1
|
Shao H, Gu G, Guo X, Li X, Cui D. Nonlinear dose-response relationship in tDCS-induced brain network synchrony: A resting-state whole-brain model analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 263:108675. [PMID: 39985856 DOI: 10.1016/j.cmpb.2025.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuroregulation technique that influences brain dynamics, widely used to enhance cognitive abilities, treat neurological disorders, and aid rehabilitation. With the advancement of computational neuroscience, dynamic modeling analysis has become an important tool for understanding the mechanisms of tDCS. METHODS In this study, we constructed a resting-state whole-brain model, similar to the human brain. By simulating tDCS, we analyzed its effects at different intensities on the whole-brain model. We used various electrophysiological measures to assess the impact of tDCS on brain functional networks and electrophysiological characteristics. In addition, we analyzed the network structures influenced by different tDCS intensities using graph theory measures and the small-world index. Finally, we analyzed the factors that could influence the observed phenomena. RESULTS The results indicate that within a certain range, tDCS can enhance the synchronicity of brain functional networks; however, excessive intensity results in a significant reduction in the benefits. We observed that electrical stimulation induces complex electrophysiological activities across widespread brain regions through network propagation. Networks influenced by low tDCS intensity achieve optimal states in graph theory metrics. Conversely, high tDCS intensity damages network structures, reducing information transmission efficiency. Finally, we found that these phenomena are closely related to the unique physiological structure of the human brain. CONCLUSIONS This study demonstrates a nonlinear dose-response relationship, revealing that network synchrony achieves optimal states only at appropriate tDCS intensities. This research provides theoretical support for the clinical application of tDCS and scientific guidance for selecting the most effective stimulation protocols.
Collapse
Affiliation(s)
- Hongyuan Shao
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China; School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Guanghua Gu
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China; School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaonan Guo
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China; School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaoli Li
- Guangdong Artificial Intelligence and Digital Economy Laboratory, Guangzhou, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong Cui
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China; School of Information Science and Engineering, Yanshan University, Qinhuangdao, China.
| |
Collapse
|
2
|
Cicero NG, Riley E, Swallow KM, De Rosa E, Anderson A. Attention-dependent coupling with forebrain and brainstem neuromodulatory nuclei differs across the lifespan. GeroScience 2025:10.1007/s11357-025-01582-0. [PMID: 40038158 DOI: 10.1007/s11357-025-01582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025] Open
Abstract
Attentional states reflect the changing behavioral relevance of stimuli in one's environment, having important consequences for learning and memory. Supporting well-established cortical contributions, attentional states are hypothesized to originate from subcortical neuromodulatory nuclei, such as the basal forebrain (BF) and locus coeruleus (LC), which are among the first to change with aging. Here, we characterized the interplay between BF and LC neuromodulatory nuclei and their relation to two common afferent cortical targets important for attention and memory, the posterior cingulate cortex and hippocampus, across the adult lifespan. Using an auditory target discrimination task during functional MRI, we examined the influence of attentional and behavioral salience on task-dependent functional connectivity in younger (19-45 years) and older adults (66-86 years). In younger adults, BF functional connectivity was largely driven by target processing, while LC connectivity was associated with distractor processing. These patterns are reversed in older adults. This age-dependent connectivity pattern generalized to the nucleus basalis of Meynert and medial septal subnuclei. Preliminary data from middle-aged adults indicates a transitional stage in BF and LC functional connectivity. Overall, these results reveal distinct roles of subcortical neuromodulatory systems in attentional salience related to behavioral relevance and their potential reversed roles with aging, consistent with managing increased salience of behaviorally irrelevant distraction in older adults. Such prominent differences in functional coupling across the lifespan from these subcortical neuromodulatory nuclei suggests they may be drivers of widespread cortical changes in neurocognitive aging, and middle age as an opportune time for intervention.
Collapse
Affiliation(s)
- Nicholas G Cicero
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA.
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Khena M Swallow
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Eve De Rosa
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Adam Anderson
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Steardo L, D'Angelo M, Monaco F, Di Stefano V, Steardo L. Decoding neural circuit dysregulation in bipolar disorder: Toward an advanced paradigm for multidimensional cognitive, emotional, and psychomotor treatment. Neurosci Biobehav Rev 2025; 169:106030. [PMID: 39894420 DOI: 10.1016/j.neubiorev.2025.106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Bipolar disorder (BD) is characterized by a complex constellation of emotional, cognitive, and psychomotor disturbances, each deeply intertwined with underlying dysfunctions in large-scale brain networks and neurotransmitter systems. This manuscript integrates recent advances in neuroimaging, neuromodulation, and pharmacological research to provide a comprehensive view of BD's pathophysiology, emphasizing the role of network-specific dysfunctions and their clinical manifestations. We explore how dysregulation within the fronto-limbic network, particularly involving the prefrontal cortex (PFC) and amygdala, underpins the emotional instability that defines both manic and depressive episodes. Additionally, impairments in the central executive network (CEN) and default mode network (DMN) are linked to cognitive deficits, with hyperactivity in the DMN driving rumination and cognitive inflexibility, while CEN underactivity contributes to attentional lapses and impaired executive function. Psychomotor symptoms, which oscillate between hyperactivity in mania and retardation in depression, are closely associated with imbalances in neurotransmitter systems, particularly dopamine and serotonin, within the basal ganglia-thalamo-cortical motor pathway. Recent studies indicate that these psychomotor disturbances are further exacerbated by disruptions in network connectivity, leading to impairments in both motor control and emotional regulation. Emerging therapeutic strategies are discussed, with a focus on neuromodulation techniques such as transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS), which show promise in restoring balance within these critical networks. Furthermore, pharmacological interventions that modulate synaptic functioning and neuronal plasticity offer potential for addressing both the emotional and motor symptoms of BD. This manuscript underscores the need for an integrative treatment approach that simultaneously targets neural circuits and neurotransmitter systems to address the full spectrum of symptoms in BD. Drawing on recent advancements in neurobiological models and therapeutic frameworks, this proposal outlines a pathway for the development of precision-tailored interventions. These approaches are designed to optimize cognitive, emotional, and psychomotor outcomes, ultimately striving to elevate the quality of life for individuals living with bipolar disorder (BD), while remaining firmly grounded in the latest empirical evidence and theoretical insights.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatry Unit, Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro 88100, Italy
| | - Martina D'Angelo
- Psychiatry Unit, Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro 88100, Italy.
| | - Francesco Monaco
- Department of Mental Health, Azienda Sanitaria Locale Salerno, Salerno, Italy; European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy.
| | - Valeria Di Stefano
- Psychiatry Unit, Department of Health Sciences, University of Catanzaro Magna Graecia, Catanzaro 88100, Italy.
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome 00185, Italy; Department of Clinical Psychology, University Giustino Fortunato, Benevento 82100, Italy.
| |
Collapse
|
4
|
Göke K, McClintock SM, Mah L, Rajji TK, Lee HH, Nestor SM, Downar J, Noda Y, Daskalakis ZJ, Mulsant BH, Blumberger DM. Cognitive Outcomes After Transcranial Magnetic Stimulation for the Treatment of Late-Life Depression: Résultats cognitifs après la stimulation magnétique transcrânienne pour le traitement de la dépression chez les personnes âgées. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025:7067437251315515. [PMID: 39881587 PMCID: PMC11783421 DOI: 10.1177/07067437251315515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
BACKGROUND Late-life depression (LLD) is often accompanied by cognitive impairment, which may persist despite antidepressant treatment. Repetitive transcranial magnetic stimulation (rTMS) is an efficacious treatment for depression, with potential benefits on cognitive functioning. However, research on cognitive effects is inconclusive, relatively sparse in LLD, and predominantly focused on group-level cognitive changes. This study aimed to explore individual-level cognitive changes following rTMS treatment in patients with LLD. METHOD Data were analyzed from 153 patients with LLD from the FOUR-D study (ClinicalTrials.gov identifier: NCT02998580) who received bilateral standard rTMS or theta burst stimulation (TBS) targeting the dorsolateral prefrontal cortex (DLPFC). Cognitive function was assessed pre- and post-treatment using measures of executive function, information processing speed, and learning and memory. Reliable change indices, adjusted for practice effects and test-retest reliability, were employed to evaluate individual-level cognitive changes. Chi-square tests examined if proportions of cognitive improvers differed from expected proportions. RESULTS Cognitive performance from baseline to end of treatment remained stable for most patients. Reliably improved performance was observed in 0.0% to 20.0% of participants across cognitive measures, while worsened performance was observed in 0.0% to 2.7%. A small but significant proportion (20.0%) of participants showed improvement in verbal learning. CONCLUSIONS Bilateral standard rTMS or TBS of the DLPFC in LLD yielded no substantial cognitive enhancing effects, although a small proportion showed improved verbal learning after treatment. Importantly, both interventions were cognitively safe with relatively stable performance across time. Future research is needed to explore approaches to enhance the cognitive benefits of standard rTMS and TBS in patients with LLD.
Collapse
Affiliation(s)
- Katharina Göke
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shawn M. McClintock
- Division of Psychology, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda Mah
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Tarek K. Rajji
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Hyewon H. Lee
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sean M. Nestor
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jonathan Downar
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Faculty of Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | - Benoit H. Mulsant
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Yadav S, Sharma S, Chatterjee S, Sharma A, Thakur S. Effect of LASER therapy on plantar fasciitis pain: illuminating a promising treatment approach - a systematic review. Lasers Med Sci 2025; 40:18. [PMID: 39809999 DOI: 10.1007/s10103-025-04289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Numerous research studies have delved into the potential effect of LASER therapy on alleviating pain associated with plantar fasciitis. However, the distinct effects of both High Intensity and Low Intensity LASER therapy (HILT/LILT) on addressing plantar fasciitis pain have not been thoroughly investigated. This systematic review seeks to provide a comprehensive summary of the present body of literature regarding the use of LASER therapy in managing pain related to plantar fasciitis. A conscientious search across four databases namely Google Scholar, PubMed, PEDro and The Cochrane Library was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, which yielded five pertinent studies out of 21,034 studies that met the predefined inclusion criteria and underwent rigorous evaluation. The assessment tools such as PEDro were employed on these studies for critical review. Although some variations persisted among the research outcomes, a predominant trend highlighted a notable decrease in pain severity on Visual Analogue Scale (VAS)/Numeric Rating Scale-pain (NRS-p) with the adoption of diverse LASER therapy methodologies. Notably, no adverse repercussions were reported across any of the studies, emphasizing the safety profile of these LASER interventions for plantar fasciitis patients. In summation, integrating these LASER therapy approaches alongside conventional therapeutic strategies appears promising for enhancing the efficacy and sustainability of plantar fasciitis pain management. The study protocol has been registered with PROSPERO (CRD42023453098) (International Prospective Register of Systematic Reviews).
Collapse
Affiliation(s)
- Sarita Yadav
- Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
- Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan 332311, India
| | - Sunita Sharma
- Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Subhasish Chatterjee
- Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Ankita Sharma
- Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Shikhar Thakur
- Shree Guru Gobind Singh Tricentenary University, Budhera-Gurugram, Haryana, 122006, India
| |
Collapse
|
6
|
Gorka SM, Jimmy J, Koning K, Phan KL, Rotstein N, Hoang-Dang B, Halavi S, Spivak N, Monti MM, Reggente N, Bookheimer SY, Kuhn TP. Alterations in large-scale resting-state network nodes following transcranial focused ultrasound of deep brain structures. Front Hum Neurosci 2024; 18:1486770. [PMID: 39698148 PMCID: PMC11652661 DOI: 10.3389/fnhum.2024.1486770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
Background Low-intensity transcranial focused ultrasound (tFUS) is a brain stimulation approach that holds promise for the treatment of brain-based disorders. Studies in humans have shown that tFUS can successfully modulate perfusion in focal sonication targets, including the amygdala; however, limited research has explored how tFUS impacts large-scale neural networks. Objective The aim of the current study was to address this gap and examine changes in resting-state connectivity between large-scale network nodes using a randomized, double-blind, within-subjects crossover study design. Methods Healthy adults (n = 18) completed two tFUS sessions, 14 days apart. Each session included tFUS of either the right amygdala or the left entorhinal cortex (ErC). The inclusion of two active targets allowed for within-subjects comparisons as a function of the locus of sonication. Resting-state functional magnetic resonance imaging was collected before and after each tFUS session. Results tFUS altered resting-state functional connectivity (rsFC) within and between rs-network nodes. Pre-to-post sonication of the right amygdala modulated connectivity within nodes of the salience network (SAN) and between nodes of the SAN and the default mode network (DMN) and frontoparietal network (FRP). A decrease in SAN to FPN connectivity was specific to the amygdala target. Pre-to-post sonication of the left ErC modulated connectivity between the dorsal attention network (DAN) and FPN and DMN. An increase in DAN to DMN connectivity was specific to the ErC target. Conclusion These preliminary findings may suggest that tFUS induces neuroplastic changes beyond the immediate sonication target. Additional studies are needed to determine the long-term stability of these effects.
Collapse
Affiliation(s)
- Stephanie M. Gorka
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Jagan Jimmy
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Katherine Koning
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Rotstein
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Bianca Hoang-Dang
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Sabrina Halavi
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Norman Spivak
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Martin M. Monti
- Department of Psychology, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Taylor P. Kuhn
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Hand LJ, Paterson LM, Lingford-Hughes AR. Re-evaluating our focus in addiction: emotional dysregulation is a critical driver of relapse to drug use. Transl Psychiatry 2024; 14:467. [PMID: 39521844 PMCID: PMC11550421 DOI: 10.1038/s41398-024-03159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Most addiction research has focused on reward- and impulsivity-related neurocircuitry. However, the impact of the withdrawal/negative affect stage in the addiction cycle has been somewhat overlooked, despite it being commonly evident in the clinic. This stage crucially drives negative reinforcement of repeated drug use and relapse, yet less is known about its neural underpinnings. How negative emotional processing is dysregulated in substance dependence is incompletely understood and may manifest differentially across the types of substances. In turn, the regions involved in negative emotional processing may show different patterns of dysregulation. Understanding how neurocircuitry involved in negative states differs across various substances may help inform new targets for treatments. Following a comprehensive literature search of studies examining negative emotional processing in substance dependence, a quantitative approach was deemed inappropriate. Instead, we employed a narrative approach to exploring neural responses to tasks involving emotional processing in alcohol, cocaine, opioid and cannabis dependence. Regions that were found to be dysregulated included the amygdala, insula, anterior cingulate, and medial prefrontal cortex. However, patterns of reactivity differed across alcohol, cocaine, opioid and cannabis dependence. Brain activation in alcohol dependence broadly appeared blunted in response to negative affective stimuli and emotional faces, whilst conversely appeared heightened in cocaine dependence. In opioid dependence, the amygdala was consistently implicated, whilst the insula, anterior cingulate, and medial prefrontal cortex were implicated in cannabis dependence. However, there was wide variability amongst the studies, with very few studies investigating opioid and cannabis dependence. These findings suggest emotional dysregulation varies according to the type of substance dependence. However, the variability in findings and lack of studies highlights the need for more research in this area. Further characterisation of emotional dysregulation in substance dependence will enable identification of treatment targets. More targeted treatments that modulate negative emotional processing could substantially improve outcomes by aiding relapse prevention.
Collapse
Affiliation(s)
- Lexi J Hand
- Imperial College London, Neuropsychopharmacology Unit, 2nd Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom
| | - Louise M Paterson
- Imperial College London, Neuropsychopharmacology Unit, 2nd Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom.
| | - Anne R Lingford-Hughes
- Imperial College London, Neuropsychopharmacology Unit, 2nd Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, United Kingdom
| |
Collapse
|
8
|
Benrimoh D, Azeez A, Batail JM, Xiao X, Buchanan D, Bandeira ID, Geoly A, Keynan Y, Kratter IH, Williams NR. Early differences in lassitude predicts outcomes in Stanford Neuromodulation Therapy for difficult to treat depression. NPJ MENTAL HEALTH RESEARCH 2024; 3:49. [PMID: 39468255 PMCID: PMC11519532 DOI: 10.1038/s44184-024-00099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Stanford Neuromodulation Therapy (SNT), has recently shown rapid efficacy in difficult to treat (DTT) depression. We conducted an exploratory analysis of individual symptom improvements during treatment, correlated with fMRI, to investigate this rapid improvement in 23 DTT participants from an SNT RCT (12 active, 11 sham). Montgomery-Åsberg Depression Rating Scale item 7 (Lassitude) was the earliest to show improvements between active and sham, as early as treatment day 2. Lassitude score at treatment day 3 was predictive of response at 4 weeks post-treatment and response immediately after treatment. Participants with lower lassitude scores at treatment day 3 had different patterns of sgACC functional connectivity compared to participants with higher scores in both baseline and post-treatment minus baseline analyses. Further work will aim to first replicate these preliminary findings, and then to extend these findings and examine how SNT may affect lassitude and behavioral activation early in treatment.
Collapse
Affiliation(s)
- David Benrimoh
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA.
- McGill University, Department of Psychiatry, Montreal, QC, Canada.
| | - Azeezat Azeez
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Jean-Marie Batail
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
- Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - Xiaoqian Xiao
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Derrick Buchanan
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Igor D Bandeira
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Andrew Geoly
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Yaakov Keynan
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Ian H Kratter
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
| | - Nolan R Williams
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Shoushtarian M, Esmaelpoor J, Bravo MMG, Fallon JB. Cochlear implant induced changes in cortical networks associated with tinnitus severity. J Neural Eng 2024; 21:056009. [PMID: 39178903 DOI: 10.1088/1741-2552/ad731d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective.We investigated tinnitus-related cortical networks in cochlear implant users who experience tinnitus and whose perception of tinnitus changes with use of their implant. Tinnitus, the perception of unwanted sounds which are not present externally, can be a debilitating condition. In individuals with cochlear implants, use of the implant is known to modulate tinnitus, often improving symptoms but worsening them in some cases. Little is known about underlying cortical changes with use of the implant, which lead to changes in tinnitus perception. In this study we investigated whether changes in brain networks with the cochlear implant turned on and off, were associated with changes in tinnitus perception, as rated subjectively.Approach.Using functional near-infrared spectroscopy, we recorded cortical activity at rest, from 14 cochlear implant users who experienced tinnitus. Recordings were performed with the cochlear implant turned off and on. For each condition, participants rated the loudness and annoyance of their tinnitus using a visual rating scale. Changes in neural synchrony have been reported in humans and animal models of tinnitus. To assess neural synchrony, functional connectivity networks with the implant turned on and off, were compared using two network features: node strength and diversity coefficient.Main results.Changes in subjective ratings of loudness were significantly correlated with changes in node strength, averaged across occipital channels (r=-0.65, p=0.01). Changes in both loudness and annoyance were significantly correlated with changes in diversity coefficient averaged across all channels (r=-0.79,p<0.001 and r=-0.86,p<0.001). More distributed connectivity with the implant on, compared to implant off, was associated with a reduction in tinnitus loudness and annoyance.Significance.A better understanding of neural mechanisms underlying tinnitus suppression with cochlear implant use, could lead to their application as a tinnitus treatment and pave the way for effective use of other less invasive stimulation-based treatments.
Collapse
Affiliation(s)
- Mehrnaz Shoushtarian
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | - Jamal Esmaelpoor
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | | | - James B Fallon
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Prabhu NM, Lehmann N, Kaminski E, Müller N, Taubert M. Online stimulation of the prefrontal cortex during practice increases motor variability and modulates later cognitive transfer: a randomized, double-blinded and sham-controlled tDCS study. Sci Rep 2024; 14:20162. [PMID: 39215020 PMCID: PMC11364672 DOI: 10.1038/s41598-024-70857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The benefits of learning a motor skill extend to improved task-specific cognitive abilities. The mechanistic underpinnings of this motor-cognition relationship potentially rely on overlapping neural resources involved in both processes, an assumption lacking causal evidence. We hypothesize that interfering with prefrontal networks would inhibit concurrent motor skill performance, long-term learning and associated cognitive functions dependent on similar networks (transfer). We conducted a randomised, double-blinded, sham-controlled brain stimulation study using transcranial direct current stimulation (tDCS) in young adults spanning over three weeks to assess the role of the prefrontal regions in learning a complex balance task and long-term cognitive performance. Balance training combined with active tDCS led to higher performance variability in the trained task as compared to the sham group, impacting the process of learning a complex task without affecting the learning rate. Furthermore, active tDCS also positively influenced performance in untrained motor and cognitive tasks. The findings of this study help ascertaining the networks directly involved in learning a complex motor task and its implications on cognitive function. Hence, opening up the possibility of harnessing the observed frontal networks involved in resource mobilization in instances of aging, brain lesion/injury or dysfunction.
Collapse
Affiliation(s)
- Nisha Maria Prabhu
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Nico Lehmann
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
| | - Notger Müller
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Am Mühlenberg 9, 14476, Potsdam, Germany
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
11
|
Briley PM, Webster L, Boutry C, Oh H, Auer DP, Liddle PF, Morriss R. Magnetic resonance imaging connectivity features associated with response to transcranial magnetic stimulation in major depressive disorder. Psychiatry Res Neuroimaging 2024; 342:111846. [PMID: 38908353 DOI: 10.1016/j.pscychresns.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Transcranial magnetic stimulation (TMS) is an FDA-approved neuromodulation treatment for major depressive disorder (MDD), thought to work by altering dysfunctional brain connectivity pathways, or by indirectly modulating the activity of subcortical brain regions. Clinical response to TMS remains highly variable, highlighting the need for baseline predictors of response and for understanding brain changes associated with response. This systematic review examined brain connectivity features, and changes in connectivity features, associated with clinical improvement following TMS in MDD. Forty-one studies met inclusion criteria, including 1097 people with MDD. Most studies delivered one of two types of TMS to left dorsolateral prefrontal cortex and measured connectivity using resting-state functional MRI. The subgenual anterior cingulate cortex was the most well-studied brain region, particularly its connectivity with the TMS target or with the "executive control network" of brain regions. There was marked heterogeneity in findings. There is a need for greater understanding of how cortical TMS modulates connectivity with, and the activity of, subcortical regions, and how these effects change within and across treatment sessions.
Collapse
Affiliation(s)
- P M Briley
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom.
| | - L Webster
- Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - C Boutry
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom
| | - H Oh
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - D P Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | - P F Liddle
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom
| | - R Morriss
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Nottingham National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Nottingham, United Kingdom; Institute of Mental Health, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, United Kingdom; NIHR Applied Research Collaboration East Midlands, University of Nottingham, Nottingham, United Kingdom; NIHR Mental Health (MindTech) Health Technology Collaboration, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
12
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
13
|
Birreci D, De Riggi M, Costa D, Angelini L, Cannavacciuolo A, Passaretti M, Paparella G, Guerra A, Bologna M. The Role of Non-Invasive Brain Modulation in Identifying Disease Biomarkers for Diagnostic and Therapeutic Purposes in Parkinsonism. Brain Sci 2024; 14:695. [PMID: 39061435 PMCID: PMC11274666 DOI: 10.3390/brainsci14070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, substantial advancements have occurred in non-invasive brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed at modulating brain function. Among the most widely utilized methods today are transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques, newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches available for research and clinical applications in movement disorders, particularly for Parkinson's disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the opportunity to explore a wide range of neurophysiological mechanisms and exert influence over distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper's first aim is to provide a brief overview of the historical background and underlying physiological principles of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising available experimental data on individuals with Parkinsonism. To date, despite promising findings indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific debate. In this context, this paper addresses current unsolved issues and methodological challenges concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.
Collapse
Affiliation(s)
- Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Davide Costa
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Luca Angelini
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
- Padova Neuroscience Centre (PNC), University of Padua, 35121 Padua, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| |
Collapse
|
14
|
Searchfield G, Adhia D, Barde A, De Ridder D, Doborjeh M, Doborjeh Z, Goodey R, Maslin MRD, Sanders P, Smith PF, Zheng Y. A scoping review of tinnitus research undertaken by New Zealand researchers: Aotearoa-an international hotspot for tinnitus innovation and collaboration. J R Soc N Z 2024; 55:466-500. [PMID: 39989649 PMCID: PMC11841108 DOI: 10.1080/03036758.2024.2363424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 02/25/2025]
Abstract
Tinnitus is a very common oto-neurological disorder of the perception of sound when no sound is present. To improve understanding of the scope, strengths and weaknesses of New Zealand tinnitus research, a critical scoping review was undertaken. The aim was to help develop priorities for future research. A review of the literature was undertaken using a 6-stage scoping review framework of Scopus and Pub Med were searched in May 2023 with the combination of following key word [Tinnitus] and country of affiliation [New Zealand]. The search of PubMed resulted in 198 articles and that of Scopus 337 articles. After initial consideration of title relevance to the study (165 from PubMed and 196 from Scopus) removal of duplicates and after reading the articles and adding from references, 208 studies were chosen for charting of data. Nine themes were identified and described: A. Epidemiology; B. Models; C. Studies in animals; D. Mechanisms; E. Assessment and prognosis; F. Pharmacotherapy; G. Neuromodulation; H. Sensory therapies; I. Clinical practice. An urgent priority for future tinnitus research in NZ must be to address the absence of cultural and ethnic diversity in participants and consideration of traditional knowledge.
Collapse
Affiliation(s)
- Grant Searchfield
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- TrueSilence Therapeutics Inc, Atlanta, Georgia, USA
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Amit Barde
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- TrueSilence Therapeutics Inc, Atlanta, Georgia, USA
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Maryam Doborjeh
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Zohreh Doborjeh
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- TrueSilence Therapeutics Inc, Atlanta, Georgia, USA
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | | | - Michael R. D. Maslin
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- School of Psychology, Speech and Hearing, The University of Canterbury, Canterbury, New Zealand
| | - Phil Sanders
- School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- TrueSilence Therapeutics Inc, Atlanta, Georgia, USA
| | - Paul F. Smith
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Eisdell Moore Centre, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Lu T, Wang Q, Gu Z, Li Z, Yan Z. Non-invasive treatments improve patient outcomes in chronic tinnitus: a systematic review and network meta-analysis. Braz J Otorhinolaryngol 2024; 90:101438. [PMID: 38788246 PMCID: PMC11143903 DOI: 10.1016/j.bjorl.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/13/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE To investigate the relative effectiveness of various Non-Invasive Treatment Techniques (NITs) in chronic tinnitus management. METHODS We searched PubMed, Embase and Cochrane Library databases from the time of data construction to December 31, 2022. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, NITs were evaluated, including Aacceptance and commitment therapy (A), Cognitive behavioral therapy (C), Sound therapy (S), Transcranial magnetic stimulation (T), Electrical stimulation therapy (E), Virtual reality therapy (V), tinnitus Retraining therapy (R), general psychotherapy (D), and Placebo (P). The outcome indicators included the Tinnitus Handicap Inventory (THI), Tinnitus Questionnaire (TQ), Hospital Anxiety and Depression Scale-anxiety-Depression (HADS-D), Insomnia Severity Index (ISI), Visual Analogue Scales-Loudness (VAS-L), and Visual Analogue Scales-Distress (VAS-D). Statistical analysis was performed using Stata 14.0 for NMA. RESULTS This systematic review and meta-analysis included 22 randomized controlled trials comprising 2,354 patients. The treatment effects varied on each scale. For THI, S (86.9%) was the most effective, whereas P (6.5%) was the worst. For TQ, C (89.5%) was the most effective, whereas D (25.4%) was the worst. For HADS-D, A (82.4%) was the most effective, whereas D (9.47%) was the worst. For ISI, A (83.2%) was the most effective, whereas R (20.6%) was the worst. For VAS-L, S (73.5%) was the most effective, whereas E (18.9%) was the worst. For VAS-D, C (84.7%) was the most effective, whereas P (18.1%) was the worst. CONCLUSIONS The combination of acoustics and cognitive behavioral therapy may be an effectively treat patients with chronic tinnitus. LEVEL OF EVIDENCE How common is the problem? Level 2. Is this diagnostic or monitoring test accurate? (Diagnosis) Level 1. What will happen if we do not add a therapy? (Prognosis) Level 1. Does this intervention help? (Treatment Benefits) Level 1. What are the COMMON harms? (Treatment Harms) Level 1. What are the RARE harms? (Treatment Harms) Level 1. Is this (early detection) test worthwhile? (Screening) Level 1I.
Collapse
Affiliation(s)
- Tingting Lu
- Shandong University of Traditional Chinese Medicine, First Clinical College of Medicine, Jinan, China
| | - Qingxin Wang
- The Second People's Hospital of Qingdao West Coast New District, Department of General Internal Medicine, Qingdao, China
| | - Ziyan Gu
- Shandong University of Traditional Chinese Medicine, First Clinical College of Medicine, Jinan, China
| | - Zefang Li
- Shandong University of Traditional Chinese Medicine, First Clinical College of Medicine, Jinan, China
| | - Zhaojun Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Physical and Mental Medicine, Jinan, China.
| |
Collapse
|
16
|
Yu Y, Zhang X, Nitsche MA, Vicario CM, Qi F. Does a single session of transcranial direct current stimulation enhance both physical and psychological performance in national- or international-level athletes? A systematic review. Front Physiol 2024; 15:1365530. [PMID: 38962069 PMCID: PMC11220198 DOI: 10.3389/fphys.2024.1365530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Some studies showed that a single session of transcranial direct current stimulation (tDCS) has the potential of modulating motor performance in healthy and athletes. To our knowledge, previously published systematic reviews have neither comprehensively investigated the effects of tDCS on athletic performance in both physical and psychological parameters nor investigated the effects of tDCS on high-level athletes. We examined all available research testing a single session of tDCS on strength, endurance, sport-specific performance, emotional states and cognitive performance for better application in competition and pre-competition trainings of national- or international-level athletes. A systematic search was conducted in PubMed, Web of Science, EBSCO, Embase, and Scopus up until to June 2023. Studies were eligible when participants had sports experience at a minimum of state and national level competitions, underwent a single session of tDCS without additional interventions, and received either sham tDCS or no interventions in the control groups. A total of 20 experimental studies (224 participants) were included from 18 articles. The results showed that a single tDCS session improved both physical and psychological parameters in 12 out of the 18 studies. Of these, six refer to the application of tDCS on the motor system (motor cortex, premotor cortex, cerebellum), five on dorsolateral prefrontal cortex and two on temporal cortex. The most sensitive to tDCS are strength, endurance, and emotional states, improved in 67%, 75%, and 75% of studies, respectively. Less than half of the studies showed improvement in sport-specific tasks (40%) and cognitive performance (33%). We suggest that tDCS is an effective tool that can be applied to competition and pre-competition training to improve athletic performance in national- or international-level athletes. Further research would explore various parameters (type of sports, brain regions, stimulation protocol, athlete level, and test tasks) and neural mechanistic studies in improving efficacy of tDCS interventions. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022326989, identifier CRD42022326989.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Xinbi Zhang
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Carmelo M. Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina, Italy
| | - Fengxue Qi
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| |
Collapse
|
17
|
Kochanowski B, Kageki-Bonnert K, Pinkerton EA, Dougherty DD, Chou T. A Review of Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation Combined with Medication and Psychotherapy for Depression. Harv Rev Psychiatry 2024; 32:77-95. [PMID: 38728568 DOI: 10.1097/hrp.0000000000000396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
LEARNING OBJECTIVES After participating in this CME activity, the psychiatrist should be better able to:• Compare and contrast therapies used in combination with transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) for treating MDD. BACKGROUND Noninvasive neuromodulation, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has emerged as a major area for treating major depressive disorder (MDD). This review has two primary aims: (1) to review the current literature on combining TMS and tDCS with other therapies, such as psychotherapy and psychopharmacological interventions, and (2) to discuss the efficacy, feasibility, limitations, and future directions of these combined treatments for MDD. METHOD This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched three databases: PubMed, PsycInfo, and Cochrane Library. The last search date was December 5, 2023. RESULTS The initial search revealed 2,519 records. After screening and full-text review, 58 studies (7 TMS plus psychotherapy, 32 TMS plus medication, 7 tDCS plus psychotherapy, 12 tDCS plus medication) were included. CONCLUSIONS The current literature on tDCS and TMS paired with psychotherapy provides initial support for integrating mindfulness interventions with both TMS and tDCS. Adding TMS or tDCS to stable doses of ongoing medications can decrease MDD symptoms; however, benzodiazepines may interfere with TMS and tDCS response, and antipsychotics can interfere with TMS response. Pairing citalopram with TMS and sertraline with tDCS can lead to greater MDD symptom reduction compared to using these medications alone. Future studies need to enroll larger samples, include randomized controlled study designs, create more uniform protocols for combined treatment delivery, and explore mechanisms and predictors of change.
Collapse
Affiliation(s)
- Brian Kochanowski
- From Harvard Medical School, Division of Neurotherapeutics, Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
| | | | | | | | | |
Collapse
|
18
|
Mavroudis I, Kazis D, Kamal FZ, Gurzu IL, Ciobica A, Pădurariu M, Novac B, Iordache A. Understanding Functional Neurological Disorder: Recent Insights and Diagnostic Challenges. Int J Mol Sci 2024; 25:4470. [PMID: 38674056 PMCID: PMC11050230 DOI: 10.3390/ijms25084470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Functional neurological disorder (FND), formerly called conversion disorder, is a condition characterized by neurological symptoms that lack an identifiable organic purpose. These signs, which can consist of motor, sensory, or cognitive disturbances, are not deliberately produced and often vary in severity. Its diagnosis is predicated on clinical evaluation and the exclusion of other medical or psychiatric situations. Its treatment typically involves a multidisciplinary technique addressing each of the neurological symptoms and underlying psychological factors via a mixture of medical management, psychotherapy, and supportive interventions. Recent advances in neuroimaging and a deeper exploration of its epidemiology, pathophysiology, and clinical presentation have shed new light on this disorder. This paper synthesizes the current knowledge on FND, focusing on its epidemiology and underlying mechanisms, neuroimaging insights, and the differentiation of FND from feigning or malingering. This review highlights the phenotypic heterogeneity of FND and the diagnostic challenges it presents. It also discusses the significant role of neuroimaging in unraveling the complex neural underpinnings of FND and its potential in predicting treatment response. This paper underscores the importance of a nuanced understanding of FND in informing clinical practice and guiding future research. With advancements in neuroimaging techniques and growing recognition of the disorder's multifaceted nature, the paper suggests a promising trajectory toward more effective, personalized treatment strategies and a better overall understanding of the disorder.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat 26000, Morocco
| | - Irina-Luciana Gurzu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania (A.I.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue 20th A, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Manuela Pădurariu
- “Socola” Institute of Psychiatry, Șoseaua Bucium 36, 700282 Iasi, Romania;
| | - Bogdan Novac
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania (A.I.)
| | - Alin Iordache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania (A.I.)
| |
Collapse
|
19
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
20
|
Luppi JJ, Stam CJ, Scheltens P, de Haan W. Virtual neural network-guided optimization of non-invasive brain stimulation in Alzheimer's disease. PLoS Comput Biol 2024; 20:e1011164. [PMID: 38232116 PMCID: PMC10824453 DOI: 10.1371/journal.pcbi.1011164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/29/2024] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.
Collapse
Affiliation(s)
- Janne J. Luppi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Qi F, Nitsche MA, Ren X, Wang D, Wang L. Top-down and bottom-up stimulation techniques combined with action observation treatment in stroke rehabilitation: a perspective. Front Neurol 2023; 14:1156987. [PMID: 37497013 PMCID: PMC10367110 DOI: 10.3389/fneur.2023.1156987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Stroke is a central nervous system disease that causes structural lesions and functional impairments of the brain, resulting in varying types, and degrees of dysfunction. The bimodal balance-recovery model (interhemispheric competition model and vicariation model) has been proposed as the mechanism of functional recovery after a stroke. We analyzed how combinations of motor observation treatment approaches, transcranial electrical (TES) or magnetic (TMS) stimulation and peripheral electrical (PES) or magnetic (PMS) stimulation techniques can be taken as accessorial physical therapy methods on symptom reduction of stroke patients. We suggest that top-down and bottom-up stimulation techniques combined with action observation treatment synergistically might develop into valuable physical therapy strategies in neurorehabilitation after stroke. We explored how TES or TMS intervention over the contralesional hemisphere or the lesioned hemisphere combined with PES or PMS of the paretic limbs during motor observation followed by action execution have super-additive effects to potentiate the effect of conventional treatment in stroke patients. The proposed paradigm could be an innovative and adjunctive approach to potentiate the effect of conventional rehabilitation treatment, especially for those patients with severe motor deficits.
Collapse
Affiliation(s)
- Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Xiping Ren
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Duanwei Wang
- Shandong Mental Health Center, Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Key Laboratory of Exercise and Physical Fitness, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
22
|
Zheng Y, Tang S, Zheng H, Wang X, Liu L, Yang Y, Zhen Y, Zheng Z. Noise improves the association between effects of local stimulation and structural degree of brain networks. PLoS Comput Biol 2023; 19:e1010866. [PMID: 37167331 PMCID: PMC10205011 DOI: 10.1371/journal.pcbi.1010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Stimulation to local areas remarkably affects brain activity patterns, which can be exploited to investigate neural bases of cognitive function and modify pathological brain statuses. There has been growing interest in exploring the fundamental action mechanisms of local stimulation. Nevertheless, how noise amplitude, an essential element in neural dynamics, influences stimulation-induced brain states remains unknown. Here, we systematically examine the effects of local stimulation by using a large-scale biophysical model under different combinations of noise amplitudes and stimulation sites. We demonstrate that noise amplitude nonlinearly and heterogeneously tunes the stimulation effects from both regional and network perspectives. Furthermore, by incorporating the role of the anatomical network, we show that the peak frequencies of unstimulated areas at different stimulation sites averaged across noise amplitudes are highly positively related to structural connectivity. Crucially, the association between the overall changes in functional connectivity as well as the alterations in the constraints imposed by structural connectivity with the structural degree of stimulation sites is nonmonotonically influenced by the noise amplitude, with the association increasing in specific noise amplitude ranges. Moreover, the impacts of local stimulation of cognitive systems depend on the complex interplay between the noise amplitude and average structural degree. Overall, this work provides theoretical insights into how noise amplitude and network structure jointly modulate brain dynamics during stimulation and introduces possibilities for better predicting and controlling stimulation outcomes.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing (BABEC), Beijing, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| |
Collapse
|
23
|
Yuan Y, Wu Q, Wang X, Liu M, Yan J, Ji H. Low-intensity ultrasound stimulation modulates time-frequency patterns of cerebral blood oxygenation and neurovascular coupling of mouse under peripheral sensory stimulation state. Neuroimage 2023; 270:119979. [PMID: 36863547 DOI: 10.1016/j.neuroimage.2023.119979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Previous studies have demonstrated that transcranial ultrasound stimulation (TUS) not only modulates cerebral hemodynamics, neural activity, and neurovascular coupling characteristics in resting samples but also exerts a significant inhibitory effect on the neural activity in task samples. However, the effect of TUS on cerebral blood oxygenation and neurovascular coupling in task samples remains to be elucidated. To answer this question, we first used forepaw electrical stimulation of the mice to elicit the corresponding cortical excitation, and then stimulated this cortical region using different modes of TUS, and simultaneously recorded the local field potential using electrophysiological acquisition and hemodynamics using optical intrinsic signal imaging. The results indicate that for the mice under peripheral sensory stimulation state, TUS with a duty cycle of 50% can (1) enhance the amplitude of cerebral blood oxygenation signal, (2) reduce the time-frequency characteristics of evoked potential, (3) reduce the strength of neurovascular coupling in time domain, (4) enhance the strength of neurovascular coupling in frequency domain, and (5) reduce the time-frequency cross-coupling of neurovasculature. The results of this study indicate that TUS can modulate the cerebral blood oxygenation and neurovascular coupling in peripheral sensory stimulation state mice under specific parameters. This study opens up a new area of investigation for potential applicability of TUS in brain diseases related to cerebral blood oxygenation and neurovascular coupling.
Collapse
Affiliation(s)
- Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Qianqian Wu
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Xingran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, China.
| | - Hui Ji
- Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
24
|
Corlier J, Tadayonnejad R, Wilson AC, Lee JC, Marder KG, Ginder ND, Wilke SA, Levitt J, Krantz D, Leuchter AF. Repetitive transcranial magnetic stimulation treatment of major depressive disorder and comorbid chronic pain: response rates and neurophysiologic biomarkers. Psychol Med 2023; 53:823-832. [PMID: 34154683 PMCID: PMC9976020 DOI: 10.1017/s0033291721002178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) and chronic pain are highly comorbid, and pain symptoms are associated with a poorer response to antidepressant medication treatment. It is unclear whether comorbid pain also is associated with a poorer response to treatment with repetitive transcranial magnetic stimulation (rTMS). METHODS 162 MDD subjects received 30 sessions of 10 Hz rTMS treatment administered to the left dorsolateral prefrontal cortex (DLPFC) with depression and pain symptoms measured before and after treatment. For a subset of 96 patients, a resting-state electroencephalogram (EEG) was recorded at baseline. Clinical outcome was compared between subjects with and without comorbid pain, and the relationships among outcome, pain severity, individual peak alpha frequency (PAF), and PAF phase-coherence in the EEG were examined. RESULTS 64.8% of all subjects reported pain, and both depressive and pain symptoms were significantly reduced after rTMS treatment, irrespective of age or gender. Patients with severe pain were 27% less likely to respond to MDD treatment than pain-free individuals. PAF was positively associated with pain severity. PAF phase-coherence in the somatosensory and default mode networks was significantly lower for MDD subjects with pain who failed to respond to MDD treatment. CONCLUSIONS Pain symptoms improved after rTMS to left DLPFC in MDD irrespective of age or gender, although the presence of chronic pain symptoms reduced the likelihood of treatment response. Individual PAF and baseline phase-coherence in the sensorimotor and midline regions may represent predictors of rTMS treatment outcome in comorbid pain and MDD.
Collapse
Affiliation(s)
- Juliana Corlier
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Reza Tadayonnejad
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew C Wilson
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Jonathan C Lee
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Katharine G Marder
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Nathaniel D Ginder
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
- VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Scott A Wilke
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - David Krantz
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Service, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior, and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| |
Collapse
|
25
|
Moses TE, Gray E, Mischel N, Greenwald MK. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol Stress 2023; 22:100515. [PMID: 36691646 PMCID: PMC9860364 DOI: 10.1016/j.ynstr.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and how the body regulates these responses can provide insight into ways that psychobiological reactivity can be modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into these interventions may provide further insights into the brain circuits that modulate stress reactivity. This review focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will emphasize populations with no known pathology and consider how these results may translate to those with psychiatric pathologies.
Collapse
Affiliation(s)
| | | | | | - Mark K. Greenwald
- Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| |
Collapse
|
26
|
Kashyap R, Bhattacharjee S, Bharath RD, Venkatasubramanian G, Udupa K, Bashir S, Oishi K, Desmond JE, Chen SHA, Guan C. Variation of cerebrospinal fluid in specific regions regulates focality in transcranial direct current stimulation. Front Hum Neurosci 2022; 16:952602. [PMID: 36118967 PMCID: PMC9479459 DOI: 10.3389/fnhum.2022.952602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Conventionally, transcranial direct current stimulation (tDCS) aims to focalize the current reaching the target region-of-interest (ROI). The focality can be quantified by the dose-target-determination-index (DTDI). Despite having a uniform tDCS setup, some individuals receive focal stimulation (high DTDI) while others show reduced focality ("non-focal"). The volume of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) underlying each ROI govern the tDCS current distribution inside the brain, thereby regulating focality. Aim To determine the regional volume parameters that differentiate the focal and non-focal groups. Methods T1-weighted images of the brain from 300 age-sex matched adults were divided into three equal groups- (a) Young (20 ≤ × < 40 years), (b) Middle (40 ≤ × < 60 years), and (c) Older (60 ≤ × < 80 years). For each group, inter and intra-hemispheric montages with electrodes at (1) F3 and right supraorbital region (F3-RSO), and (2) CP5 and Cz (CP5-Cz) were simulated, targeting the left- Dorsolateral Prefrontal Cortex (DLPFC) and -Inferior Parietal Lobule (IPL), respectively. Both montages were simulated for two current doses (1 and 2 mA). For each individual head simulated for a tDCS configuration (montage and dose), the current density at each region-of-interest (ROI) and their DTDI were calculated. The individuals were categorized into two groups- (1) Focal (DTDI ≥ 0.75), and (2) Non-focal (DTDI < 0.75). The regional volume of CSF, GM, and WM of all the ROIs was determined. For each tDCS configuration and ROI, three 3-way analysis of variance was performed considering- (i) GM, (ii) WM, and (iii) CSF as the dependent variable (DV). The age group, sex, and focality group were the between-subject factors. For a given ROI, if any of the 3 DV's showed a significant main effect or interaction involving the focality group, then that ROI was classified as a "focal ROI." Results Regional CSF was the principal determinant of focality. For interhemispheric F3-RSO montage, interaction effect (p < 0.05) of age and focality was observed at Left Caudate Nucleus, with the focal group exhibiting higher CSF volume. The CSF volume of focal ROI correlated positively (r ∼ 0.16, p < 0.05) with the current density at the target ROI (DLPFC). For intrahemispheric CP5-Cz montage, a significant (p < 0.05) main effect was observed at the left pre- and post-central gyrus, with the focal group showing lower CSF volume. The CSF volume correlated negatively (r ∼ -0.16, p < 0.05) with current density at left IPL. The results were consistent for both current doses. Conclusion The CSF channels the flow of tDCS current between electrodes with focal ROIs acting like reservoirs of current. The position of focal ROI in the channel determines the stimulation intensity at the target ROI. For focal stimulation in interhemispheric F3-RSO, the proximity of focal ROI reserves the current density at the target ROI (DLPFC). In contrast, for intrahemispheric montage (CP5-Cz), the far-end location of focal ROI reduces the current density at the target (IPL).
Collapse
Affiliation(s)
- Rajan Kashyap
- Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sagarika Bhattacharjee
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Psychology, School of Social Sciences (SSS), Nanyang Technological University, Singapore, Singapore
| | - Rose Dawn Bharath
- Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Ganesan Venkatasubramanian
- InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Kenichi Oishi
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John E. Desmond
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - S. H. Annabel Chen
- Psychology, School of Social Sciences (SSS), Nanyang Technological University, Singapore, Singapore
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore, Singapore
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Bayat FK, Alp Mİ, Bostan S, Gülçür HÖ, Öztürk G, Güveniş A. An improved platform for cultured neuronal network electrophysiology: multichannel optogenetics integrated with MEAs. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:503-514. [PMID: 35930029 DOI: 10.1007/s00249-022-01613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Cultured neuronal networks (CNNs) are powerful tools for studying how neuronal representation and adaptation emerge in networks of controlled populations of neurons. To ensure the interaction of a CNN and an artificial setting, reliable operation in both open and closed loops should be provided. In this study, we integrated optogenetic stimulation with microelectrode array (MEA) recordings using a digital micromirror device and developed an improved research tool with a 64-channel interface for neuronal network control and data acquisition. We determined the ideal stimulation parameters including light intensity, frequency, and duty cycle for our configuration. This resulted in robust and reproducible neuronal responses. We also demonstrated both open and closed loop configurations in the new platform involving multiple bidirectional channels. Unlike previous approaches that combined optogenetic stimulation and MEA recordings, we did not use binary grid patterns, but assigned an adjustable-size, non-binary optical spot to each electrode. This approach allowed simultaneous use of multiple input-output channels and facilitated adaptation of the stimulation parameters. Hence, we advanced a 64-channel interface in that each channel can be controlled individually in both directions simultaneously without any interference or interrupts. The presented setup meets the requirements of research in neuronal plasticity, network encoding and representation, closed-loop control of firing rate and synchronization. Researchers who develop closed-loop control techniques and adaptive stimulation strategies for network activity will benefit much from this novel setup.
Collapse
Affiliation(s)
- F Kemal Bayat
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
| | - M İkbal Alp
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Sevginur Bostan
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - H Özcan Gülçür
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Albert Güveniş
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
28
|
Masina F, Montemurro S, Marino M, Manzo N, Pellegrino G, Arcara G. State-dependent tDCS modulation of the somatomotor network: A MEG study. Clin Neurophysiol 2022; 142:133-142. [PMID: 36037749 DOI: 10.1016/j.clinph.2022.07.508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a non-invasive technique widely used to investigate brain excitability and activity. However, the variability in both brain and behavioral responses to tDCS limits its application for clinical purposes. This study aims to shed light on state-dependency, a phenomenon that contributes to the variability of tDCS. METHODS To this aim, we investigated changes in spectral activity and functional connectivity in somatomotor regions after Real and Sham tDCS using generalized additive mixed models (GAMMs), which allowed us to investigate how modulation depends on the initial state of the brain. RESULTS Results showed that changes in spectral activity, but not connectivity, in the somatomotor regions depend on the initial state of the brain, confirming state-dependent effects. Specifically, we found a non-linear interaction between stimulation conditions (Real vs Sham) and initial state: a reduction of alpha and beta power was observed only in participants that had higher alpha and beta power before Real tDCS. CONCLUSIONS This study highlights the importance of considering state-dependency to tDCS and shows how it can be taken into account with appropriate statistical models. SIGNIFICANCE Our findings bear insight into tDCS mechanisms, potentially leading to discriminate between tDCS responders and non-responders.
Collapse
Affiliation(s)
| | | | - Marco Marino
- IRCCS San Camillo Hospital, Venice, Italy; Department of Movement Sciences, Research Center for Motor Control and Neuroplasticity, KU Leuven, Belgium.
| | - Nicoletta Manzo
- IRCCS San Camillo Hospital, Venice, Italy; Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.
| | | | | |
Collapse
|
29
|
Briley PM, Webster L, Boutry C, Cottam WJ, Auer DP, Liddle PF, Morriss R. Resting-state functional connectivity correlates of anxiety co-morbidity in major depressive disorder. Neurosci Biobehav Rev 2022; 138:104701. [PMID: 35598819 DOI: 10.1016/j.neubiorev.2022.104701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/17/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Major depressive disorder (MDD) is frequently co-morbid with anxiety disorders. The co-morbid state has poorer functional outcomes and greater resistance to first line treatments, highlighting the need for novel treatment targets. This systematic review examined differences in resting-state brain connectivity associated with anxiety comorbidity in young- and middle-aged adults with MDD, with the aim of identifying novel targets for neuromodulation treatments, as these treatments are thought to work partly by altering dysfunctional connectivity pathways. Twenty-one studies met inclusion criteria, including a total of 1292 people with MDD. Only two studies included people with MDD and formally diagnosed co-morbid anxiety disorders; the remainder included people with MDD with dimensional anxiety measurement. The quality of most studies was judged as fair. Results were heterogeneous, partly due to a focus on a small set of connectivity relationships within individual studies. There was evidence for dysconnectivity between the amygdala and other brain networks in co-morbid anxiety, and an indication that abnormalities of default mode network connectivity may play an underappreciated role in this condition.
Collapse
Affiliation(s)
- P M Briley
- Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK; Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK.
| | - L Webster
- Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| | - C Boutry
- Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - W J Cottam
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK; Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - D P Auer
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK; Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - P F Liddle
- Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - R Morriss
- Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
30
|
Martinotti G, Pettorruso M, Montemitro C, Spagnolo PA, Acuti Martellucci C, Di Carlo F, Fanella F, di Giannantonio M. Repetitive transcranial magnetic stimulation in treatment-seeking subjects with cocaine use disorder: A randomized, double-blind, sham-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110513. [PMID: 35074451 DOI: 10.1016/j.pnpbp.2022.110513] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cocaine use disorder (CUD) is a chronic and relapsing brain disorder with no approved treatments. Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in open label and single-blind studies, reducing cocaine craving and consumption. Although, large randomized, double-blind, controlled trials are still missing. OBJECTIVE This multi-center, randomized, double-blind, sham-controlled study was designed to evaluate the safety and efficacy of multiple sessions of active rTMS compared to sham stimulation in patients with CUD. METHODS rTMS (15 Hz, 2 daily sessions for 5 days/week,for a total of 20 stimulation sessions) was delivered over the left DLPFC for two weeks of continuous treatment followed by 12 weeks of maintenance (1 day/week, twice a day), in a double-blind, randomized sham-controlled design. Our primary outcomes included self-reported cue-induced craving and cocaine consumption, as measured by percentage of negative urine tests. Our secondary outcomes included: 1) changes in depressive symptoms; 2) changes in cocaine withdrawal symptoms; and 3) changes in self-reported days of cocaine use. RESULTS Forty-two outpatients with CUD were enrolled in the active rTMS group and 38 patients in the sham group. We observed a significant decrease in self-reported cue-induced cocaine craving and consumption in both the active rTMS and sham, whereas no main effect of treatment was found. However, the active rTMS group showed greater changes in depressive symptoms. The improvement on depressive symptomatology was particularly marked among patients receiving a total number of rTMS sessions greater than 40 and those reporting more severe depressive symptoms at baseline. CONCLUSIONS A significant improvement of CUD symptoms during active rTMS treatment was observed. However, we did not observe significant differences in cocaine craving and consumption between treatment groups, highlighting the complexity of factors contributing to CUD maintenance. A significant improvement in depressive symptoms was observed in favour of the active group. Clinical trial registration details:clinicaltrials.govidentifierNCT03333460.
Collapse
Affiliation(s)
- Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, UK; SRP Villa Maria Pia, Mental Health and Addiction Inpatient Unit, Rome, Italy.
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Chiara Montemitro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; National Institute of Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Primavera Alessandra Spagnolo
- National Institute of Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States; National Institute on Neurological Disorders and Stroke, Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| | | | - Francesco Di Carlo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | | | - Massimo di Giannantonio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | | |
Collapse
|
31
|
Dobrushina OR, Dobrynina LA, Arina GA, Kremneva EI, Novikova ES, Gubanova MV, Pechenkova EV, Suslina AD, Aristova VV, Trubitsyna VV, Krotenkova MV. Enhancing Brain Connectivity With Infra-Low Frequency Neurofeedback During Aging: A Pilot Study. Front Hum Neurosci 2022; 16:891547. [PMID: 35712529 PMCID: PMC9195620 DOI: 10.3389/fnhum.2022.891547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with decreased functional connectivity in the main brain networks, which can underlie changes in cognitive and emotional processing. Neurofeedback is a promising non-pharmacological approach for the enhancement of brain connectivity. Previously, we showed that a single session of infra-low frequency neurofeedback results in increased connectivity between sensory processing networks in healthy young adults. In the current pilot study, we aimed to evaluate the possibility of enhancing brain connectivity during aging with the use of infra-low frequency neurofeedback. Nine females aged 52 ± 7 years with subclinical signs of emotional dysregulation, including anxiety, mild depression, and somatoform symptoms, underwent 15 sessions of training. A resting-state functional MRI scan was acquired before and after the training. A hypothesis-free intrinsic connectivity analysis showed increased connectivity in regions in the bilateral temporal fusiform cortex, right supplementary motor area, left amygdala, left temporal pole, and cerebellum. Next, a seed-to-voxel analysis for the revealed regions was performed using the post- vs. pre-neurofeedback contrast. Finally, to explore the whole network of neurofeedback-related connectivity changes, the regions revealed by the intrinsic connectivity and seed-to-voxel analyses were entered into a network-based statistical analysis. An extended network was revealed, including the temporal and occipital fusiform cortex, multiple areas from the visual cortex, the right posterior superior temporal sulcus, the amygdala, the temporal poles, the superior parietal lobule, and the supplementary motor cortex. Clinically, decreases in alexithymia, depression, and anxiety levels were observed. Thus, infra-low frequency neurofeedback appears to be a promising method for enhancing brain connectivity during aging, and subsequent sham-controlled studies utilizing larger samples are feasible.
Collapse
Affiliation(s)
- Olga R. Dobrushina
- Third Neurological Department, Research Center of Neurology, Moscow, Russia
- *Correspondence: Olga R. Dobrushina
| | | | - Galina A. Arina
- Faculty of Psychology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena I. Kremneva
- Department of Radiology, Research Center of Neurology, Moscow, Russia
| | | | - Mariia V. Gubanova
- Third Neurological Department, Research Center of Neurology, Moscow, Russia
| | | | | | - Vlada V. Aristova
- Third Neurological Department, Research Center of Neurology, Moscow, Russia
- Faculty of Psychology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
32
|
Chen D, Lei X, Du L, Long Z. Use of machine learning in predicting the efficacy of repetitive transcranial magnetic stimulation on treating depression based on functional and structural thalamo-prefrontal connectivity: A pilot study. J Psychiatr Res 2022; 148:88-94. [PMID: 35121273 DOI: 10.1016/j.jpsychires.2022.01.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, safe, and efficacious treatment for major depressive disorder (MDD). However, the antidepressant efficacy of rTMS greatly varies across individual patients. Thus, markers that can be used to predict the outcome of rTMS treatment at the individual level must be identified. Thalamo-cortical connectivity was abnormal in patients with MDD, and was normalized after rTMS treatment. In the current study, we investigated whether the resting-state functional and structural thalamo-cortical connectivity could be utilized to predict the rTMS treatment efficacy by employing support vector machine regression analysis. Results showed that the Hamilton Depression Scale scores of patients with MDD decreased after rTMS treatment. The functional connectivity of mediodorsal nucleus with prefrontal cortex predicted the rTMS treatment improvement, whereas the functional connectivity of other thalamic nuclei with cerebral cortex did not predict the treatment efficacy. The brain areas that contributed the most to the prediction were dorsal lateral prefrontal cortex, ventral lateral, and orbital and medial prefrontal areas. The improvement in the outcome of rTMS treatment could also be predicted by the thalamo-prefrontal structural connectivity. No statistically significantly difference in thalamo-cortical connectivity was observed between early improvers and early non-improvers. These results suggested that the thalamo-prefrontal connectivity can predict the rTMS treatment improvement. This study highlighted the crucial role of the thalamo-prefrontal connectivity as a neuroimaging marker in the treatment of depression via rTMS.
Collapse
Affiliation(s)
- Danni Chen
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Lian Du
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China.
| |
Collapse
|
33
|
Szabo YZ, Burns CM, Lantrip C. Understanding associations between rumination and inflammation: A scoping review. Neurosci Biobehav Rev 2022; 135:104523. [PMID: 34998832 PMCID: PMC8957598 DOI: 10.1016/j.neubiorev.2022.104523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
A growing body of evidence suggests that rumination, or focused attention on mental representations of negative events, may have physiological consequences that adversely affect long term health. We conducted a scoping review on quantitative studies of humans examining associations between rumination and inflammation, which included 13 studies representing 14 samples and 1,102 unique participants. The review included 8 biomarkers measured in plasma, serum and saliva (C reactive protein, and C-C motif chemokine 11, interleukin (IL)- 1β, IL-4, IL-6, IL-8, IL-10 and tumor necrosis factor alpha). More consistent findings of an association between greater rumination and increased inflammation were found in studies that used experimental designs and manipulated rumination. Emerging research suggests rumination may interact with other factors (e.g., socioeconomic status, anxiety) to predict inflammation. This review offers an up to date synthesis of the emerging research focused on rumination and inflammation. The relationship between inflammation and rumination may be contingent on how rumination is conceptualized and measured, as well as the measure of inflammation (i.e., at rest/ in response to stress).
Collapse
Affiliation(s)
- Yvette Z Szabo
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Drive (151C), Waco, TX, 76711, United States; Department of Health, Human Performance and Recreation, Baylor University, 97313 One Bear Place, Waco, TX, 76798, United States.
| | - Christina M Burns
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Drive (151C), Waco, TX, 76711, United States
| | - Crystal Lantrip
- Department of Veterans Affairs, VISN 17 Center of Excellence for Research on Returning War Veterans, 4800 Memorial Drive (151C), Waco, TX, 76711, United States; Department of Psychology and Neuroscience, Baylor University, 97334 One Bear Place, Waco, TX, United States
| |
Collapse
|
34
|
Iordan AD, Ryan S, Tyszkowski T, Peltier SJ, Rahman-Filipiak A, Hampstead BM. High-definition transcranial direct current stimulation enhances network segregation during spatial navigation in mild cognitive impairment. Cereb Cortex 2022; 32:5230-5241. [PMID: 35134853 PMCID: PMC9667179 DOI: 10.1093/cercor/bhac010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
Spatial navigation is essential for everyday life and relies on complex network-level interactions. Recent evidence suggests that transcranial direct current stimulation (tDCS) can influence the activity of large-scale functional brain networks. We characterized brain-wide changes in functional network segregation (i.e. the balance of within vs. between-network connectivity strength) induced by high-definition (HD) tDCS in older adults with mild cognitive impairment (MCI) during virtual spatial navigation. Twenty patients with MCI and 22 cognitively intact older adults (healthy controls-HC) underwent functional magnetic resonance imaging following two counterbalanced HD-tDCS sessions (one active, one sham) that targeted the right parietal cortex (center anode at P2) and delivered 2 mA for 20 min. Compared to HC, MCI patients showed lower brain-wide network segregation following sham HD-tDCS. However, following active HD-tDCS, MCI patients' network segregation increased to levels similar to those in HC, suggesting functional normalization. Follow-up analyses indicated that the increase in network segregation for MCI patients was driven by HD-tDCS effects on the "high-level"/association brain networks, in particular the dorsal-attention and default-mode networks. HD-tDCS over the right parietal cortex may normalize the segregation/integration balance of association networks during spatial navigation in MCI patients, highlighting its potential to restore brain activity in Alzheimer's disease.
Collapse
Affiliation(s)
- Alexandru D Iordan
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA,Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shannon Ryan
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Troy Tyszkowski
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Scott J Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Annalise Rahman-Filipiak
- Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin M Hampstead
- Corresponding author: University of Michigan, 2101 Commonwealth Blvd Ste C, Ann Arbor, MI 48105, USA.
| |
Collapse
|
35
|
Elder GJ, Colloby SJ, Firbank MJ, Taylor JP. Quantifying test-retest reliability of repeated objective attentional measures in Lewy body dementia. J Neurol 2022; 269:3605-3613. [PMID: 35084558 PMCID: PMC9217900 DOI: 10.1007/s00415-022-10977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
Objective cognitive impairment is a feature of Lewy body dementia (LBD), and computerised attentional tasks are commonly used as outcome measures in interventional trials. However, the reliability of these measures, in the absence of interventions, are unknown. This study examined the reliability of these attentional measures at short-term and longer-term follow-up stages. LBD patients (n = 36) completed computerised attentional tasks [simple and choice reaction time, and digit vigilance (SRT, CRT, DV)] at short-term (Day 0–Day 5) and longer-term (4 and 12 weeks) follow-up. Intra-class correlations (ICCs) were calculated to assess test–retest reliability. At short-term, the reciprocal SRT, CRT and DV mean reaction time to correct answers, the reciprocal DV coefficient of variation, and reciprocal power of attention (PoA) all showed excellent levels of reliability (all ICCs > 0.90). The reciprocal PoA showed the highest level of reliability (ICC = 0.978). At longer-term follow-up, only the reciprocal PoA had excellent levels of reliability (ICC = 0.927). Reciprocal SRT, CRT and DV reaction time to correct answers, and the CRT coefficient of variation values, showed good levels of test–retest reliability (ICCs ≥ 0.85). Contrary to expectations, most attentional measures demonstrated high levels of test–retest reliability at both short-term and longer-term follow-up time points. The reciprocal PoA composite measure demonstrated excellent levels of test–retest reliability, both in the short-term and long-term. This indicates that objective attentional tasks are suitable outcome measures in LBD studies and that the composite PoA measure may offer the highest levels of reliability.
Collapse
Affiliation(s)
- Greg J Elder
- Northumbria Sleep Research, Department of Psychology, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK. .,Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Sean J Colloby
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
36
|
Chen H, Hu X, Gao J, Han H, Wang X, Xue C. Early Effects of Repetitive Transcranial Magnetic Stimulation Combined With Sertraline in Adolescents With First-Episode Major Depressive Disorder. Front Psychiatry 2022; 13:853961. [PMID: 35928782 PMCID: PMC9343750 DOI: 10.3389/fpsyt.2022.853961] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Adolescence is a period of high incidence for depression. However, there is a limited treatment option for the adolescent depression. For treatment-resistant major depressive disorder, HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) appears therapeutically effective. The aim of the study is to explore the early effects of repetitive transcranial magnetic stimulation in combination with sertraline in adolescents with first-episode major depressive disorder. METHODS A total of 100 teenage patients with first-episode depression were randomly divided into the study groups. Both groups were treated with sertraline. In addition, the study group was treated with ten sessions of add-on rTMS. The control group was given sertraline only. The depressive symptom and cognitive function were assessed by the Hamilton depression rating scale 17 version (HAMD-17), Children's Depression Rating Scale-Revised (CDRS-R), Integrated visual and auditory continuous performance test (IVA-CPT), and THINC-it. RESULTS The number of early improvers after 2 weeks of treatment in the study group was statistically significant higher compared to the control group (95.83% vs 73.47%, χ2 = 9.277, P = 0.002). There was significant difference observed in responder rates (62.50% vs. 28.57%, χ2 = 11.262, P = 0.001) or in remission rates (31.25% vs. 6.12%, χ2 = 10.130, P = 0.001) between the two groups at 4 weeks. The score of HAMD-17 and CDRS-R in the study group were significantly lower than the control group (Fgroup = 12.91 vs 10.21, P < 0.05). Attention Quotient (listening, visual and full-scale) attention quotient of IVA-CPT in the study group were higher than those in the control group after treatment, and the differences were statistically significant(P < 0.05). The study group showed higher score in Spotter than the control group after treatment (P < 0.05). DISCUSSION This is the most extensive blinded, randomized clinical study to date examining the efficacy of 10-Hz add-on rTMS for first-onset adolescent depression. Our results support that add-on rTMS accelerates the efficacy of the antidepressants, improving the depressive symptoms and cold cognitive function in first-episode adolescent depression. CLINICAL TRIAL REGISTRATION [www.ClinicalTrials.gov], identifier [ChiCTR2100048534].
Collapse
Affiliation(s)
- Haisi Chen
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwen Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingfang Gao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huan Han
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaole Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Chuang Xue
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Konicar L, Prillinger K, Klöbl M, Lanzenberger R, Antal A, Plener PL. Brain Stimulation for Emotion Regulation in Adolescents With Psychiatric Disorders: Study Protocol for a Clinical-Transdiagnostical, Randomized, Triple-Blinded and Sham-Controlled Neurotherapeutic Trial. Front Psychiatry 2022; 13:840836. [PMID: 35546931 PMCID: PMC9082670 DOI: 10.3389/fpsyt.2022.840836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Anxiety, conduct and depressive disorders represent three highly prevalent psychiatric conditions in adolescents. A shared underpinning of these disorders is a shortcoming in emotion regulation, connected to the functioning of the ventromedial prefrontal cortex. Thus, an intervention able to target the suggested neural correlate seems to be highly desirable, aiming to hinder a maladaptive development of emotion regulation abilities and chronification of associated psychiatric disorders. As transcranial direct current stimulation (tDCS) was repeatedly demonstrated as a safe and non-invasive method to modulate specific brain activity, research is in demand to evaluate neurotherapeutic applications in adolescents with psychiatric disorders. METHOD This transdiagnostic, randomized, triple-blind and sham-controlled clinical neurostimulation trial primary aims to investigate if emotion regulation abilities are increased after tDCS in adolescents with psychiatric disorders. Secondly, disorder-specific changes in the anxiety, depression or conduct disorder will be investigated, as well as changes in quality of life, and cognitive and emotional functioning after tDCS intervention. We will include 108 adolescents with psychiatric disorders, displaying a substantial deficit in emotion regulation. Of these, one third each has to be primarily diagnosed with a depressive, anxiety or conduct disorder, respectively. Participants will be randomized to the experimental group (n = 54) receiving real anodal tDCS, or to the control group (n = 54) receiving sham tDCS. Brain stimulation will be applied for 20 min on five consecutive days twice targeting the ventromedial prefrontal cortex (vmPFC). Changes in emotion regulation, together with changes in disorder-specific clinical symptoms will be recorded by multi-informant psychological ratings. To inspect changes in behavior and gaze, computerized tasks and an eye tracker system will be used. Changes in brain responses to emotional and cognitive stimuli will be examined with three functional magnetic resonance imaging (fMRI) paradigms. In addition, a resting state MRI will be acquired to investigate possible changes in brain connectivity. DISCUSSION By investigating "emotion regulation" as transdiagnostic treatment target, this project is oriented toward the Research Domain Criteria framework with a dimensional view on mental illness. The study aims at investigating the potential of tDCS as non-invasive intervention for depressive, anxiety and conduct disorders in adolescents and broadening the scientific foundation for its clinical application. CLINICAL TRIAL REGISTRATION The study is ongoing and has been registered in the German Registry of Clinical Trials (DRKS-ID: DRKS00025601X) on the 28.06.2021.
Collapse
Affiliation(s)
- Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul L Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria.,Department of Child and Adolescents Psychiatry and Psychotherapy, Ulm University, Ulm, Germany
| |
Collapse
|
38
|
Implications of Transcranial Magnetic Stimulation as a Treatment Modality for Tinnitus. J Clin Med 2021; 10:jcm10225422. [PMID: 34830704 PMCID: PMC8622674 DOI: 10.3390/jcm10225422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive, neuromodulating technique for brain hyperexcitability disorders. The objective of this paper is to discuss the mechanism of action of rTMS as well as to investigate the literature involving the application of rTMS in the treatment of tinnitus. The reviewed aspects of the protocols included baseline evaluation, the total number of sessions, frequency and the total number of stimuli, the location of treatment, and the outcome measures. Even with heterogeneous protocols, most studies utilized validated tinnitus questionnaires as baseline and outcome measures. Low frequency (1 Hz) stimulation throughout 10 consecutive sessions was the most widely used frequency and treatment duration; however, there was no consensus on the total number of stimuli necessary to achieve significant results. The auditory cortex (AC) was the most targeted location, with most studies supporting changes in neural activity with multi-site stimulation to areas in the frontal cortex (FC), particularly the dorsolateral prefrontal cortex (DLPFC). The overall efficacy across most of the reviewed trials reveals positive statistically significant results. Though rTMS has proven to impact neuroplasticity at the microscopic and clinical level, further studies are warranted to demonstrate and support the clinical use of rTMS in tinnitus treatment with a standardized protocol.
Collapse
|
39
|
Gupta AK, Kumar A, Chandrashekhar N. Adjuvant treatment with repetitive transcranial magnetic stimulation in freshly diagnosed alcohol-dependence syndrome patients from an industry: An outcome study. Ind Psychiatry J 2021; 30:S93-S96. [PMID: 34908672 PMCID: PMC8611572 DOI: 10.4103/0972-6748.328795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies have suggested that repetitive transcranial magnetic stimulation (rTMS) could be efficacious in the treatment of major depression and other psychiatric indications. Alcohol-dependence syndrome is difficult to treat, and the relapse rate is high, even following the standard treatment protocol. No study has been done so far in India for the use of rTMS as an adjuvant therapy in the relapse prevention of patients with alcohol-dependence syndrome. Hence, the current study is an open-label study to explore the same. AIM The aim of this study was to study the feasibility of rTMS in alcohol-dependence syndrome patients, the side effects if any, and the number of relapses that they may suffer from vis-a-vis patients with standard treatment protocols. MATERIALS AND METHODS In a prospective, open-label study design, 100 freshly diagnosed cases of alcohol-dependence syndrome were included, and after suitable randomization, half of them were given adjuvant rTMS along with standard treatment and the rest received only standard treatment. The rates of relapse into drinking were compared for both groups. The data were compiled and analyzed with appropriate statistical methods. RESULTS Participants given adjuvant rTMS showed significantly less number of relapses into drinking compared to the control group on standard treatment for alcohol-dependence syndrome. CONCLUSION In the present study, though the sample size is small, a significant change with this novel treatment has been found. Whether this change is maintained over a period of time is to be seen by other longitudinal studies.
Collapse
Affiliation(s)
- Anindya Kumar Gupta
- Department of Psychiatry, Command Hospital Air Force, Base Hospital, Delhi, India
| | - Amit Kumar
- Department of Psychiatry, Command Hospital (AF), Bengaluru, Karnataka, India
| | | |
Collapse
|
40
|
Leuchter AF, Wilson AC, Vince-Cruz N, Corlier J. Novel method for identification of individualized resonant frequencies for treatment of Major Depressive Disorder (MDD) using repetitive Transcranial Magnetic Stimulation (rTMS): A proof-of-concept study. Brain Stimul 2021; 14:1373-1383. [PMID: 34425244 DOI: 10.1016/j.brs.2021.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD), but therapeutic benefit is highly variable. Clinical improvement is related to changes in brain circuits, which have preferred resonant frequencies (RFs) and vary across individuals. OBJECTIVE We developed a novel rTMS-electroencephalography (rTMS-EEG) interrogation paradigm to identify RFs using the association of power/connectivity measures with symptom severity and treatment outcome. METHODS 35 subjects underwent rTMS interrogation at 71 frequencies ranging from 3 to 17 Hz administered to left dorsolateral prefrontal cortex (DLPFC). rTMS-EEG was used to assess resonance in oscillatory power/connectivity changes (phase coherence [PC], envelope correlation [EC], and spectral correlation coefficient [SCC]) after each frequency. Multiple regression was used to detect relationships between 10 Hz resonance and baseline symptoms as well as clinical improvement after 10 sessions of 10 Hz rTMS treatment. RESULTS Baseline symptom severity was significantly associated with SCC resonance in left sensorimotor (SM; p < 0.0004), PC resonance in fronto-parietal (p = 0.001), and EC resonance in centro-posterior channels (p = 0.002). Subjects significantly improved with 10 sessions of rTMS treatment. Only decreased SCC SM resonance was significantly associated with clinical improvement (r = 0.35, p = 0.04). Subjects for whom 10 Hz SM SCC was highly ranked as an RF among all stimulation frequencies had better outcomes from 10 Hz treatment. CONCLUSIONS Resonance of 10 Hz stimulation measured using SCC correlated with both symptom severity and improvement with 10 Hz rTMS treatment. Research should determine whether this interrogation paradigm can identify individualized rTMS treatment frequencies.
Collapse
Affiliation(s)
- Andrew F Leuchter
- From the TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, And the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Andrew C Wilson
- From the TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, And the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nikita Vince-Cruz
- From the TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, And the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Juliana Corlier
- From the TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, And the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
41
|
Kearney-Ramos T, Haney M. Repetitive transcranial magnetic stimulation as a potential treatment approach for cannabis use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110290. [PMID: 33677045 PMCID: PMC9165758 DOI: 10.1016/j.pnpbp.2021.110290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/22/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023]
Abstract
The expanding legalization of cannabis across the United States is associated with increases in cannabis use, and accordingly, an increase in the number and severity of individuals with cannabis use disorder (CUD). The lack of FDA-approved pharmacotherapies and modest efficacy of psychotherapeutic interventions means that many of those who seek treatment for CUD relapse within the first few months. Consequently, there is a pressing need for innovative, evidence-based treatment development for CUD. Preliminary evidence suggests that repetitive transcranial magnetic stimulation (rTMS) may be a novel, non-invasive therapeutic neuromodulation tool for the treatment of a variety of substance use disorders (SUDs), including recently receiving FDA clearance (August 2020) for use as a smoking cessation aid in tobacco cigarette smokers. However, the potential of rTMS for CUD has not yet been reviewed. This paper provides a primer on therapeutic neuromodulation techniques for SUDs, with a particular focus on reviewing the current status of rTMS research in people who use cannabis. Lastly, future directions are proposed for rTMS treatment development in CUD, with suggestions for study design parameters and clinical endpoints based on current gold-standard practices for therapeutic neuromodulation research.
Collapse
Affiliation(s)
- Tonisha Kearney-Ramos
- New York State Psychiatric Institute, New York, NY, USA; Columbia University Irving Medical Center, New York, NY, USA.
| | - Margaret Haney
- New York State Psychiatric Institute, New York, New York, USA,Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
42
|
Corticolimbic Modulation via Intermittent Theta Burst Stimulation as a Novel Treatment for Functional Movement Disorder: A Proof-of-Concept Study. Brain Sci 2021; 11:brainsci11060791. [PMID: 34203993 PMCID: PMC8232716 DOI: 10.3390/brainsci11060791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroimaging studies suggest that corticolimbic dysfunctions, including increased amygdala reactivity to emotional stimuli and heightened fronto-amygdala coupling, play a central role in the pathophysiology of functional movement disorders (FMD). Transcranial magnetic stimulation (TMS) has the potential to probe and modulate brain networks implicated in neuropsychiatric disorders, including FMD. Therefore, the objective of this proof-of-concept study was to investigate the safety, tolerability and preliminary efficacy of fronto-amygdala neuromodulation via targeted left prefrontal intermittent theta burst stimulation (iTBS) on brain and behavioral manifestations of FMD. Six subjects with a clinically defined diagnosis of FMD received three open-label iTBS sessions per day for two consecutive study visits. Safety and tolerability were assessed throughout the trial. Amygdala reactivity to emotionally valenced stimuli presented during an fMRI task and fronto-amygdala connectivity at rest were evaluated at baseline and after each stimulation visit, together with subjective levels of arousal and valence in response to affective stimuli. The FMD symptom severity was assessed at baseline, during treatment and 24 h after the last iTBS session. Multiple doses of iTBS were well-tolerated by all participants. Intermittent TBS significantly decreased fronto-amygdala connectivity and influenced amygdala reactivity to emotional stimuli. These neurocircuitry changes were associated to a marked reduction in FMD symptom severity. Corticolimbic modulation via iTBS represents a promising treatment for FMD that warrants additional research.
Collapse
|
43
|
Yang K, Xi X, Wang T, Wang J, Kong W, Zhao YB, Zhang Q. Effects of transcranial direct current stimulation on brain network connectivity and complexity in motor imagery. Neurosci Lett 2021; 757:135968. [PMID: 34023412 DOI: 10.1016/j.neulet.2021.135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
Related experiments have shown that transcranial direct current stimulation (tDCS) anodal stimulation of the brain's primary motor cortex (M1) and supplementary motor area (SMA) can improve the motor control and clinical manifestations of stroke patients with aphasia and dyskinesia. In this study, to explore the different effects of tDCS on the M1 and SMA in motor imagery, 35 healthy volunteers participated in a double-blind randomized controlled experiment. Five subjects underwent sham stimulation (control), 15 subjects underwent tDCS anode stimulation of the M1, and the remaining 15 subjects underwent tDCS anode stimulation of the SMA. The electroencephalogram data of the subjects' left- and right-hand motor imagery under different stimulation paradigms were recorded. We used a functional brain network and sample entropy to examine the different complexities and functional connectivities in subjects undergoing sham-tDCS and the two stimulation paradigms. The results show that tDCS anodal stimulation of the SMA produces less obvious differences in the motor preparation phase, while tDCS anodal stimulation of the M1 produces significant differences during the motor imaging task execution phase. The effect of tDCS on the motor area of the brain is significant, especially in the M1.
Collapse
Affiliation(s)
- Kangbo Yang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Xugang Xi
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China.
| | - Ting Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Junhong Wang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Yun-Bo Zhao
- Department of Automation, University of Science and Technology of China, Hefei, 230026, China
| | - Qizhong Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
44
|
Luckhardt C, Boxhoorn S, Schütz M, Fann N, Freitag CM. Brain stimulation by tDCS as treatment option in Autism Spectrum Disorder-A systematic literature review. PROGRESS IN BRAIN RESEARCH 2021; 264:233-257. [PMID: 34167658 DOI: 10.1016/bs.pbr.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and interaction as well as stereotypical and repetitive behavior. Transcranial direct current stimulation (tDCS) has been proposed as a new intervention method in ASD with the potential to improve cognitive, motor and social communication abilities by targeting specific underlying neuronal alterations. Here, we report results of a systematic literature review on tDCS effects on EEG and behavioral outcomes, and discuss tDCS as treatment option for ASD. PsychInfo, PubMed, ScienceDirect, Web of Science, https://clinicaltrials.gov and the German Clinical Trials Register (Deutsches Register Klinischer Studien) were searched systematically for randomized, sham-controlled clinical trials of tDCS in individuals with ASD, and information regarding study designs and relevant results was extracted. Six eligible studies were identified. The dorsolateral prefrontal cortex (DLPFC) was targeted in four trials, with core ASD symptoms and working memory as outcome measures. One study targeted the primary motor cortex (M1) with motor skills as outcome, and one study targeted the temporoparietal junction (TPJ) with social communication skills as outcome measure. Comparison of the implemented study designs showed high methodological variability between studies regarding stimulation parameters, trial design and outcome measures. Study results indicate initial support for improved cognitive and social communication skills in ASD following tDCS stimulation. However, systematic and comparison studies on the best combination of stimulation intensity, duration, location as well as task related stimulation are necessary, before results can be translated into routine clinical application.
Collapse
Affiliation(s)
- Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.
| | - Sara Boxhoorn
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Magdalena Schütz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Nikola Fann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
45
|
Luckhardt C, Schütz M, Mühlherr A, Mössinger H, Boxhoorn S, Dempfle A, Salvador R, Ruffini G, Pereira HC, Castelo-Branco M, Latinus M, Bonnet-Brilhault F, Siemann J, Siniatchkin M, Ecker C, Freitag CM. Phase-IIa randomized, double-blind, sham-controlled, parallel group trial on anodal transcranial direct current stimulation (tDCS) over the left and right tempo-parietal junction in autism spectrum disorder-StimAT: study protocol for a clinical trial. Trials 2021; 22:248. [PMID: 33823927 PMCID: PMC8025356 DOI: 10.1186/s13063-021-05172-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by impaired social communication and interaction, and stereotyped, repetitive behaviour and sensory interests. To date, there is no effective medication that can improve social communication and interaction in ASD, and effect sizes of behaviour-based psychotherapy remain in the low to medium range. Consequently, there is a clear need for new treatment options. ASD is associated with altered activation and connectivity patterns in brain areas which process social information. Transcranial direct current stimulation (tDCS) is a technique that applies a weak electrical current to the brain in order to modulate neural excitability and alter connectivity. Combined with specific cognitive tasks, it allows to facilitate and consolidate the respective training effects. Therefore, application of tDCS in brain areas relevant to social cognition in combination with a specific cognitive training is a promising treatment approach for ASD. Methods A phase-IIa pilot randomized, double-blind, sham-controlled, parallel-group clinical study is presented, which aims at investigating if 10 days of 20-min multi-channel tDCS stimulation of the bilateral tempo-parietal junction (TPJ) at 2.0 mA in combination with a computer-based cognitive training on perspective taking, intention and emotion understanding, can improve social cognitive abilities in children and adolescents with ASD. The main objectives are to describe the change in parent-rated social responsiveness from baseline (within 1 week before first stimulation) to post-intervention (within 7 days after last stimulation) and to monitor safety and tolerability of the intervention. Secondary objectives include the evaluation of change in parent-rated social responsiveness at follow-up (4 weeks after end of intervention), change in other ASD core symptoms and psychopathology, social cognitive abilities and neural functioning post-intervention and at follow-up in order to explore underlying neural and cognitive mechanisms. Discussion If shown, positive results regarding change in parent-rated social cognition and favourable safety and tolerability of the intervention will confirm tDCS as a promising treatment for ASD core-symptoms. This may be a first step in establishing a new and cost-efficient intervention for individuals with ASD. Trial registration The trial is registered with the German Clinical Trials Register (DRKS), DRKS00014732. Registered on 15 August 2018. Protocol version This study protocol refers to protocol version 1.2 from 24 May 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05172-1.
Collapse
Affiliation(s)
- Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstr.50, 60528, Frankfurt, Germany.
| | - Magdalena Schütz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstr.50, 60528, Frankfurt, Germany
| | - Andreas Mühlherr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstr.50, 60528, Frankfurt, Germany
| | - Hannah Mössinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstr.50, 60528, Frankfurt, Germany
| | - Sara Boxhoorn
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstr.50, 60528, Frankfurt, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics (IMIS), Kiel University, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Ricardo Salvador
- Neuroelectrics SLU, Av. Tibidabo 47 Bis, 08035, Barcelona, Spain
| | - Giulio Ruffini
- Neuroelectrics SLU, Av. Tibidabo 47 Bis, 08035, Barcelona, Spain
| | - Helena C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Faculty of Medicine, Academic Clinical Centre, University of Coimbra (UC), Paco das Escolas, 3001 451, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Faculty of Medicine, Academic Clinical Centre, University of Coimbra (UC), Paco das Escolas, 3001 451, Coimbra, Portugal
| | - Marianne Latinus
- UMR 1253, iBrain, Université de Tours, Inserm, Centre de Pédopsychiatrie, CHRU Bretonneau, 2 bd Tonnellé, 37044, Tours Cedex 9, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, Inserm, Centre de Pédopsychiatrie, CHRU Bretonneau, 2 bd Tonnellé, 37044, Tours Cedex 9, France.,Centre Hospitalier Universitaire de Tours (CHUT), Centre Universitaire de Pédopsychiatrie, UMR930 INSERM / Equipe autism, CHRU Tours / Hôpital Bretonneau, 2 Bd Tonnellé, 37044, Tours Cedex 9, France
| | - Julia Siemann
- Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, EvKB, Remterweg 13a, 33617, Bielefeld, Germany
| | - Michael Siniatchkin
- Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, EvKB, Remterweg 13a, 33617, Bielefeld, Germany
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstr.50, 60528, Frankfurt, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Deutschordenstr.50, 60528, Frankfurt, Germany
| |
Collapse
|
46
|
Yin L, Chen X, Lu X, An Y, Zhang T, Yan J. An updated meta-analysis: repetitive transcranial magnetic stimulation for treating tinnitus. J Int Med Res 2021; 49:300060521999549. [PMID: 33729855 PMCID: PMC7975580 DOI: 10.1177/0300060521999549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective To undertake an updated meta-analysis to obtain more evidence from randomized
controlled trials (RCTs) to assess the effect of repetitive transcranial
magnetic stimulation (rTMS) for the treatment of tinnitus. Methods PubMed®, Embase®, Web of Science, Cochrane Database of Systematic Reviews,
CBM, CNKI and Wanfang were searched for RCTs from inception up to March
2020. Studies meeting the eligibility criteria were included in the
meta-analysis. The mean difference was calculated and the effect size was
evaluated using a Z test. Results The analysis included 12 randomized sham-controlled clinical trials with a
total of 717 participants. Active rTMS was superior to sham rTMS in terms of
the short-term and long-term effects (6 months) on the tinnitus handicap
inventory scores, but an immediate effect was not significant. There was no
significant immediate effect on the tinnitus questionnaire (TQ) and Beck
depression inventory (BDI) scores. Conclusions This meta-analysis demonstrated that rTMS improved tinnitus-related symptoms,
but the TQ and BDI scores demonstrated little immediate benefit. Future
research should be undertaken on large samples in multi-centre settings with
longer follow-up durations.
Collapse
Affiliation(s)
- Lu Yin
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Chen
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingang Lu
- Department of Traditional Chinese Medicine, Shanghai Key Laboratory of Clinical Geriatric Medicine, HuaDong Hospital, FuDan University, Shanghai, China
| | - Yun An
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Zhang
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juntao Yan
- Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Hao J, Luo W, Xie Y, Feng Y, Sun W, Peng W, Zhao J, Zhang P, Ding J, Wang X. Functional Network Alterations as Markers for Predicting the Treatment Outcome of Cathodal Transcranial Direct Current Stimulation in Focal Epilepsy. Front Hum Neurosci 2021; 15:637071. [PMID: 33815082 PMCID: PMC8009991 DOI: 10.3389/fnhum.2021.637071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique for focal epilepsy. Because epilepsy is a disease affecting the brain network, our study was aimed to evaluate and predict the treatment outcome of cathodal tDCS (ctDCS) by analyzing the ctDCS-induced functional network alterations. Methods Either the active 5-day, -1.0 mA, 20-min ctDCS or sham ctDCS targeting at the most active interictal epileptiform discharge regions was applied to 27 subjects suffering from focal epilepsy. The functional networks before and after ctDCS were compared employing graph theoretical analysis based on the functional magnetic resonance imaging (fMRI) data. A support vector machine (SVM) prediction model was built to predict the treatment outcome of ctDCS using the graph theoretical measures as markers. Results Our results revealed that the mean clustering coefficient and the global efficiency decreased significantly, as well as the characteristic path length and the mean shortest path length at the stimulation sites in the fMRI functional networks increased significantly after ctDCS only for the patients with response to the active ctDCS (at least 20% reduction rate of seizure frequency). Our prediction model achieved the mean prediction accuracy of 68.3% (mean sensitivity: 70.0%; mean specificity: 67.5%) after the nested cross validation. The mean area under the receiver operating curve was 0.75, which showed good prediction performance. Conclusion The study demonstrated that the response to ctDCS was related to the topological alterations in the functional networks of epilepsy patients detected by fMRI. The graph theoretical measures were promising for clinical prediction of ctDCS treatment outcome.
Collapse
Affiliation(s)
- Jiaxin Hao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhai Xie
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Feng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weifeng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Lang S, Gan LS, Yoon EJ, Hanganu A, Kibreab M, Cheetham J, Hammer T, Kathol I, Sarna J, Martino D, Monchi O. Theta-Burst Stimulation for Cognitive Enhancement in Parkinson's Disease With Mild Cognitive Impairment: A Randomized, Double-Blind, Sham-Controlled Trial. Front Neurol 2021; 11:584374. [PMID: 33408684 PMCID: PMC7779796 DOI: 10.3389/fneur.2020.584374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Mild cognitive impairment is a common non-motor symptom of Parkinson's disease (PD-MCI) and has minimal treatment options. Objective: In this double-blind, randomized, sham-controlled trial, we assessed the effect of repeated sessions of intermittent theta-burst stimulation over the left dorsolateral prefrontal cortex on cognition and brain connectivity in subjects with PD-MCI. Methods: Forty-one subjects were randomized to receive real (n = 21) or sham stimulation (n = 20). All subjects underwent neuropsychological assessments before, 1 day, and 1 month after stimulation. Subjects also underwent resting-state functional magnetic resonance imaging before and 48 h after stimulation. The primary outcome was the change in the cognitive domain (executive function, attention, memory, language, and visuospatial abilities) z-scores across time. Results: There was an insignificant effect on cognitive domain z-scores across time when comparing real with sham stimulation and correcting for multiple comparisons across cognitive domains (p > 0.05 Bonferroni correction). However, the real stimulation group demonstrated a trend toward improved executive functioning scores at the 1-month follow-up compared with sham (p < 0.05 uncorrected). After real stimulation, the connectivity of the stimulation site showed decreased connectivity to the left caudate head. There was no change in connectivity within or between the stimulation network (a network of cortical regions connected to the stimulation site) and the striatal network. However, higher baseline connectivity between the stimulation network and the striatal network was associated with improved executive function scores at 1 month. Conclusions: These results suggest that intermittent theta-burst stimulation over the dorsolateral prefrontal cortex in subjects with PD-MCI has minimal effect on cognition compared with sham, although there were trends toward improved executive function. This intervention may be more effective in subjects with higher baseline connectivity between the stimulation network and the striatal network. This trial supports further investigation focusing on executive function and incorporating connectivity-based targeting. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT03243214.
Collapse
Affiliation(s)
- Stefan Lang
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Non-invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - Liu Shi Gan
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Non-invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - Eun Jin Yoon
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Alexandru Hanganu
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Institut Universitaire de Gériatrie de Montréal, Centre de Recherche, Montréal, QC, Canada
| | - Mekale Kibreab
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Jenelle Cheetham
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Tracy Hammer
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Iris Kathol
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada
| | - Justyna Sarna
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Non-invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada
| | - Oury Monchi
- Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Non-invasive Neurostimulation Network, University of Calgary, Calgary, AB, Canada.,Institut Universitaire de Gériatrie de Montréal, Centre de Recherche, Montréal, QC, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
49
|
Pettorruso M, Miuli A, Di Natale C, Montemitro C, Zoratto F, De Risio L, d'Andrea G, Dannon PN, Martinotti G, di Giannantonio M. Non-invasive brain stimulation targets and approaches to modulate gambling-related decisions: A systematic review. Addict Behav 2021; 112:106657. [PMID: 32987305 DOI: 10.1016/j.addbeh.2020.106657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Despite intense neuroscience research on the neurobiological underpinnings of Gambling Disorder (GD) and gambling-related decision-making, effective treatments targeting these dysfunctions are still lacking. Non Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (TMS), selectively modulate activity of brain circuits and have the potential to reverse alterations sustaining GD symptoms. Therefore, the aim of this systematic review was to determine the impact of different NIBS interventions on gambling-related decision processes. METHODS We conducted a comprehensive and translational search in three online databases (MEDLINE via PubMed, Scopus, Web of Science), in accordance with the PRISMA guidelines. We included studies applying neuromodulation (TMS, tDCS) techniques in GD patients or assessing gambling-related decision-making in healthy subjects. In addition, we explored the potential impact of NIBS in drug-induced GD (e.g., Parkinson's Disease). RESULTS Twenty-seven studies have been included. We summarized results to detect the impact of different targets and stimulation/inhibition protocols in terms of gambling-related decision-making. The majority of both tDCS and TMS studies targeted the dorsolateral prefrontal cortex. Although heterogeneous in protocols and parameters, results from tDCS and TMS studies converge in indicating that the stimulation (instead of inhibition) of prefrontal regions could be beneficial to contrast dysfunctional gambling-related decision processes. CONCLUSION NIBS interventions show promise to be further tested in controlled clinical settings for the treatment of behavioral addictions. Further studies are also necessary to investigate connectivity changes and laterality issues (unilateral versus bilateral; left versus right) of NIBS application in GD.
Collapse
|
50
|
Abstract
It becomes increasingly clear that (non-)invasive neurostimulation is an effective treatment for obsessive-compulsive disorder (OCD). In this chapter we review the available evidence on techniques and targets, clinical results including a meta-analysis, mechanisms of action, and animal research. We focus on deep brain stimulation (DBS), but also cover non-invasive neurostimulation including transcranial magnetic stimulation (TMS). Data shows that most DBS studies target the ventral capsule/ventral striatum (VC/VS), with an overall 76% response rate in treatment-refractory OCD. Also TMS holds clinical promise. Increased insight in the normalizing effects of neurostimulation on cortico-striatal-thalamic-cortical (CSTC) loops - through neuroimaging and animal research - provides novel opportunities to further optimize treatment strategies. Advancing clinical implementation of neurostimulation techniques is essential to ameliorate the lives of the many treatment-refractory OCD patients.
Collapse
|