1
|
Solek P, Nurfitri E, Sahril I, Prasetya T, Rizqiamuti AF, Burhan, Rachmawati I, Gamayani U, Rusmil K, Chandra LA, Afriandi I, Gunawan K. The Role of Artificial Intelligence for Early Diagnostic Tools of Autism Spectrum Disorder: A Systematic Review. Turk Arch Pediatr 2025; 60:126-140. [PMID: 40091547 PMCID: PMC11963361 DOI: 10.5152/turkarchpediatr.2025.24183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/04/2025] [Indexed: 03/19/2025]
Abstract
Objective: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in social communication and repetitive behaviors. This systematic review examines the application of artificial intelligence (AI) in diagnosing ASD, focusing on pediatric populations aged 0-18 years. Materials and methods: A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. Inclusion criteria encompassed studies applying AI techniques for ASD diagnosis, primarily evaluated using metriclike accuracy. Non-English articles and studies not focusing on diagnostic applications were excluded. The literature search covered PubMed, ScienceDirect, CENTRAL, ProQuest, Web of Science, and Google Scholar up to November 9, 2024. Bias assessment was performed using the Joanna Briggs Institute checklist for critical appraisal. Results: The review included 25 studies. These studies explored AI-driven approaches that demonstrated high accuracy in classifying ASD using various data modalities, including visual (facial, home videos, eye-tracking), motor function, behavioral, microbiome, genetic, and neuroimaging data. Key findings highlight the efficacy of AI in analyzing complex datasets, identifying subtle ASD markers, and potentially enabling earlier intervention. The studies showed improved diagnostic accuracy, reduced assessment time, and enhanced predictive capabilities. Conclusion: The integration of AI technologies in ASD diagnosis presents a promising frontier for enhancing diagnostic accuracy, efficiency, and early detection. While these tools can increase accessibility to ASD screening in underserved areas, challenges related to data quality, privacy, ethics, and clinical integration remain. Future research should focus on applying diverse AI techniques to large populations for comparative analysis to develop more robust diagnostic models.
Collapse
Affiliation(s)
- Purboyo Solek
- Department of Child Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Eka Nurfitri
- Department of Child Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Indra Sahril
- Department of Child Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Taufan Prasetya
- Department of Child Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Anggia Farrah Rizqiamuti
- Department of Child Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Burhan
- Department of Child Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Irma Rachmawati
- Department of Child Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Uni Gamayani
- Department of Neurology, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Kusnandi Rusmil
- Department of Child Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Lukman Ade Chandra
- Department of Pharmacology and Therapy, Gadjah Mada University Faculty of Medicine, Public Health and Nursing, Yogyakarta, Indonesia
| | - Irvan Afriandi
- Department of Public Health, Padjadjaran University Faculty of Medicine, Hasan Sadikin General Hospital, West Java, Indonesia
| | - Kevin Gunawan
- Atma Jaya Catholic University of Indonesia Faculty of Medicine and Health Sciences, Jakarta, Indonesia
| |
Collapse
|
2
|
Zhang C, Ma Y, Qiao L, Zhang L, Liu M. Learning functional brain networks with heterogeneous connectivities for brain disease identification. Neural Netw 2024; 180:106660. [PMID: 39208458 DOI: 10.1016/j.neunet.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Functional brain networks (FBNs), which are used to portray interactions between different brain regions, have been widely used to identify potential biomarkers of neurological and mental disorders. The FBNs estimated using current methods tend to be homogeneous, indicating that different brain regions exhibit the same type of correlation. This homogeneity limits our ability to accurately encode complex interactions within the brain. Therefore, to the best of our knowledge, in the present study, for the first time, we propose the existence of heterogeneous FBNs and introduce a novel FBN estimation model that adaptively assigns heterogeneous connections to different pairs of brain regions, thereby effectively encoding the complex interaction patterns in the brain. Specifically, we first construct multiple types of candidate correlations from different views or based on different methods and then develop an improved orthogonal matching pursuit algorithm to select at most one correlation for each brain region pair under the guidance of label information. These adaptively estimated heterogeneous FBNs were then used to distinguish subjects with neurological/mental disorders from healthy controls and identify potential biomarkers related to these disorders. Experimental results on real datasets show that the proposed scheme improves classification performance by 7.07% and 7.58% at the two sites, respectively, compared with the baseline approaches. This emphasizes the plausibility of the heterogeneity hypothesis and effectiveness of the heterogeneous connection assignment algorithm.
Collapse
Affiliation(s)
- Chaojun Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China; School of Computer Science and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Yunling Ma
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Lishan Qiao
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Xue Y, Bai MS, Dong HY, Wang TT, Mohamed ZA, Jia FY. Altered intra- and inter-network brain functional connectivity associated with prolonged screen time in pre-school children with autism spectrum disorder. Eur J Pediatr 2024; 183:2391-2399. [PMID: 38448613 DOI: 10.1007/s00431-024-05500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Prolonged screen time (ST) has adverse effects on autistic characteristics and language development. However, the mechanisms underlying the effects of prolonged ST on the neurodevelopment of children with autism spectrum disorder (ASD) remain unclear. Neuroimaging technology may help to further explain the role of prolonged ST in individuals with ASD. This study included 164 cases, all cases were divided into low-dose ST exposure (LDE group 108 cases) and high-dose ST exposure (HDE group 56 cases) based on the average ST of all subjects. Spatial independent component analysis (ICA) was used to identify resting state networks (RSNs) and investigate intra- and inter-network alterations in ASD children with prolonged ST. We found that the total Childhood Autism Rating Scale (CARS) scores in the HDE group were significantly higher than those in the LDE group (36.2 ± 3.1 vs. 34.6 ± 3.9, p = 0.008). In addition, the developmental quotient (DQ) of hearing and language in the HDE group were significantly lower than those in the LDE group (31.5 ± 13.1 vs. 42.5 ± 18.5, p < 0.001). A total of 13 independent components (ICs) were identified. Between-group comparison revealed that the HDE group exhibited decreased functional connectivity (FC) in the left precuneus (PCUN) of the default mode network (DMN), the right middle temporal gyrus (MTG) of the executive control network (ECN), and the right median cingulate and paracingulate gyri (MCG) of the attention network (ATN), compared with the LDE group. Additionally, there was an increase in FC in the right orbital part of the middle frontal gyrus (ORBmid) of the salience network (SAN), compared with the LDE group. The inter-network analysis revealed increased FC between the visual network (VN) and basal ganglia (BG) and decreased FC between the sensorimotor network (SMN) and DMN, SMN and ATN, SMN and auditory network (AUN), and DMN and SAN in the HDE group, compared with the LDE group. There was a significant negative correlation between altered FC values in MTG and total CARS scores in subjects (r = - 0.18, p = 0.018). Conclusion: ASD children with prolonged ST often exhibit lower DQ of language development and more severe autistic characteristics. The alteration of intra- and inter-network FC may be a key neuroimaging feature of the effect of prolonged ST on neurodevelopment in ASD children. Clinical trial registration: ChiCTR2100051141. What is Known: • Prolonged ST has adverse effects on autistic characteristics and language development. • Neuroimaging technology may help to further explain the role of prolonged ST in ASD. What is New: • This is the first study to explore the impact of ST on intra- and inter-network FC in children with ASD. • ASD children with prolonged ST have atypical changes in intra- and inter-brain network FC.
Collapse
Affiliation(s)
- Yang Xue
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Miao-Shui Bai
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Han-Yu Dong
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Tian-Tian Wang
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Zakaria Ahmed Mohamed
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, Children's Hospital of the First Hospital of Jilin University, The First Hospital of Jilin University, Jilin University, Changchun, China.
- The Child Health Clinical Research Center of Jilin Province, Changchun, China.
| |
Collapse
|
4
|
Lin Q, Shi Y, Huang H, Jiao B, Kuang C, Chen J, Rao Y, Zhu Y, Liu W, Huang R, Lin J, Ma L. Functional brain network alterations in the co-occurrence of autism spectrum disorder and attention deficit hyperactivity disorder. Eur Child Adolesc Psychiatry 2024; 33:369-380. [PMID: 36800038 DOI: 10.1007/s00787-023-02165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are two highly prevalent and commonly co-occurring neurodevelopmental disorders. The neural mechanisms underpinning the comorbidity of ASD and ADHD (ASD + ADHD) remain unclear. We focused on the topological organization and functional connectivity of brain networks in ASD + ADHD patients versus ASD patients without ADHD (ASD-only). Resting-state functional magnetic resonance imaging (rs-fMRI) data from 114 ASD and 161 typically developing (TD) individuals were obtained from the Autism Brain Imaging Data Exchange II. The ASD patients comprised 40 ASD + ADHD and 74 ASD-only individuals. We constructed functional brain networks for each group and performed graph-theory and network-based statistic (NBS) analyses. Group differences between ASD + ADHD and ASD-only were analyzed at three levels: nodal, global, and connectivity. At the nodal level, ASD + ADHD exhibited topological disorganization in the temporal and occipital regions, compared with ASD-only. At the global level, ASD + ADHD and ASD-only displayed no significant differences. At the connectivity level, the NBS analysis revealed that ASD + ADHD showed enhanced functional connectivity between the prefrontal and frontoparietal regions, as well as between the orbitofrontal and occipital regions, compared with ASD-only. The hippocampus was the shared region in aberrant functional connectivity patterns in ASD + ADHD and ASD-only compared with TD. These findings suggests that ASD + ADHD displays altered topology and functional connectivity in the brain regions that undertake social cognition, language processing, and sensory processing.
Collapse
Affiliation(s)
- Qiwen Lin
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huiyuan Huang
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Bingqing Jiao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Changyi Kuang
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Jiawen Chen
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Yuyang Rao
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Yunpeng Zhu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Wenting Liu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China
| | - Ruiwang Huang
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jiabao Lin
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China.
- Institut Des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard, Lyon 1, Lyon, France.
| | - Lijun Ma
- School of Public Health and Management, Guangzhou University of Chinese Medicine, University Town, No.232, Huandong Road, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
5
|
Hickman AR, Selee B, Pauly R, Husain B, Hang Y, Feltus FA. Discovery of eQTL Alleles Associated with Autism Spectrum Disorder: A Case-Control Study. J Autism Dev Disord 2023; 53:3595-3612. [PMID: 35739433 PMCID: PMC10465380 DOI: 10.1007/s10803-022-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by challenges in social communication as well as repetitive or restrictive behaviors. Many genetic associations with ASD have been identified, but most associations occur in a fraction of the ASD population. Here, we searched for eQTL-associated DNA variants with significantly different allele distributions between ASD-affected and control. Thirty significant DNA variants associated with 174 tissue-specific eQTLs from ASD individuals in the SPARK project were identified. Several significant variants fell within brain-specific regulatory regions or had been associated with a significant change in gene expression in the brain. These eQTLs are a new class of biomarkers that could control the myriad of brain and non-brain phenotypic traits seen in ASD-affected individuals.
Collapse
Affiliation(s)
- Allison R. Hickman
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
| | - Bradley Selee
- Electrical and Computer Engineering Department, Clemson University, Clemson, SC 29634 USA
| | - Rini Pauly
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC 29634 USA
| | - Benafsh Husain
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC 29634 USA
| | - Yuqing Hang
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
| | - Frank Alex Feltus
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
- Electrical and Computer Engineering Department, Clemson University, Clemson, SC 29634 USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646 USA
- Biosystems Research Complex, 302C, 105 Collings St, Clemson, SC 29634 USA
| |
Collapse
|
6
|
Zhang C, Ma Y, Qiao L, Zhang L, Liu M. Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification. BIOLOGY 2023; 12:971. [PMID: 37508401 PMCID: PMC10376072 DOI: 10.3390/biology12070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Functional connectivity network (FCN) has become a popular tool to identify potential biomarkers for brain dysfunction, such as autism spectrum disorder (ASD). Due to its importance, researchers have proposed many methods to estimate FCNs from resting-state functional MRI (rs-fMRI) data. However, the existing FCN estimation methods usually only capture a single relationship between brain regions of interest (ROIs), e.g., linear correlation, nonlinear correlation, or higher-order correlation, thus failing to model the complex interaction among ROIs in the brain. Additionally, such traditional methods estimate FCNs in an unsupervised way, and the estimation process is independent of the downstream tasks, which makes it difficult to guarantee the optimal performance for ASD identification. To address these issues, in this paper, we propose a multi-FCN fusion framework for rs-fMRI-based ASD classification. Specifically, for each subject, we first estimate multiple FCNs using different methods to encode rich interactions among ROIs from different perspectives. Then, we use the label information (ASD vs. healthy control (HC)) to learn a set of fusion weights for measuring the importance/discrimination of those estimated FCNs. Finally, we apply the adaptively weighted fused FCN on the ABIDE dataset to identify subjects with ASD from HCs. The proposed FCN fusion framework is straightforward to implement and can significantly improve diagnostic accuracy compared to traditional and state-of-the-art methods.
Collapse
Affiliation(s)
- Chaojun Zhang
- The School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Yunling Ma
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Lishan Qiao
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Limei Zhang
- The School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Wang C, Zhang L, Zhang J, Qiao L, Liu M. Fusing Multiview Functional Brain Networks by Joint Embedding for Brain Disease Identification. J Pers Med 2023; 13:jpm13020251. [PMID: 36836485 PMCID: PMC9958959 DOI: 10.3390/jpm13020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Background: Functional brain networks (FBNs) derived from resting-state functional MRI (rs-fMRI) have shown great potential in identifying brain disorders, such as autistic spectrum disorder (ASD). Therefore, many FBN estimation methods have been proposed in recent years. Most existing methods only model the functional connections between brain regions of interest (ROIs) from a single view (e.g., by estimating FBNs through a specific strategy), failing to capture the complex interactions among ROIs in the brain. Methods: To address this problem, we propose fusion of multiview FBNs through joint embedding, which can make full use of the common information of multiview FBNs estimated by different strategies. More specifically, we first stack the adjacency matrices of FBNs estimated by different methods into a tensor and use tensor factorization to learn the joint embedding (i.e., a common factor of all FBNs) for each ROI. Then, we use Pearson's correlation to calculate the connections between each embedded ROI in order to reconstruct a new FBN. Results: Experimental results obtained on the public ABIDE dataset with rs-fMRI data reveal that our method is superior to several state-of-the-art methods in automated ASD diagnosis. Moreover, by exploring FBN "features" that contributed most to ASD identification, we discovered potential biomarkers for ASD diagnosis. The proposed framework achieves an accuracy of 74.46%, which is generally better than the compared individual FBN methods. In addition, our method achieves the best performance compared to other multinetwork methods, i.e., an accuracy improvement of at least 2.72%. Conclusions: We present a multiview FBN fusion strategy through joint embedding for fMRI-based ASD identification. The proposed fusion method has an elegant theoretical explanation from the perspective of eigenvector centrality.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
- Correspondence: (L.Z.); (M.L.)
| | - Jinshan Zhang
- College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (L.Z.); (M.L.)
| |
Collapse
|
10
|
Sun H, He Q, Qi S, Yao Y, Teng Y. Improving the level of autism discrimination with augmented data by GraphRNN. Comput Biol Med 2022; 150:106141. [PMID: 36191394 DOI: 10.1016/j.compbiomed.2022.106141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
Datasets are the key to deep learning in autism disease research. However, due to the small quantity and heterogeneity of samples in current public datasets, for example Autism Brain Imaging Data Exchange (ABIDE), the recognition research is not sufficiently effective. Previous studies primarily focused on optimizing feature selection methods and data augmentation to improve recognition accuracy. This research is based on the latter, which learns the edge distribution of a real brain network through the graph recurrent neural network (GraphRNN) and generates synthetic data that have an incentive effect on the discriminant model. Experimental results show that the synthetic data greatly improves the classification ability of the subsequent classifiers, for example, it can improve the classification accuracy of a 50-layer ResNet by up to 30% compared with the case without synthetic data.
Collapse
Affiliation(s)
- Haonan Sun
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110004, China
| | - Qiang He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110004, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110004, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07102, USA
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110004, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China.
| |
Collapse
|
11
|
Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on Autism Spectrum Disorder Neuroimaging. DISEASE MARKERS 2022; 2022:3372217. [PMID: 35899177 PMCID: PMC9313970 DOI: 10.1155/2022/3372217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Background Autism spectrum disorder (ASD) is a chronic developmental disability caused by differences in the brain. The gold standard for the diagnosis of this condition is based on behavioral science, but research on the application of neurological detection to diagnose the atypical nervous system of ASD is ongoing. ASD neuroimaging research involves the examination of the brain's structure, functional connections, and neurometabolic. However, limited medical resource and the unique heterogeneity of ASD have resulted in many challenges when neuroimaging is utilized. Objective This bibliometric study is aimed at summarizing themes and trends in research on autism spectrum disorder neuroimaging and at proposing potential directions for future inquiry. Methods Citations were downloaded from the Web of Science Core Collection database on neuroimaging published from January 1, 2012, to December 31, 2021. The retrieved information was analyzed using Bibliometric.com, CiteSpace.5.8. R3, and VOS viewer. Results A total of 1,363 papers were published across 58 regions. The United States was the leading source of publications. The League of European Research Universities published the largest number of articles (171). Burst keywords from 2018 to 2021 include identification and network. The clusters of references that continued into 2020 included graph theory, functional connectivity, and classification, which represent key research topics. Conclusions Imaging data is being used to identify neuro-network models with higher accuracy for ASD discrimination. Functional near-infrared imaging is advantageous compared to other neuroimaging. In the future, research on systematic and accurate computer-aided diagnosis technology should be encouraged. Moreover, the study of neuroimaging of ASD in different psychological and behavioral states can inspire new ideas about the diagnosis and intervention training of ASD and should be explored.
Collapse
|
12
|
Joudar SS, Albahri AS, Hamid RA. Triage and priority-based healthcare diagnosis using artificial intelligence for autism spectrum disorder and gene contribution: A systematic review. Comput Biol Med 2022; 146:105553. [PMID: 35561591 DOI: 10.1016/j.compbiomed.2022.105553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
The exact nature, harmful effects and aetiology of autism spectrum disorder (ASD) have caused widespread confusion. Artificial intelligence (AI) science helps solve challenging diagnostic problems in the medical field through extensive experiments. Disease severity is closely related to triage decisions and prioritisation contexts in medicine because both have been widely used to diagnose various diseases via AI, machine learning and automated decision-making techniques. Recently, taking advantage of high-performance AI algorithms has achieved accessible success in diagnosing and predicting risks from clinical and biological data. In contrast, less progress has been made with ASD because of obscure reasons. According to academic literature, ASD diagnosis works from a specific perspective, and much of the confusion arises from the fact that how AI techniques are currently integrated with the diagnosis of ASD concerning the triage and priority strategies and gene contributions. To this end, this study sought to describe a systematic review of the literature to assess the respective AI methods using the available datasets, highlight the tools and strategies used for diagnosing ASD and investigate how AI trends contribute in distinguishing triage and priority for ASD and gene contributions. Accordingly, this study checked the Science Direct, IEEE Xplore Digital Library, Web of Science (WoS), PubMed, and Scopus databases. A set of 363 articles from 2017 to 2022 is collected to reveal a clear picture and a better understanding of all the academic literature through a final set of 18 articles. The retrieved articles were filtered according to the defined inclusion and exclusion criteria and classified into three categories. The first category includes 'Triage patients based on diagnosis methods' which accounts for 16.66% (n = 3/18). The second category includes 'Prioritisation for Risky Genes' which accounts for 66.6% (n = 12/18) and is classified into two subcategories: 'Mutations observation based', 'Biomarkers and toxic chemical observations'. The third category includes 'E-triage using telehealth' which accounts for 16.66% (n = 3/18). This multidisciplinary systematic review revealed the taxonomy, motivations, recommendations and challenges of ASD research that need synergistic attention. Thus, this systematic review performs a comprehensive science mapping analysis and discusses the open issues that help perform and improve the recommended solution of ASD research direction. In addition, this study critically reviews the literature and attempts to address the current research gaps in knowledge and highlights weaknesses that require further research. Finally, a new developed methodology has been suggested as future work for triaging and prioritising ASD patients according to their severity levels by using decision-making techniques.
Collapse
Affiliation(s)
- Shahad Sabbar Joudar
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq; University of Technology, Baghdad, Iraq
| | - A S Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq.
| | - Rula A Hamid
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq; College of Business Informatics, University of Information Technology and Communications (UOITC), Baghdad, Iraq
| |
Collapse
|
13
|
Traut N, Heuer K, Lemaître G, Beggiato A, Germanaud D, Elmaleh M, Bethegnies A, Bonnasse-Gahot L, Cai W, Chambon S, Cliquet F, Ghriss A, Guigui N, de Pierrefeu A, Wang M, Zantedeschi V, Boucaud A, van den Bossche J, Kegl B, Delorme R, Bourgeron T, Toro R, Varoquaux G. Insights from an autism imaging biomarker challenge: Promises and threats to biomarker discovery. Neuroimage 2022; 255:119171. [PMID: 35413445 DOI: 10.1016/j.neuroimage.2022.119171] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
MRI has been extensively used to identify anatomical and functional differences in Autism Spectrum Disorder (ASD). Yet, many of these findings have proven difficult to replicate because studies rely on small cohorts and are built on many complex, undisclosed, analytic choices. We conducted an international challenge to predict ASD diagnosis from MRI data, where we provided preprocessed anatomical and functional MRI data from > 2,000 individuals. Evaluation of the predictions was rigorously blinded. 146 challengers submitted prediction algorithms, which were evaluated at the end of the challenge using unseen data and an additional acquisition site. On the best algorithms, we studied the importance of MRI modalities, brain regions, and sample size. We found evidence that MRI could predict ASD diagnosis: the 10 best algorithms reliably predicted diagnosis with AUC∼0.80 - far superior to what can be currently obtained using genotyping data in cohorts 20-times larger. We observed that functional MRI was more important for prediction than anatomical MRI, and that increasing sample size steadily increased prediction accuracy, providing an efficient strategy to improve biomarkers. We also observed that despite a strong incentive to generalise to unseen data, model development on a given dataset faces the risk of overfitting: performing well in cross-validation on the data at hand, but not generalising. Finally, we were able to predict ASD diagnosis on an external sample added after the end of the challenge (EU-AIMS), although with a lower prediction accuracy (AUC=0.72). This indicates that despite being based on a large multisite cohort, our challenge still produced biomarkers fragile in the face of dataset shifts.
Collapse
Affiliation(s)
- Nicolas Traut
- Institut Pasteur, Université de Paris, Département de neuroscience, F-75015 Paris, France; Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Katja Heuer
- Institut Pasteur, Université de Paris, Département de neuroscience, F-75015 Paris, France; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Guillaume Lemaître
- Parietal, Inria, Saclay, France; Paris-Saclay Center for Data Science, Université Paris Saclay, Saclay, France
| | - Anita Beggiato
- Institut Pasteur, Université de Paris, Département de neuroscience, F-75015 Paris, France; Child and Adolescent Psychiatry Department, Robert Debré, APHP, Paris, France
| | | | | | | | | | - Weidong Cai
- Stanford University School of Medicine, Palo Alto, US
| | | | - Freddy Cliquet
- Institut Pasteur, Université de Paris, Département de neuroscience, F-75015 Paris, France
| | | | | | | | - Meng Wang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Valentina Zantedeschi
- Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, Saint-Etienne, France
| | - Alexandre Boucaud
- Parietal, Inria, Saclay, France; Paris-Saclay Center for Data Science, Université Paris Saclay, Saclay, France
| | - Joris van den Bossche
- Parietal, Inria, Saclay, France; Paris-Saclay Center for Data Science, Université Paris Saclay, Saclay, France
| | | | - Richard Delorme
- Institut Pasteur, Université de Paris, Département de neuroscience, F-75015 Paris, France; Child and Adolescent Psychiatry Department, Robert Debré, APHP, Paris, France
| | - Thomas Bourgeron
- Institut Pasteur, Université de Paris, Département de neuroscience, F-75015 Paris, France
| | - Roberto Toro
- Institut Pasteur, Université de Paris, Département de neuroscience, F-75015 Paris, France
| | - Gaël Varoquaux
- Parietal, Inria, Saclay, France; Soda, Inria, Saclay, France.
| |
Collapse
|
14
|
Wang N, Yao D, Ma L, Liu M. Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI. Med Image Anal 2021; 75:102279. [PMID: 34731776 DOI: 10.1016/j.media.2021.102279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.
Collapse
Affiliation(s)
- Nan Wang
- East China Normal University, Shanghai 200062, China
| | - Dongren Yao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lizhuang Ma
- East China Normal University, Shanghai 200062, China; Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed Pharmacother 2021; 137:111322. [PMID: 33761592 DOI: 10.1016/j.biopha.2021.111322] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a sort of mental disorder marked by deficits in cognitive and communication abilities. To date no effective cure for this pernicious disease has been available. Valproic acid (VPA) is a broad-spectrum, antiepileptic drug, and it is also a potent teratogen. Epidemiological studies have shown that children exposed to VPA are at higher risk for ASD during the first trimester of their gestational development. Several animal and human studies have demonstrated important behavioral impairments and morphological changes in the brain following VPA treatment. However, the mechanism of VPA exposure-induced ASD remains unclear. Several factors are involved in the pathological phase of ASD, including aberrant excitation/inhibition of synaptic transmission, neuroinflammation, diminished neurogenesis, oxidative stress, etc. In this review, we aim to outline the current knowledge of the critical pathophysiological mechanisms underlying VPA exposure-induced ASD. This review will give insight toward understanding the complex nature of VPA-induced neuronal toxicity and exploring a new path toward the development of novel pharmacological treatment against ASD.
Collapse
|
16
|
Eslami T, Almuqhim F, Raiker JS, Saeed F. Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey. Front Neuroinform 2021; 14:575999. [PMID: 33551784 PMCID: PMC7855595 DOI: 10.3389/fninf.2020.575999] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Here we summarize recent progress in machine learning model for diagnosis of Autism Spectrum Disorder (ASD) and Attention-deficit/Hyperactivity Disorder (ADHD). We outline and describe the machine-learning, especially deep-learning, techniques that are suitable for addressing research questions in this domain, pitfalls of the available methods, as well as future directions for the field. We envision a future where the diagnosis of ASD, ADHD, and other mental disorders is accomplished, and quantified using imaging techniques, such as MRI, and machine-learning models.
Collapse
Affiliation(s)
- Taban Eslami
- Department of Computer Science, Western Michigan University, Kalamazoo, MI, United States
| | - Fahad Almuqhim
- School of Computing and Information Sciences, Florida International University, Miami, FL, United States
| | - Joseph S. Raiker
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Fahad Saeed
- School of Computing and Information Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
17
|
Bi XA, Hu X, Xie Y, Wu H. A novel CERNNE approach for predicting Parkinson's Disease-associated genes and brain regions based on multimodal imaging genetics data. Med Image Anal 2020; 67:101830. [PMID: 33096519 DOI: 10.1016/j.media.2020.101830] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
The detection and pathogenic factors analysis of Parkinson's disease (PD) has a practical significance for its diagnosis and treatment. However, the traditional research paradigms are commonly based on single neural imaging data, which is easy to ignore the complementarity between multimodal imaging genetics data. The existing researches also pay little attention to the comprehensive framework of patient detection and pathogenic factors analysis for PD. Based on functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data, a novel brain disease multimodal data analysis model is proposed in this paper. Firstly, according to the complementarity between the two types of data, the classical correlation analysis method is used to construct the fusion feature of subjects. Secondly, based on the artificial neural network, the fusion feature analysis tool named clustering evolutionary random neural network ensemble (CERNNE) is designed. This method integrates multiple neural networks constructed randomly, and uses clustering evolution strategy to optimize the ensemble learner by adaptive selective integration, selecting the discriminative features for PD analysis and ensuring the generalization performance of the ensemble model. By combining with data fusion scheme, the CERNNE is applied to forming a multi-task analysis framework, recognizing PD patients and predicting PD-associated brain regions and genes. In the multimodal data experiment, the proposed framework shows better classification performance and pathogenic factors predicting ability, which provides a new perspective for the diagnosis of PD.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xi Hu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| | - Yiming Xie
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| | - Hao Wu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China; College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
18
|
Zhang L, Wang M, Liu M, Zhang D. A Survey on Deep Learning for Neuroimaging-Based Brain Disorder Analysis. Front Neurosci 2020; 14:779. [PMID: 33117114 PMCID: PMC7578242 DOI: 10.3389/fnins.2020.00779] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Deep learning has recently been used for the analysis of neuroimages, such as structural magnetic resonance imaging (MRI), functional MRI, and positron emission tomography (PET), and it has achieved significant performance improvements over traditional machine learning in computer-aided diagnosis of brain disorders. This paper reviews the applications of deep learning methods for neuroimaging-based brain disorder analysis. We first provide a comprehensive overview of deep learning techniques and popular network architectures by introducing various types of deep neural networks and recent developments. We then review deep learning methods for computer-aided analysis of four typical brain disorders, including Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, and Schizophrenia, where the first two diseases are neurodegenerative disorders and the last two are neurodevelopmental and psychiatric disorders, respectively. More importantly, we discuss the limitations of existing studies and present possible future directions.
Collapse
Affiliation(s)
- Li Zhang
- College of Computer Science and Technology, Nanjing Forestry University, Nanjing, China
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingliang Wang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
19
|
Kulage KM, Goldberg J, Usseglio J, Romero D, Bain JM, Smaldone AM. How has DSM-5 Affected Autism Diagnosis? A 5-Year Follow-Up Systematic Literature Review and Meta-analysis. J Autism Dev Disord 2020; 50:2102-2127. [PMID: 30852784 DOI: 10.1007/s10803-019-03967-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We conducted a 5-year follow-up systematic review and meta-analysis to determine change in frequency of autism spectrum disorder (ASD) diagnosis since diagnostic and statistical manual 5 (DSM-5) publication and explore the impact of Social Communication Disorder (SCD). For 33 included studies, use of DSM-5 criteria suggests decreases in diagnosis for ASD [20.8% (16.0-26.7), p < 0.001], DSM-IV-TR Autistic Disorder [10.1% (6.2-16.0), p < 0.001], and Asperger's [23.3% (12.9-38.5), p = 0.001]; pervasive developmental disorder-not otherwise specified decrease was not significant [46.1% (34.6-58.0), p = 0.52]. Less than one-third [28.8% (13.9-50.5), p = 0.06] of individuals diagnosed with DSM-IV-TR but not DSM-5 ASD would qualify for SCD. Findings suggest smaller decreases in ASD diagnoses compared to earlier reviews. Future research is needed as concerns remain for impaired individuals without a diagnosis.
Collapse
Affiliation(s)
- Kristine M Kulage
- Columbia University School of Nursing, 630 West 168th Street, Box 6, New York, NY, 10032, USA.
| | - Johanna Goldberg
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - John Usseglio
- Augustus C. Long Health Sciences Library, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY, 10032, USA
| | - Danielle Romero
- Lucile Packard Children's Hospital at Stanford, 770 Welch Road, Palo Alto, CA, 94304, USA
| | - Jennifer M Bain
- Department of Neurology, Division of Child Neurology, Columbia University Vagelos College of Physicians and Surgeons, 180 Fort Washington Avenue, 5th Floor, New York, NY, 10032, USA
| | - Arlene M Smaldone
- Columbia University School of Nursing, 630 West 168th Street, Box 6, New York, NY, 10032, USA
| |
Collapse
|
20
|
Mahmoud AM, Karamti H, Alrowais F. A Two Consequent Multi-layers Deep Discriminative Approach for Classifying fMRI Images. INT J ARTIF INTELL T 2020. [DOI: 10.1142/s021821302030001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Functional Magnetic Resonance Imaging (fMRI), for many decades acts as a potential aiding method for diagnosing medical problems. Several successful machine learning algorithms have been proposed in literature to extract valuable knowledge from fMRI. One of these algorithms is the convolutional neural network (CNN) that competent with high capabilities for learning optimal abstractions of fMRI. This is because the CNN learns features similarly to human brain where it preserves local structure and avoids distortion of the global feature space. Focusing on the achievements of using the CNN for the fMRI, and accordingly, the Deep Convolutional Auto-Encoder (DCAE) benefits from the data-driven approach with CNN’s optimal features to strengthen the fMRI classification. In this paper, a new two consequent multi-layers DCAE deep discriminative approach for classifying fMRI Images is proposed. The first DCAE is unsupervised sub-model that is composed of four CNN. It focuses on learning weights to utilize discriminative characteristics of the extracted features for robust reconstruction of fMRI with lower dimensional considering tiny details and refining by its deep multiple layers. Then the second DCAE is a supervised sub-model that focuses on training labels to reach an outperformed results. The proposed approach proved its effectiveness and improved literately reported results on a large brain disorder fMRI dataset.
Collapse
Affiliation(s)
- Abeer M. Mahmoud
- Computer Sciences Department, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
| | - Hanen Karamti
- Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, Saudi Arabia
- MIRACL Laboratory, ISIMS, University of Sfax, B. P. 242, 3021 Sakiet Ezzit, Sfax, Tunisia
| | - Fadwa Alrowais
- Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Xu L, Guo Y, Li J, Yu J, Xu H. Classification of autism spectrum disorder based on fluctuation entropy of spontaneous hemodynamic fluctuations. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Hu J, Cao L, Li T, Liao B, Dong S, Li P. Interpretable Learning Approaches in Resting-State Functional Connectivity Analysis: The Case of Autism Spectrum Disorder. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:1394830. [PMID: 32508974 PMCID: PMC7251440 DOI: 10.1155/2020/1394830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 11/17/2022]
Abstract
Deep neural networks have recently been applied to the study of brain disorders such as autism spectrum disorder (ASD) with great success. However, the internal logics of these networks are difficult to interpret, especially with regard to how specific network architecture decisions are made. In this paper, we study an interpretable neural network model as a method to identify ASD participants from functional magnetic resonance imaging (fMRI) data and interpret results of the model in a precise and consistent manner. First, we propose an interpretable fully connected neural network (FCNN) to classify two groups, ASD versus healthy controls (HC), based on input data from resting-state functional connectivity (rsFC) between regions of interests (ROIs). The proposed FCNN model is a piecewise linear neural network (PLNN) which uses piecewise linear function LeakyReLU as its activation function. We experimentally compared the FCNN model against widely used classification models including support vector machine (SVM), random forest, and two new classes of deep neural network models in a large dataset containing 871 subjects from ABIDE I database. The results show the proposed FCNN model achieves the highest classification accuracy. Second, we further propose an interpreting method which could explain the trained model precisely with a precise linear formula for each input sample and decision features which contributed most to the classification of ASD versus HC participants in the model. We also discuss the implications of our proposed approach for fMRI data classification and interpretation.
Collapse
Affiliation(s)
- Jinlong Hu
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
- Communication and Computer Network Laboratory of Guangdong, South China University of Technology, Guangzhou, China
| | - Lijie Cao
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
- Communication and Computer Network Laboratory of Guangdong, South China University of Technology, Guangzhou, China
| | - Tenghui Li
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
- Communication and Computer Network Laboratory of Guangdong, South China University of Technology, Guangzhou, China
| | - Bin Liao
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Shoubin Dong
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
- Communication and Computer Network Laboratory of Guangdong, South China University of Technology, Guangzhou, China
| | - Ping Li
- Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
23
|
Tang L, Mostafa S, Liao B, Wu FX. A network clustering based feature selection strategy for classifying autism spectrum disorder. BMC Med Genomics 2019; 12:153. [PMID: 31888621 PMCID: PMC6936069 DOI: 10.1186/s12920-019-0598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/09/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Advanced non-invasive neuroimaging techniques offer new approaches to study functions and structures of human brains. Whole-brain functional networks obtained from resting state functional magnetic resonance imaging has been widely used to study brain diseases like autism spectrum disorder (ASD). Auto-classification of ASD has become an important issue. Existing classification methods for ASD are based on features extracted from the whole-brain functional networks, which may be not discriminant enough for good performance. METHODS In this study, we propose a network clustering based feature selection strategy for classifying ASD. In our proposed method, we first apply symmetric non-negative matrix factorization to divide brain networks into four modules. Then we extract features from one of four modules called default mode network (DMN) and use them to train several classifiers for ASD classification. RESULTS The computational experiments show that our proposed method achieves better performances than those trained with features extracted from the whole brain network. CONCLUSION It is a good strategy to train the classifiers for ASD based on features from the default mode subnetwork.
Collapse
Affiliation(s)
- Lingkai Tang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
| | - Sakib Mostafa
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158 China
| | - Fang-Xiang Wu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
| |
Collapse
|
24
|
Eslami T, Mirjalili V, Fong A, Laird AR, Saeed F. ASD-DiagNet: A Hybrid Learning Approach for Detection of Autism Spectrum Disorder Using fMRI Data. Front Neuroinform 2019; 13:70. [PMID: 31827430 PMCID: PMC6890833 DOI: 10.3389/fninf.2019.00070] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023] Open
Abstract
Heterogeneous mental disorders such as Autism Spectrum Disorder (ASD) are notoriously difficult to diagnose, especially in children. The current psychiatric diagnostic process is based purely on the behavioral observation of symptomology (DSM-5/ICD-10) and may be prone to misdiagnosis. In order to move the field toward more quantitative diagnosis, we need advanced and scalable machine learning infrastructure that will allow us to identify reliable biomarkers of mental health disorders. In this paper, we propose a framework called ASD-DiagNet for classifying subjects with ASD from healthy subjects by using only fMRI data. We designed and implemented a joint learning procedure using an autoencoder and a single layer perceptron (SLP) which results in improved quality of extracted features and optimized parameters for the model. Further, we designed and implemented a data augmentation strategy, based on linear interpolation on available feature vectors, that allows us to produce synthetic datasets needed for training of machine learning models. The proposed approach is evaluated on a public dataset provided by Autism Brain Imaging Data Exchange including 1, 035 subjects coming from 17 different brain imaging centers. Our machine learning model outperforms other state of the art methods from 10 imaging centers with increase in classification accuracy up to 28% with maximum accuracy of 82%. The machine learning technique presented in this paper, in addition to yielding better quality, gives enormous advantages in terms of execution time (40 min vs. 7 h on other methods). The implemented code is available as GPL license on GitHub portal of our lab (https://github.com/pcdslab/ASD-DiagNet).
Collapse
Affiliation(s)
- Taban Eslami
- Department of Computer Science, Western Michigan University, Kalamazoo, MI, United States
- School of Computing and Information Science, Florida International University, Miami, FL, United States
| | - Vahid Mirjalili
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Alvis Fong
- Department of Computer Science, Western Michigan University, Kalamazoo, MI, United States
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, United States
| | - Fahad Saeed
- School of Computing and Information Science, Florida International University, Miami, FL, United States
| |
Collapse
|
25
|
Noriega G. Restricted, Repetitive, and Stereotypical Patterns of Behavior in Autism-an fMRI Perspective. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1139-1148. [PMID: 31021772 DOI: 10.1109/tnsre.2019.2912416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main objective of this paper is to determine whether resting-state fMRI can identify functional connectivity differences between individuals with autism who experience severe issues with restricted, repetitive, and stereotypical behaviors, those who experience only mild issues, and controls. We use resting-state fMRI data from the ABIDE-I preprocessed repository, with participants grouped according to their ADI-R Restricted, Repetitive, and Stereotyped Patterns of Behavior Subscore. Three processing methods are used for analysis. A time-correlation approach establishes a basic baseline, and we introduce a method based on sliding time windows, with means across time adjusted to consider the fraction of time the correlation measure is above/below average. We complement these with a band-limited coherence approach. For completeness, preprocessing schemes with and without global signal regression are considered. Our results are in line with recent ones which find both over- and under-connectivities in the autistic brain. We find that there are indeed significant differences in connectivity between various regions that differentiate between ASD subjects with severe stereotypical/restrictive behavior issues, those with only mild issues, and controls. Interestingly, for some regions, the "signature" of subjects in the milder of the ASD groups appears to be distinct (i.e., over- or under-connected) relative to both the more severe ASD group and the controls.
Collapse
|
26
|
Application of Single-Nucleotide Polymorphisms in the Diagnosis of Autism Spectrum Disorders: A Preliminary Study with Artificial Neural Networks. J Mol Neurosci 2019; 68:515-521. [PMID: 30937628 DOI: 10.1007/s12031-019-01311-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) includes different neurodevelopmental disorders characterized by deficits in social communication, and restricted, repetitive patterns of behavior, interests or activities. Based on the importance of early diagnosis for effective therapeutic intervention, several strategies have been employed for detection of the disorder. The artificial neural network (ANN) as a type of machine learning method is a common strategy. In the current study, we extracted genomic data for 487 ASD patients and 455 healthy individuals. All individuals were genotyped in certain single-nucleotide polymorphisms within retinoic acid-related orphan receptor alpha (RORA), gamma-aminobutyric acid type A receptor beta3 subunit (GABRB3), synaptosomal-associated protein 25 (SNAP25) and metabotropic glutamate receptor 7 (GRM7) genes. Subsequently, we used the "Keras" package to create and train the ANN model. For cross-validation, samples were divided into ten folds. In the training process, initially, the first fold was preserved for validation and the other folds were used to train the model. The validation fold was then used to evaluate model performance. The k-fold cross-validation method was used to ensure model generalizability and to prevent overfitting. Local interpretable model-agnostic explanations (LIME) were applied to explain model predictions at the data sample level. The output of loss function was evaluated in the training process for each fold in the k-fold cross-validation model. Finally, the number of losses was reduced to less than 0.6 after 200 epochs (except in two cases). The accuracy, sensitivity and specificity of our model were 73.67%, 82.75% and 63.95%, respectively. The area under the curve (AUC) was 80.59. Consequently, in the current study, we propose an ANN-based method for differentiating ASD status from healthy status with adequate power.
Collapse
|