1
|
Lin Q, Jin S, Yin G, Li J, Asgher U, Qiu S, Wang J. Cortical Morphological Networks Differ Between Gyri and Sulci. Neurosci Bull 2025; 41:46-60. [PMID: 39044060 PMCID: PMC11748734 DOI: 10.1007/s12264-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 07/25/2024] Open
Abstract
This study explored how the human cortical folding pattern composed of convex gyri and concave sulci affected single-subject morphological brain networks, which are becoming an important method for studying the human brain connectome. We found that gyri-gyri networks exhibited higher morphological similarity, lower small-world parameters, and lower long-term test-retest reliability than sulci-sulci networks for cortical thickness- and gyrification index-based networks, while opposite patterns were observed for fractal dimension-based networks. Further behavioral association analysis revealed that gyri-gyri networks and connections between gyral and sulcal regions significantly explained inter-individual variance in Cognition and Motor domains for fractal dimension- and sulcal depth-based networks. Finally, the clinical application showed that only sulci-sulci networks exhibited morphological similarity reductions in major depressive disorder for cortical thickness-, fractal dimension-, and gyrification index-based networks. Taken together, these findings provide novel insights into the constraint of the cortical folding pattern to the network organization of the human brain.
Collapse
Affiliation(s)
- Qingchun Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Umer Asgher
- Department of Air Transport, Faculty of Transportation Sciences, Czech Technical University in Prague (CTU), Prague, 128 00, Czech Republic
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad, 44000, Pakistan
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, 510631, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Cheng Y, Lin L, Hou W, Qiu H, Deng C, Yan Z, Qian L, Cui W, Li Y, Yang Z, Chen Q, Su S. Altered individual-level morphological similarity network in children with growth hormone deficiency. J Neurodev Disord 2024; 16:48. [PMID: 39187797 PMCID: PMC11346214 DOI: 10.1186/s11689-024-09566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Accumulating evidences indicate regional grey matter (GM) morphology alterations in pediatric growth hormone deficiency (GHD); however, large-scale morphological brain networks (MBNs) undergo these patients remains unclear. OBJECTIVE To investigate the topological organization of individual-level MBNs in pediatric GHD. METHODS Sixty-one GHD and 42 typically developing controls (TDs) were enrolled. Inter-regional morphological similarity of GM was taken to construct individual-level MBNs. Between-group differences of topological parameters and network-based statistics analysis were compared. Finally, association relationship between network properties and clinical variables was analyzed. RESULTS Compared to TDs, GHD indicated a disturbance in the normal small-world organization, reflected by increased Lp, γ, λ, σ and decreased Cp, Eglob (all PFDR < 0.017). Regarding nodal properties, GHD exhibited increased nodal profiles at cerebellum 4-5, central executive network-related left inferior frontal gyrus, limbic regions-related right posterior cingulate gyrus, left hippocampus, and bilateral pallidum, thalamus (all PFDR < 0.05). Meanwhile, GHD exhibited decreased nodal profiles at sensorimotor network -related bilateral paracentral lobule, default-mode network-related left superior frontal gyrus, visual network -related right lingual gyrus, auditory network-related right superior temporal gyrus and bilateral amygdala, right cerebellum 3, bilateral cerebellum 10, vermis 1-2, 3, 4-5, 6 (all PFDR < 0.05). Furthermore, serum markers and behavior scores in GHD group were correlated with altered nodal profiles (P ≤ 0.046, uncorrected). CONCLUSION GHD undergo an extensive reorganization in large-scale individual-level MBNs, probably due to abnormal cortico-striatal-thalamo-cerebellum loops, cortico-limbic-cerebellum, dorsal visual-sensorimotor-striatal, and auditory-cerebellum circuitry. This study highlights the crucial role of abnormal morphological connectivity underlying GHD, which might result in their relatively slower development in motor, cognitive, and linguistic functional within behavior problem performance.
Collapse
Affiliation(s)
- Yanglei Cheng
- Department of Endocrine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Hou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaqiong Qiu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengfen Deng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Yanbing Li
- Department of Endocrine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuli Chen
- Department of Pediatric, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shu Su
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Wang Y, Li J, Jin S, Wang J, Lv Y, Zou Q, Wang J. Mapping morphological cortical networks with joint probability distributions from multiple morphological features. Neuroimage 2024; 296:120673. [PMID: 38851550 DOI: 10.1016/j.neuroimage.2024.120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024] Open
Abstract
Morphological features sourced from structural magnetic resonance imaging can be used to infer human brain connectivity. Although integrating different morphological features may theoretically be beneficial for obtaining more precise morphological connectivity networks (MCNs), the empirical evidence to support this supposition is scarce. Moreover, the incorporation of different morphological features remains an open question. In this study, we proposed a method to construct cortical MCNs based on multiple morphological features. Specifically, we adopted a multi-dimensional kernel density estimation algorithm to fit regional joint probability distributions (PDs) from different combinations of four morphological features, and estimated inter-regional similarity in the joint PDs via Jensen-Shannon divergence. We evaluated the method by comparing the resultant MCNs with those built based on different single morphological features in terms of topological organization, test-retest reliability, biological plausibility, and behavioral and cognitive relevance. We found that, compared to MCNs built based on different single morphological features, MCNs derived from multiple morphological features displayed less segregated, but more integrated network architecture and different hubs, had higher test-retest reliability, encompassed larger proportions of inter-hemispheric edges and edges between brain regions within the same cytoarchitectonic class, and explained more inter-individual variance in behavior and cognition. These findings were largely reproducible when different brain atlases were used for cortical parcellation. Further analysis of macaque MCNs revealed weak, but significant correlations with axonal connectivity from tract-tracing, independent of the number of morphological features. Altogether, this paper proposes a new method for integrating different morphological features, which will be beneficial for constructing MCNs.
Collapse
Affiliation(s)
- Yuqi Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jing Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Chen TY, Zhu JD, Tsai SJ, Yang AC. Exploring morphological similarity and randomness in Alzheimer's disease using adjacent grey matter voxel-based structural analysis. Alzheimers Res Ther 2024; 16:88. [PMID: 38654366 PMCID: PMC11036786 DOI: 10.1186/s13195-024-01448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Alzheimer's disease is characterized by large-scale structural changes in a specific pattern. Recent studies developed morphological similarity networks constructed by brain regions similar in structural features to represent brain structural organization. However, few studies have used local morphological properties to explore inter-regional structural similarity in Alzheimer's disease. METHODS Here, we sourced T1-weighted MRI images of 342 cognitively normal participants and 276 individuals with Alzheimer's disease from the Alzheimer's Disease Neuroimaging Initiative database. The relationships of grey matter intensity between adjacent voxels were defined and converted to the structural pattern indices. We conducted the information-based similarity method to evaluate the structural similarity of structural pattern organization between brain regions. Besides, we examined the structural randomness on brain regions. Finally, the relationship between the structural randomness and cognitive performance of individuals with Alzheimer's disease was assessed by stepwise regression. RESULTS Compared to cognitively normal participants, individuals with Alzheimer's disease showed significant structural pattern changes in the bilateral posterior cingulate gyrus, hippocampus, and olfactory cortex. Additionally, individuals with Alzheimer's disease showed that the bilateral insula had decreased inter-regional structural similarity with frontal regions, while the bilateral hippocampus had increased inter-regional structural similarity with temporal and subcortical regions. For the structural randomness, we found significant decreases in the temporal and subcortical areas and significant increases in the occipital and frontal regions. The regression analysis showed that the structural randomness of five brain regions was correlated with the Mini-Mental State Examination scores of individuals with Alzheimer's disease. CONCLUSIONS Our study suggested that individuals with Alzheimer's disease alter micro-structural patterns and morphological similarity with the insula and hippocampus. Structural randomness of individuals with Alzheimer's disease changed in temporal, frontal, and occipital brain regions. Morphological similarity and randomness provide valuable insight into brain structural organization in Alzheimer's disease.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jun-Ding Zhu
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Wang J, He Y. Toward individualized connectomes of brain morphology. Trends Neurosci 2024; 47:106-119. [PMID: 38142204 DOI: 10.1016/j.tins.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
The morphological brain connectome (MBC) delineates the coordinated patterns of local morphological features (such as cortical thickness) across brain regions. While classically constructed using population-based approaches, there is a growing trend toward individualized modeling. Currently, the methods for individualized MBCs are varied, posing challenges for method selection and cross-study comparisons. Here, we summarize how individualized MBCs are modeled through low-order methods (correlation-, divergence-, distance-, and deviation-based methods) describing relations in brain morphology, as well as high-order methods capturing similarities in these low-order relations. We discuss the merits and limitations of different methods, examining them in the context of robustness, reproducibility, and reliability. We highlight the importance of elucidating the cellular and molecular mechanisms underlying the individualized connectome, and establishing normative benchmarks to assess individual variation in development, aging, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
6
|
Liu H, Ma Z, Wei L, Chen Z, Peng Y, Jiao Z, Bai H, Jing B. A radiomics-based brain network in T1 images: construction, attributes, and applications. Cereb Cortex 2024; 34:bhae016. [PMID: 38300184 PMCID: PMC10839838 DOI: 10.1093/cercor/bhae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
T1 image is a widely collected imaging sequence in various neuroimaging datasets, but it is rarely used to construct an individual-level brain network. In this study, a novel individualized radiomics-based structural similarity network was proposed from T1 images. In detail, it used voxel-based morphometry to obtain the preprocessed gray matter images, and radiomic features were then extracted on each region of interest in Brainnetome atlas, and an individualized radiomics-based structural similarity network was finally built using the correlational values of radiomic features between any pair of regions of interest. After that, the network characteristics of individualized radiomics-based structural similarity network were assessed, including graph theory attributes, test-retest reliability, and individual identification ability (fingerprinting). At last, two representative applications for individualized radiomics-based structural similarity network, namely mild cognitive impairment subtype discrimination and fluid intelligence prediction, were exemplified and compared with some other networks on large open-source datasets. The results revealed that the individualized radiomics-based structural similarity network displays remarkable network characteristics and exhibits advantageous performances in mild cognitive impairment subtype discrimination and fluid intelligence prediction. In summary, the individualized radiomics-based structural similarity network provides a distinctive, reliable, and informative individualized structural brain network, which can be combined with other networks such as resting-state functional connectivity for various phenotypic and clinical applications.
Collapse
Affiliation(s)
- Han Liu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56, Nanlishilu Road, Xicheng District, Beijing 100045, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao Youanmenwai, Fengtai District, Beijing 100069, China
| | - Zhe Ma
- Department of Radiology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao Youanmenwai, Fengtai District, Beijing 100069, China
| | - Lijiang Wei
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao Youanmenwai, Fengtai District, Beijing 100069, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Zhenpeng Chen
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao Youanmenwai, Fengtai District, Beijing 100069, China
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56, Nanlishilu Road, Xicheng District, Beijing 100045, China
| | - Zhicheng Jiao
- Department of Diagnostic Imaging, Brown University, 593 Eddy Street, Providence, Rhode Island 02903, United States
| | - Harrison Bai
- Department of Radiology and Radiological Sciences, Johns Hopkins University, 1800 Orleans Street, Baltimore, Maryland 21205, United States
| | - Bin Jing
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, No. 10, Xitoutiao Youanmenwai, Fengtai District, Beijing 100069, China
| |
Collapse
|
7
|
Yu H, Ding Y, Wei Y, Dyrba M, Wang D, Kang X, Xu W, Zhao K, Liu Y. Morphological connectivity differences in Alzheimer's disease correlate with gene transcription and cell-type. Hum Brain Mapp 2023; 44:6364-6374. [PMID: 37846762 PMCID: PMC10681645 DOI: 10.1002/hbm.26512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent forms of dementia in older individuals. Convergent evidence suggests structural connectome abnormalities in specific brain regions are linked to AD progression. The biological basis underpinnings of these connectome changes, however, have remained elusive. We utilized an individual regional mean connectivity strength (RMCS) derived from a regional radiomics similarity network to capture altered morphological connectivity in 1654 participants (605 normal controls, 766 mild cognitive impairment [MCI], and 283 AD). Then, we also explored the biological basis behind these morphological changes through gene enrichment analysis and cell-specific analysis. We found that RMCS probes of the hippocampus and medial temporal lobe were significantly altered in AD and MCI, with these differences being spatially related to the expression of AD-risk genes. In addition, gene enrichment analysis revealed that the modulation of chemical synaptic transmission is the most relevant biological process associated with the altered RMCS in AD. Notably, neuronal cells were found to be the most pertinent cells in the altered RMCS. Our findings shed light on understanding the biological basis of structural connectome changes in AD, which may ultimately lead to more effective diagnostic and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Huiying Yu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yanhui Ding
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Yongbin Wei
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Dong Wang
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Xiaopeng Kang
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Weizhi Xu
- School of Information Science and EngineeringShandong Normal UniversityJinanChina
| | - Kun Zhao
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Yong Liu
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | | |
Collapse
|
8
|
Su S, Sha R, Qiu H, Chu J, Lin L, Qian L, Hu M, Wu C, Cheung GL, Yang Z, Chen Y, Zhao J. Altered large-scale individual-based morphological brain network in spinocerebellar ataxia type 3. CNS Neurosci Ther 2023; 29:4102-4112. [PMID: 37392035 PMCID: PMC10651944 DOI: 10.1111/cns.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Accumulating evidences indicate regional gray matter (GM) morphology atrophy in spinocerebellar ataxia type 3 (SCA3); however, whether large-scale morphological brain networks (MBNs) undergo widespread reorganization in these patients remains unclear. OBJECTIVE To investigate the topological organization of large-scale individual-based MBNs in SCA3 patients. METHODS The individual-based MBNs were constructed based on the inter-regional morphological similarity of GM regions. Graph theoretical analysis was taken to assess GM structural connectivity in 76 symptomatic SCA3, 24 pre-symptomatic SCA3, and 54 healthy normal controls (NCs). Topological parameters of the resulting graphs and network-based statistics analysis were compared among symptomatic SCA3, pre-symptomatic SCA3, and NCs groups. The inner association between network properties and clinical variables was further analyzed. RESULTS Compared to NCs and pre-symptomatic SCA3 patients, symptomatic SCA3 indicated significantly decreased integration and segregation, a shift to "weaker small-worldness", characterized by decreased Cp , lower Eloc, and Eglob (all p < 0.005). Regarding nodal properties, symptomatic SCA3 exhibited significantly decreased nodal profiles in the central executive network (CEN)-related left inferior frontal gyrus, limbic regions involving the bilateral amygdala, left hippocampus, and bilateral pallidum, thalamus; and increased nodal degree, efficiency in bilateral caudate (all pFDR <0.05). Meanwhile, clinical variables were correlated with altered nodal profiles (pFDR ≤0.029). SCA3-related subnetwork was closely interrelated with dorsolateral cortico-striatal circuitry extending to orbitofrontal-striatal circuits and dorsal visual systems (lingual gyrus-striatal). CONCLUSION Symptomatic SCA3 patients undergo an extensive and significant reorganization in large-scale individual-based MBNs, probably due to disrupted prefrontal cortico-striato-thalamo-cortical loops, limbic-striatum circuitry, and enhanced connectivity in the neostriatum. This study highlights the crucial role of abnormal morphological connectivity alterations beyond the pattern of brain atrophy, which might pave the way for therapeutic development in the future.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Runhua Sha
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Haishan Qiu
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jianping Chu
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Liping Lin
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Long Qian
- Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina
| | - Manshi Hu
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chao Wu
- Department of Neurology, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | | | - Zhiyun Yang
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yingqian Chen
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Zhao
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
9
|
Cai M, Ma J, Wang Z, Zhao Y, Zhang Y, Wang H, Xue H, Chen Y, Zhang Y, Wang C, Zhao Q, Xue K, Liu F. Individual-level brain morphological similarity networks: Current methodologies and applications. CNS Neurosci Ther 2023; 29:3713-3724. [PMID: 37519018 PMCID: PMC10651978 DOI: 10.1111/cns.14384] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS The human brain is an extremely complex system in which neurons, clusters of neurons, or regions are connected to form a complex network. With the development of neuroimaging techniques, magnetic resonance imaging (MRI)-based brain networks play a key role in our understanding of the intricate architecture of human brain. Among them, the structural MRI-based brain morphological network approach has attracted increasing attention due to the advantages in data acquisition, image quality, and in revealing the structural organizing principles intrinsic to the brain. This review is to summarize the methodology and related applications of individual-level morphological networks. BACKGROUND There have been a growing number of studies related to brain morphological similarity networks. Conventional morphological networks are intersubject covariance networks constructed using a certain morphological indicator of a group of subjects; individual-level morphological networks, on the other hand, measure the morphological similarity between brain regions for individual brains and can reflect the morphological information of single subjects. In recent years, individual morphological networks have demonstrated significant worth in exploring the topological changes of the human brain under both normal and disease conditions. Such studies provided novel perspectives for understanding human brain development and exploring the pathological mechanisms of neuropsychiatric disorders. CONCLUSION This paper mainly focuses on the studies of brain morphological networks at the individual level, introduces several ways for network construction, reviews representative work in this field, and finally points out current problems and future directions.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Chunyang Wang
- Department of Scientific ResearchTianjin Medical University General HospitalTianjinChina
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
10
|
Duan D, Wen D. MRI-based structural covariance network in early human brain development. Front Neurosci 2023; 17:1302069. [PMID: 38027513 PMCID: PMC10646325 DOI: 10.3389/fnins.2023.1302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Dong Wen
- School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
11
|
Su S, Chen Y, Qian L, Dai Y, Yan Z, Lin L, Zhang H, Liu M, Zhao J, Yang Z. Evaluation of individual-based morphological brain network alterations in children with attention-deficit/hyperactivity disorder: a multi-method investigation. Eur Child Adolesc Psychiatry 2023; 32:2281-2289. [PMID: 36056264 DOI: 10.1007/s00787-022-02072-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
Abstract
To investigate the topological organization of individual-based morphological brain networks (MBNs) in attention-deficit/hyperactivity disorder (ADHD) children with different methods. A total of 60 ADHD children and 60 typically developing (TD) controls matched for age and gender were enrolled. Each participant underwent a structural 3D T1-weighted scan. Based on the inter-regional morphological similarity of GM regions, Kullback-Leibler-based similarity (KLS), Multivariate Euclidean Distance (MED), and Tijms's method were used to construct individual-based MBNs, respectively. The between-group difference of global and nodal network topological profiles was estimated, and partial correlation analysis was used for further analysis. According to KLS and MED-based network, ADHD showed a decreased global efficiency (Eglob) and increased characteristic path length (Lp) compared to the TD group, while Tijms's method-based network showed no between-group difference in global and nodal profiles. Nodal profiles were significantly decreased in the bilateral caudate, and nodal efficiency of the bilateral caudate was negatively correlated with clinical symptom severity of ADHD (P < 0.05, FDR-corrected) by the KLS-based network. Nodal betweenness was significantly decreased in the left inferior occipital gyrus and correlated with clinical symptom severity of ADHD (P < 0.05, FDR-corrected) by the MED-based network. ADHD was found to have a significantly less integrated organization and a shift to a "weaker small-worldness" pattern, while abnormal nodal profiles were mainly in the corpus striatum and default-mode networks. Our study highlights the crucial role of abnormal morphological connectivity patterns in understanding the brain maturational effects in ADHD and enriching the insights into MBNs at an individual level.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yingqian Chen
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Yan Dai
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Ping L, Sun S, Zhou C, Que J, You Z, Xu X, Cheng Y. Altered topology of individual brain structural covariance networks in major depressive disorder. Psychol Med 2023; 53:6921-6932. [PMID: 37427670 DOI: 10.1017/s003329172300168x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND The neurobiological pathogenesis of major depression disorder (MDD) remains largely controversial. Previous literatures with limited sample size utilizing group-level structural covariance networks (SCN) commonly generated mixed findings regarding the topology of brain networks. METHODS We analyzed T1 images from a high-powered multisite sample including 1173 patients with MDD and 1019 healthy controls (HCs). We used regional gray matter volume to construct individual SCN by utilizing a novel approach based on the interregional effect size difference. We further investigated MDD-related structural connectivity alterations using topological metrics. RESULTS Compared to HCs, the MDD patients showed a shift toward randomization characterized by increased integration. Further subgroup analysis of patients in different stages revealed this randomization pattern was also observed in patients with recurrent MDD, while the first-episode drug naïve patients exhibited decreased segregation. Altered nodal properties in several brain regions which have a key role in both emotion regulation and executive control were also found in MDD patients compared with HCs. The abnormalities in inferior temporal gyrus were not influenced by any specific site. Moreover, antidepressants increased nodal efficiency in the anterior ventromedial prefrontal cortex. CONCLUSIONS The MDD patients at different stages exhibit distinct patterns of randomization in their brain networks, with increased integration during illness progression. These findings provide valuable insights into the disruption in structural brain networks that occurs in patients with MDD and might be useful to guide future therapeutic interventions.
Collapse
Affiliation(s)
- Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Shan Sun
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China
| | - Jianyu Que
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Zhiyi You
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Qiu X, Li J, Pan F, Yang Y, Zhou W, Chen J, Wei N, Lu S, Weng X, Huang M, Wang J. Aberrant single-subject morphological brain networks in first-episode, treatment-naive adolescents with major depressive disorder. PSYCHORADIOLOGY 2023; 3:kkad017. [PMID: 38666133 PMCID: PMC10939346 DOI: 10.1093/psyrad/kkad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 04/28/2024]
Abstract
Background Neuroimaging-based connectome studies have indicated that major depressive disorder (MDD) is associated with disrupted topological organization of large-scale brain networks. However, the disruptions and their clinical and cognitive relevance are not well established for morphological brain networks in adolescent MDD. Objective To investigate the topological alterations of single-subject morphological brain networks in adolescent MDD. Methods Twenty-five first-episode, treatment-naive adolescents with MDD and 19 healthy controls (HCs) underwent T1-weighted magnetic resonance imaging and a battery of neuropsychological tests. Single-subject morphological brain networks were constructed separately based on cortical thickness, fractal dimension, gyrification index, and sulcus depth, and topologically characterized by graph-based approaches. Between-group differences were inferred by permutation testing. For significant alterations, partial correlations were used to examine their associations with clinical and neuropsychological variables in the patients. Finally, a support vector machine was used to classify the patients from controls. Results Compared with the HCs, the patients exhibited topological alterations only in cortical thickness-based networks characterized by higher nodal centralities in parietal (left primary sensory cortex) but lower nodal centralities in temporal (left parabelt complex, right perirhinal ectorhinal cortex, right area PHT and right ventral visual complex) regions. Moreover, decreased nodal centralities of some temporal regions were correlated with cognitive dysfunction and clinical characteristics of the patients. These results were largely reproducible for binary and weighted network analyses. Finally, topological properties of the cortical thickness-based networks were able to distinguish the MDD adolescents from HCs with 87.6% accuracy. Conclusion Adolescent MDD is associated with disrupted topological organization of morphological brain networks, and the disruptions provide potential biomarkers for diagnosing and monitoring the disease.
Collapse
Affiliation(s)
- Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Fen Pan
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Weihua Zhou
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Jinkai Chen
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Ning Wei
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Shaojia Lu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
| |
Collapse
|
14
|
Ahmadzadeh M, Christie GJ, Cosco TD, Arab A, Mansouri M, Wagner KR, DiPaola S, Moreno S. Neuroimaging and machine learning for studying the pathways from mild cognitive impairment to alzheimer's disease: a systematic review. BMC Neurol 2023; 23:309. [PMID: 37608251 PMCID: PMC10463866 DOI: 10.1186/s12883-023-03323-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/08/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND This systematic review synthesizes the most recent neuroimaging procedures and machine learning approaches for the prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia. METHODS We systematically searched PubMed, SCOPUS, and Web of Science databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) systematic review guidelines. RESULTS Our search returned 2572 articles, 56 of which met the criteria for inclusion in the final selection. The multimodality framework and deep learning techniques showed potential for predicting the conversion of MCI to AD dementia. CONCLUSION Findings of this systematic review identified that the possibility of using neuroimaging data processed by advanced learning algorithms is promising for the prediction of AD progression. We also provided a detailed description of the challenges that researchers are faced along with future research directions. The protocol has been registered in the International Prospective Register of Systematic Reviews- CRD42019133402 and published in the Systematic Reviews journal.
Collapse
Affiliation(s)
- Maryam Ahmadzadeh
- School of Interactive Arts and Technology, Simon Fraser University, 250 - 13450 102 Ave, Surrey, BC, Canada
| | - Gregory J Christie
- School of Interactive Arts and Technology, Simon Fraser University, 250 - 13450 102 Ave, Surrey, BC, Canada
| | - Theodore D Cosco
- Gerontology Research Center, Simon Fraser University, Vancouver, BC, Canada
- Oxford Institute of Population Ageing, University of Oxford, Oxford, UK
| | - Ali Arab
- Department of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Mehrdad Mansouri
- Department of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin R Wagner
- Gerontology Research Center, Simon Fraser University, Vancouver, BC, Canada
| | - Steve DiPaola
- School of Interactive Arts and Technology, Simon Fraser University, 250 - 13450 102 Ave, Surrey, BC, Canada.
| | - Sylvain Moreno
- School of Interactive Arts and Technology, Simon Fraser University, 250 - 13450 102 Ave, Surrey, BC, Canada
| |
Collapse
|
15
|
Ma Y, Fu S, Ye X, Yang Y, Yin Y, Xu G, Liu M, Jiang G. Aberrant single-subject morphological cerebellar connectome in chronic insomnia. Neuroimage Clin 2023; 39:103492. [PMID: 37603949 PMCID: PMC10458694 DOI: 10.1016/j.nicl.2023.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND To systematically investigate the topological organisation of morphological networks of the cerebellum using structural MRI and examine their clinical relevance in chronic insomnia (CI). METHODS One hundred and one patients with CI and 102 healthy controls (HCs) were recruited in this study. Individual morphological networks of the cerebellum were constructed based on regional grey matter volume, and topologically characterised using weighted graph theory-based network approaches. Between-group comparisons were performed using permutation tests, and Spearman's correlation was used to examine the relationships between topological alterations and clinical variables. RESULTS Compared with HCs, patients with CI exhibited a lower normalised clustering coefficient. Locally, CI patients exhibited lower nodal efficiency in the cerebellar lobule VIIb and vermis regions, but higher nodal efficiency in the right cerebellar lobule VIIIa regions. No correlations were observed between network alterations and clinical variables. CONCLUSIONS Individual morphological network analysis provides a new strategy for investigating cerebellar morphometric changes in CI, and our findings may have important implications in establishing diagnostic and categorical biomarkers.
Collapse
Affiliation(s)
- Yuqin Ma
- Guangzhou Medical University, Guangzhou 51495, PR China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Xi Ye
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510317, PR China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| |
Collapse
|
16
|
Ding H, Wang Z, Tang Y, Wang T, Qi M, Dou W, Qian L, Gao Y, Zhong Q, Yang X, Tian H, Zhang L, Zhu Y. Topological properties of individual gray matter morphological networks in identifying the preclinical stages of Alzheimer's disease: a preliminary study. Quant Imaging Med Surg 2023; 13:5258-5270. [PMID: 37581056 PMCID: PMC10423385 DOI: 10.21037/qims-22-1373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/08/2023] [Indexed: 08/16/2023]
Abstract
Background Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are preclinical stages of Alzheimer's disease (AD). Individual biomarkers are essential for evaluating altered neurological outcomes at both SCD and MCI stages for early diagnosis and intervention of AD. In this study, we aimed to investigate the relationships between topological properties of the individual brain morphological network and clinical cognitive performances among healthy controls (HCs) and patients with SCD or MCI. Methods The topological measurements of individual morphological networks were analyzed using graph theory, and inter-group differences of standard graph topology were correlated and regressed to scores of clinical cognitive functions. Results Compared with HCs, the topology of the individual morphological networks in SCD and MCI patients was significantly altered. At the global level, altered topology was characterized by lower global efficiency, shorter characteristics path length, and normalized characteristics path length [all P<0.05, false discovery rate (FDR) corrected]. In addition, at the regional level, SCD and MCI patients exhibited abnormal degree centrality in the caudate nucleus and nodal efficiency in the caudate nucleus, right insula, lenticular nucleus, and putamen (all P<0.05, FDR corrected). Conclusions The topological features of individual gray matter morphological networks may serve as biomarkers to improve disease prognosis and intervention in the early stages of AD, namely SCD and MCI. Moreover, these findings may further elucidate the relationships between brain morphological alterations and cognitive dysfunctions in SCD and MCI.
Collapse
Affiliation(s)
- Hongyuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihao Wang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Yin Tang
- Department of Medical Imaging, Jingjiang People’s Hospital, Jingjiang, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Yaxin Gao
- Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Qian Zhong
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Huifang Tian
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zhang W, Duan Y, Qi L, Li Z, Ren J, Nangale N, Yang C. Distinguishing Patients with MRI-Negative Temporal Lobe Epilepsy from Normal Controls Based on Individual Morphological Brain Network. Brain Topogr 2023:10.1007/s10548-023-00962-z. [PMID: 37204610 DOI: 10.1007/s10548-023-00962-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Temporal Lobe Epilepsy (TLE) is the most common subtype of focal epilepsy and the most refractory to drug treatment. Roughly 30% of patients do not have easily identifiable structural abnormalities. In other words, MRI-negative TLE has normal MRI scans on visual inspection. Thus, MRI-negative TLE is a diagnostic and therapeutic challenge. In this study, we investigate the cortical morphological brain network to identify MRI-negative TLE. The 210 cortical ROIs based on the Brainnetome atlas were used to define the network nodes. The least absolute shrinkage and selection operator (LASSO) algorithm and Pearson correlation methods were used to calculate the inter-regional morphometric features vector correlation respectively. As a result, two types of networks were constructed. The topological characteristics of networks were calculated by graph theory. Then after, a two-stage feature selection strategy, including a two-sample t-test and support vector machine-based recursive feature elimination (SVM-RFE), was performed in feature selection. Finally, classification with support vector machine (SVM) and leave-one-out cross-validation (LOOCV) was employed for the training and evaluation of the classifiers. The performance of two constructed brain networks was compared in MRI-negative TLE classification. The results indicated that the LASSO algorithm achieved better performance than the Pearson pairwise correlation method. The LASSO algorithm provides a robust method of individual morphological network construction for distinguishing patients with MRI-negative TLE from normal controls.
Collapse
Affiliation(s)
- Wenxiu Zhang
- Department of Environment and Life Sciences, Beijing University of Technology, Beijing, China
| | - Ying Duan
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| | - Lei Qi
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| | - Zhimei Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiechuan Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Chunlan Yang
- Department of Environment and Life Sciences, Beijing University of Technology, Beijing, China.
| |
Collapse
|
18
|
Yin G, Li T, Jin S, Wang N, Li J, Wu C, He H, Wang J. A comprehensive evaluation of multicentric reliability of single-subject cortical morphological networks on traveling subjects. Cereb Cortex 2023:7169131. [PMID: 37197789 DOI: 10.1093/cercor/bhad178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Despite the prevalence of research on single-subject cerebral morphological networks in recent years, whether they can offer a reliable way for multicentric studies remains largely unknown. Using two multicentric datasets of traveling subjects, this work systematically examined the inter-site test-retest (TRT) reliabilities of single-subject cerebral morphological networks, and further evaluated the effects of several key factors. We found that most graph-based network measures exhibited fair to excellent reliabilities regardless of different analytical pipelines. Nevertheless, the reliabilities were affected by choices of morphological index (fractal dimension > sulcal depth > gyrification index > cortical thickness), brain parcellation (high-resolution > low-resolution), thresholding method (proportional > absolute), and network type (binarized > weighted). For the factor of similarity measure, its effects depended on the thresholding method used (absolute: Kullback-Leibler divergence > Jensen-Shannon divergence; proportional: Jensen-Shannon divergence > Kullback-Leibler divergence). Furthermore, longer data acquisition intervals and different scanner software versions significantly reduced the reliabilities. Finally, we showed that inter-site reliabilities were significantly lower than intra-site reliabilities for single-subject cerebral morphological networks. Altogether, our findings propose single-subject cerebral morphological networks as a promising approach for multicentric human connectome studies, and offer recommendations on how to determine analytical pipelines and scanning protocols for obtaining reliable results.
Collapse
Affiliation(s)
- Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ting Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Cognition and Education Sciences, Ministry of Education, Beijing 100816, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510000, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510000, China
| |
Collapse
|
19
|
Li Y, Chu T, Liu Y, Zhang H, Dong F, Gai Q, Shi Y, Ma H, Zhao F, Che K, Mao N, Xie H. Classification of major depression disorder via using minimum spanning tree of individual high-order morphological brain network. J Affect Disord 2023; 323:10-20. [PMID: 36403803 DOI: 10.1016/j.jad.2022.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is an overbroad and heterogeneous diagnosis with no reliable or quantifiable markers. We aim to combine machine-learning techniques with the individual minimum spanning tree of the morphological brain network (MST-MBN) to determine whether the network properties can provide neuroimaging biomarkers to identify patients with MDD. METHOD Eight morphometric features of each region of interest (ROI) were extracted from 3D T1 structural images of 106 patients with MDD and 97 healthy controls. Six feature distances of the eight morphometric features were calculated to generate a feature distance matrix, which was defined as low-order MBN. Further linear correlations of feature distances between ROIs were calculated on the basis of low-order MBN to generate individual high-order MBN. The Kruskal's algorithm was used to generate the MST to obtain the core framework of individual low-order and high-order MBN. The regional and global properties of the individual MSTs were defined as the feature. The support vector machine and back-propagation neural network was used to diagnose MDD and assess its severity, respectively. RESULT The low-order and high-order MST-MBN constructed by cityblock distance had the excellent classification performance. The high-order MST-MBN significantly improved almost 20 % diagnostic accuracy compared with the low-order MST-MBN, and had a maximum R2 value of 0.939 between the predictive and true Hamilton Depression Scale score. The different group-level connectivity strength mainly involves the central executive network and default mode network (no statistical significance after FDR correction). CONCLUSION We proposed an innovative individual high-order MST-MBN to capture the cortical high-order morphological correlation and make an excellent performance for individualized diagnosis and assessment of MDD.
Collapse
Affiliation(s)
- Yuna Li
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China; Big data & Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, PR China
| | - Haicheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China; Big data & Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China
| | - Fanghui Dong
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong 264000, PR China
| | - Qun Gai
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China
| | - Feng Zhao
- Compute Science and Technology, Shandong Technology and Business University Yantai, Shandong 264000, PR China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China.
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China; Big data & Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China.
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China.
| |
Collapse
|
20
|
Is Brain Network Efficiency Reduced in Young Survivors of Acute Lymphoblastic Leukemia?-Evidence from Individual-Based Morphological Brain Network Analysis. J Clin Med 2022; 11:jcm11185362. [PMID: 36143019 PMCID: PMC9502489 DOI: 10.3390/jcm11185362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Altered cerebral structure and function have been observed in young survivors of acute lymphoblastic leukemia (ALL). However, the topological organization of the morphological brain networks (MBNs) has not yet been investigated at the individual level. Twenty-three young survivors of ALL and twenty healthy controls (HCs) were recruited and underwent T1-weighted magnetic resonance imaging (MRI) scanning. After preprocessing and segmentation, individual-based MBNs were constructed based on the morphological similarity of gray matter using the combined Euclidean distance. Young survivors showed a significantly lower global clustering coefficient (p = 0.008) and local efficiency (p = 0.035) compared with HCs. In addition, ALL survivors exhibited bidirectional alterations (decreases and increases) in nodal centrality and efficiency around the Rolandic operculum and posterior occipital lobe (p < 0.05, false discovery rate (FDR) corrected). Altered nodal topological efficiencies were associated with off-therapy duration and verbal memory capacity in the digit span test (p < 0.05, FDR corrected). Network-based statistical analysis revealed decreased morphological connections mainly in the pallidum subnetwork, which was negatively correlated with off-therapy durations (p < 0.05). Overall, the topological organization of the individual-based MBNs was disrupted in the young survivors of ALL, which may play a crucial role in executive efficiency deficits.
Collapse
|
21
|
da Cunha PHM, Tanaka H, Lapa JDDS, Dongyang L, Boa Sorte AA, Pereira TMR, Soares FHC, Fernandes AM, Aparecida da Silva V, Graven-Nielsen T, Teixeira MJ, de Andrade DC. The fast-posterior superior insula (Fast-PSI): A neuronavigation-free targeting method for non-invasive neuromodulation. Brain Stimul 2022; 15:1178-1180. [PMID: 35987328 DOI: 10.1016/j.brs.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Harki Tanaka
- Center of Engineering Modeling and Applied Social Science (CECS), Federal University of ABC (UFABC), Alameda da Universidade s/n, CEP 09606-045, São Bernardo do Campo, SP, Brazil
| | | | - Liu Dongyang
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Mércia Fernandes
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | | | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | | | - Daniel Ciampi de Andrade
- LIM-62, Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
22
|
Wang Z, Peng D, Shang Y, Gao J. Autistic Spectrum Disorder Detection and Structural Biomarker Identification Using Self-Attention Model and Individual-Level Morphological Covariance Brain Networks. Front Neurosci 2021; 15:756868. [PMID: 34712116 PMCID: PMC8547518 DOI: 10.3389/fnins.2021.756868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a range of neurodevelopmental disorders, which brings enormous burdens to the families of patients and society. However, due to the lack of representation of variance for diseases and the absence of biomarkers for diagnosis, the early detection and intervention of ASD are remarkably challenging. In this study, we proposed a self-attention deep learning framework based on the transformer model on structural MR images from the ABIDE consortium to classify ASD patients from normal controls and simultaneously identify the structural biomarkers. In our work, the individual structural covariance networks are used to perform ASD/NC classification via a self-attention deep learning framework, instead of the original structural MR data, to take full advantage of the coordination patterns of morphological features between brain regions. The self-attention deep learning framework based on the transformer model can extract both local and global information from the input data, making it more suitable for the brain network data than the CNN- structural model. Meanwhile, the potential diagnosis structural biomarkers are identified by the self-attention coefficients map. The experimental results showed that our proposed method outperforms most of the current methods for classifying ASD patients with the ABIDE data and achieves a classification accuracy of 72.5% across different sites. Furthermore, the potential diagnosis biomarkers were found mainly located in the prefrontal cortex, temporal cortex, and cerebellum, which may be treated as the early biomarkers for the ASD diagnosis. Our study demonstrated that the self-attention deep learning framework is an effective way to diagnose ASD and establish the potential biomarkers for ASD.
Collapse
Affiliation(s)
- Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dawei Peng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongbin Shang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
23
|
Zhao K, Zheng Q, Che T, Dyrba M, Li Q, Ding Y, Zheng Y, Liu Y, Li S. Regional radiomics similarity networks (R2SNs) in the human brain: Reproducibility, small-world properties and a biological basis. Netw Neurosci 2021; 5:783-797. [PMID: 34746627 PMCID: PMC8567836 DOI: 10.1162/netn_a_00200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
A structural covariance network (SCN) has been used successfully in structural magnetic resonance imaging (sMRI) studies. However, most SCNs have been constructed by a unitary marker that is insensitive for discriminating different disease phases. The aim of this study was to devise a novel regional radiomics similarity network (R2SN) that could provide more comprehensive information in morphological network analysis. R2SNs were constructed by computing the Pearson correlations between the radiomics features extracted from any pair of regions for each subject (AAL atlas). We further assessed the small-world property of R2SNs, and we evaluated the reproducibility in different datasets and through test-retest analysis. The relationships between the R2SNs and general intelligence/interregional coexpression of genes were also explored. R2SNs could be replicated in different datasets, regardless of the use of different feature subsets. R2SNs showed high reproducibility in the test-retest analysis (intraclass correlation coefficient > 0.7). In addition, the small-word property (σ > 2) and the high correlation between gene expression (R = 0.29, p < 0.001) and general intelligence were determined for R2SNs. Furthermore, the results have also been repeated in the Brainnetome atlas. R2SNs provide a novel, reliable, and biologically plausible method to understand human morphological covariance based on sMRI.
Collapse
Affiliation(s)
- Kun Zhao
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Tongtong Che
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Qiongling Li
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yanhui Ding
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuyu Li
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
24
|
Tian Y, Su X, Su Y, Zhang X. EMODMI: A Multi-Objective Optimization Based Method to Identify Disease Modules. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2021. [DOI: 10.1109/tetci.2020.3014923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Chaari N, Akdağ HC, Rekik I. Estimation of gender-specific connectional brain templates using joint multi-view cortical morphological network integration. Brain Imaging Behav 2021; 15:2081-2100. [PMID: 33089469 PMCID: PMC8413178 DOI: 10.1007/s11682-020-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/02/2022]
Abstract
The estimation of a connectional brain template (CBT) integrating a population of brain networks while capturing shared and differential connectional patterns across individuals remains unexplored in gender fingerprinting. This paper presents the first study to estimate gender-specific CBTs using multi-view cortical morphological networks (CMNs) estimated from conventional T1-weighted magnetic resonance imaging (MRI). Specifically, each CMN view is derived from a specific cortical attribute (e.g. thickness), encoded in a network quantifying the dissimilarity in morphology between pairs of cortical brain regions. To this aim, we propose Multi-View Clustering and Fusion Network (MVCF-Net), a novel multi-view network fusion method, which can jointly identify consistent and differential clusters of multi-view datasets in order to capture simultaneously similar and distinct connectional traits of samples. Our MVCF-Net method estimates a representative and well-centered CBTs for male and female populations, independently, to eventually identify their fingerprinting regions of interest (ROIs) in four main steps. First, we perform multi-view network clustering model based on manifold optimization which groups CMNs into shared and differential clusters while preserving their alignment across views. Second, for each view, we linearly fuse CMNs belonging to each cluster, producing local CBTs. Third, for each cluster, we non-linearly integrate the local CBTs across views, producing a cluster-specific CBT. Finally, by linearly fusing the cluster-specific centers we estimate a final CBT of the input population. MVCF-Net produced the most centered and representative CBTs for male and female populations and identified the most discriminative ROIs marking gender differences. The most two gender-discriminative ROIs involved the lateral occipital cortex and pars opercularis in the left hemisphere and the middle temporal gyrus and lingual gyrus in the right hemisphere.
Collapse
Affiliation(s)
- Nada Chaari
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey
| | | | - Islem Rekik
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey.
- Computing, School of Science and Engineering, University of Dundee, Dundee, UK.
| |
Collapse
|
26
|
Li Y, Wang N, Wang H, Lv Y, Zou Q, Wang J. Surface-based single-subject morphological brain networks: Effects of morphological index, brain parcellation and similarity measure, sample size-varying stability and test-retest reliability. Neuroimage 2021; 235:118018. [PMID: 33794358 DOI: 10.1016/j.neuroimage.2021.118018] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Morphological brain networks, in particular those at the individual level, have become an important approach for studying the human brain connectome; however, relevant methodology is far from being well-established in their formation, description and reproducibility. Here, we extended our previous study by constructing and characterizing single-subject morphological similarity networks from brain volume to surface space and systematically evaluated their reproducibility with respect to effects of different choices of morphological index, brain parcellation atlas and similarity measure, sample size-varying stability and test-retest reliability. Using the Human Connectome Project dataset, we found that surface-based single-subject morphological similarity networks shared common small-world organization, high parallel efficiency, modular architecture and bilaterally distributed hubs regardless of different analytical strategies. Nevertheless, quantitative values of all interregional similarities, global network measures and nodal centralities were significantly affected by choices of morphological index, brain parcellation atlas and similarity measure. Moreover, the morphological similarity networks varied along with the number of participants and approached stability until the sample size exceeded ~70. Using an independent test-retest dataset, we found fair to good, even excellent, reliability for most interregional similarities and network measures, which were also modulated by different analytical strategies, in particular choices of morphological index. Specifically, fractal dimension and sulcal depth outperformed gyrification index and cortical thickness, higher-resolution atlases outperformed lower-resolution atlases, and Jensen-Shannon divergence-based similarity outperformed Kullback-Leibler divergence-based similarity. Altogether, our findings propose surface-based single-subject morphological similarity networks as a reliable method to characterize the human brain connectome and provide methodological recommendations and guidance for future research.
Collapse
Affiliation(s)
- Yinzhi Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Hao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education.
| |
Collapse
|
27
|
Gender-Related and Hemispheric Effects in Cortical Thickness-Based Hemispheric Brain Morphological Network. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3560259. [PMID: 32851064 PMCID: PMC7439209 DOI: 10.1155/2020/3560259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Objective The current study examined gender-related differences in hemispheric asymmetries of graph metrics, calculated from a cortical thickness-based brain structural covariance network named hemispheric morphological network. Methods Using the T1-weighted magnetic resonance imaging scans of 285 participants (150 females, 135 males) retrieved from the Human Connectome Project (HCP), hemispheric morphological networks were constructed per participant. In these hemispheric morphologic networks, the degree of similarity between two different brain regions in terms of the distributed patterns of cortical thickness values (the Jensen–Shannon divergence) was defined as weight of network edge that connects two different brain regions. After the calculation and summation of global and local graph metrics (across the network sparsity levels K = 0.10‐0.36), asymmetry indexes of these graph metrics were derived. Results Hemispheric morphological networks satisfied small-worldness and global efficiency for the network sparsity ranges of K = 0.10–0.36. Between-group comparisons (female versus male) of asymmetry indexes revealed opposite directionality of asymmetries (leftward versus rightward) for global metrics of normalized clustering coefficient, normalized characteristic path length, and global efficiency (all p < 0.05). For the local graph metrics, larger rightward asymmetries of cingulate-superior parietal gyri for nodal efficiency in male compared to female, larger leftward asymmetry of temporal pole for degree centrality in female compared to male, and opposite directionality of interhemispheric asymmetry of rectal gyrus for degree centrality between female (rightward) and male (leftward) were shown (all p < 0.05). Conclusion Patterns of interhemispheric asymmetries for cingulate, superior parietal gyrus, temporal pole, and rectal gyrus are different between male and female for the similarities of the cortical thickness distribution with other brain regions. Accordingly, possible effect of gender-by-hemispheric interaction has to be considered in future studies of brain morphology and brain structural covariance networks.
Collapse
|
28
|
Gao X, Xu X, Hua X, Wang P, Li W, Li R. Group Similarity Constraint Functional Brain Network Estimation for Mild Cognitive Impairment Classification. Front Neurosci 2020; 14:165. [PMID: 32210747 PMCID: PMC7076152 DOI: 10.3389/fnins.2020.00165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/14/2020] [Indexed: 11/25/2022] Open
Abstract
Functional brain network (FBN) provides an effective biomarker for understanding brain activation patterns and a diagnostic criterion for neurodegenerative diseases detections. Unfortunately, it remains challenges to estimate the biologically meaningful or discriminative FBNs accurately, because of the poor quality of functional magnetic resonance imaging data or our limited understanding of human brain. In this study, a novel FBN estimation model based on group similarity prior was proposed. In particular, we extended the FBN estimation model to tensor form and incorporated the tensor trace-norm regularizer to formulate the group similarity constraint. To verify the proposed method, we conducted experiments on identifying mild cognitive impairments (MCIs) from normal controls (NCs) based on the estimated FBNs. Experimental results illustrated that our method is effective in modeling FBNs. Consequently, we achieved 91.97% classification accuracy, outperforming the state-of-the-art methods. The post hoc analysis further demonstrated that more biologically meaningful functional brain connections were obtained using our proposed method.
Collapse
Affiliation(s)
- Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Xiaowen Xu
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Medical Imaging, Tongji Hospital, Shanghai, China
| | - Xuyun Hua
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peijun Wang
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Medical Imaging, Tongji Hospital, Shanghai, China
| | - Weikai Li
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Rui Li
- School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an, China
| |
Collapse
|
29
|
Abstract
The anatomical structure of the human brain varies widely, as does individual cognitive behavior. It is important and interesting to study the relationship between brain structure and cognitive behavior. There has however been little previous work on the relationship between inhibitory control and brain structure. The goal of this study was to elucidate possible cortical markers related to inhibitory control using structural magnetic resonance imaging (sMRI) data. In this study, we analyzed sMRI data and inhibitory control behavior measurement values from 361 healthy adults from the Human Connectome Project (HCP). The data of all participants were divided into two datasets. In the first dataset, we first constructed individual brain morphometric similarity networks by calculating the inter-regional statistical similarity relationship of nine cortical characteristic measures (such as volume) for each brain area obtained from sMRI data. Areas that covary in their morphology are termed 'connected'. After that, we used a brain connectome-based predictive model (CPM) to search for 'connected' brain areas that were significantly related to inhibitory control. This is a purely data-driven method with built-in cross-validation. Two different 'connected' patterns were observed for high and low inhibitory control networks. The high inhibitory control network comprised 25 'connections' (edges between nodes), mostly involving nodes in the prefrontal and especially orbitofrontal cortex and inferior frontal gyrus. In the low inhibitory control network, nodes were scattered between parietal, occipital and limbic areas. Furthermore, these 'connections' were verified as reliable and generalizable in a cross-validation dataset. Two regions of interest, the right ventromedial prefrontal cortex including a part of medial area 10 (R.OFCmed) and left middle temporal gyrus (L.MTG) were crucial nodes in the two networks, respectively, which suggests that these two regions may be fundamentally involved in inhibitory control. Our findings potentially help to understand the relationship between areas with a correlated cortical structure and inhibitory control, and further help to reveal the brain systems related to inhibition and its disorders.
Collapse
|
30
|
Bi XA, Xu Q, Luo X, Sun Q, Wang Z. Weighted Random Support Vector Machine Clusters Analysis of Resting-State fMRI in Mild Cognitive Impairment. Front Psychiatry 2018; 9:340. [PMID: 30090075 PMCID: PMC6068241 DOI: 10.3389/fpsyt.2018.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The identification of abnormal cognitive decline at an early stage becomes an increasingly significant conundrum to physicians and is of major interest in the studies of mild cognitive impairment (MCI). Support vector machine (SVM) as a high-dimensional pattern classification technique is widely employed in neuroimaging research. However, the application of a single SVM classifier may be difficult to achieve the excellent classification performance because of the small-sample size and noise of imaging data. To address this issue, we propose a novel method of the weighted random support vector machine cluster (WRSVMC) in which multiple SVMs were built and different weights were given to corresponding SVMs with different classification performances. We evaluated our algorithm on resting state functional magnetic resonance imaging (RS-fMRI) data of 93 MCI patients and 105 healthy controls (HC) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The maximum accuracy given by the WRSVMC is 87.67%, demonstrating excellent diagnostic power. Furthermore, the most discriminative brain areas have been found out as follows: gyrus rectus (REC.L), precentral gyrus (PreCG.R), olfactory cortex (OLF.L), and middle occipital gyrus (MOG.R). These findings of the paper provide a new perspective for the clinical diagnosis of MCI.
Collapse
Affiliation(s)
- Xia-an Bi
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qian Xu
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Xianhao Luo
- College of Mathematics and Statistics, Hunan Normal University, Changsha, China
| | - Qi Sun
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Zhigang Wang
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|