Science, Brown University, Providence, RI, 02906, USA
| | - Thomas E Conturo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert H Paul
- Department of Psychological Sciences, University of Missouri, St. Louis, MO, 63121, USA.
- Missouri Institute of Mental Health, St. Louis, MO, 63134, USA.
| |
Collapse
|
9
|
Varanoske AN, Wells AJ, Boffey D, Harat I, Frosti CL, Kozlowski GJ, Gepner Y, Hoffman JR. Effects of High-Dose, Short-Duration β-Alanine Supplementation on Cognitive Function, Mood, and Circulating Brain-Derived Neurotropic Factor (BDNF) in Recreationally-Active Males Before Simulated Military Operational Stress. J Diet Suppl 2020; 18:147-168. [DOI: 10.1080/19390211.2020.1733730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alyssa N. Varanoske
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Adam J. Wells
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - David Boffey
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Idan Harat
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Cheyanne L. Frosti
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Gregory J. Kozlowski
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Yftach Gepner
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Jay R. Hoffman
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|