1
|
Li X, Wei W, Qian L, Li X, Li M, Kakkos I, Wang Q, Yu H, Guo W, Ma X, Matsopoulos GK, Zhao L, Deng W, Sun Y, Li T. Individualized prediction of multi-domain intelligence quotient in bipolar disorder patients using resting-state functional connectivity. Brain Res Bull 2025; 222:111238. [PMID: 39909352 DOI: 10.1016/j.brainresbull.2025.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/31/2024] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Although accumulating studies have explored the neural underpinnings of intelligence quotient (IQ) in patients with bipolar disorder (BD), these studies utilized a classification/comparison scheme that emphasized differences between BD and healthy controls at a group level. The present study aimed to infer BD patients' IQ scores at the individual level using a prediction model. METHODS We applied a cross-validated Connectome-based Predictive Modeling (CPM) framework using resting-state fMRI functional connectivity (FCs) to predict BD patients' IQ scores, including verbal IQ (VIQ), performance IQ (PIQ), and full-scale IQ (FSIQ). For each IQ domain, we selected the FCs that contributed to the predictions and described their distribution across eight widely-recognized functional networks. Moreover, we further explored the overlapping patterns of the contributed FCs for different IQ domains. RESULTS The CPM achieved statistically significant prediction performance for three IQ domains in BD patients. Regarding the contributed FCs, we observed a widespread distribution of internetwork FCs across somatomotor, visual, dorsal attention, and ventral attention networks, demonstrating their correspondence with aberrant FCs correlated to cognition deficits in BD patients. A convergent pattern in terms of contributed FCs for different IQ domains was observed, as evidenced by the shared-FCs with a leftward hemispheric dominance. CONCLUSIONS The present study preliminarily explored the feasibility of inferring individual IQ scores in BD patients using the FCs-based CPM framework. It is a step toward the development of applicable techniques for quantitative and objective cognitive assessment in BD patients and contributes novel insights into understanding the complex neural mechanisms underlying different IQ domains.
Collapse
Affiliation(s)
- Xiaoyu Li
- Key Laboratory for Biomedical Engineering of the Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Wei
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Linze Qian
- Key Laboratory for Biomedical Engineering of the Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaojing Li
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ioannis Kakkos
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens 15790, Greece
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hua Yu
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Wanjun Guo
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, China
| | - George K Matsopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens 15790, Greece
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of the Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Tao Li
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zheng W, Zhang X, Chen J, Luan X, Wang J, Zhang L, Liu K, Zhao Y, Xu Z. The Effect of Repetitive Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex on the Amyotrophic Lateral Sclerosis Patients With Cognitive Impairment: A Double-Blinded, Randomized, and Sham Control Trial. CNS Neurosci Ther 2025; 31:e70316. [PMID: 40099804 PMCID: PMC11915350 DOI: 10.1111/cns.70316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. A large number of ALS patients have cognitive impairment. In this double-blinded, randomized, and sham-controlled study, we aimed to investigate the effect of repetitive transcranial magnetic stimulation (rTMS) on ALS patients with cognitive impairment. METHODS A total of 90 ALS patients with cognitive impairment were recruited from two cohorts; 80 participants were randomly assigned in a 1:1 ratio to receive 10 Hz rTMS or sham treatment on the bilateral dorsolateral prefrontal cortices (DLPFC) for 4 consecutive weeks. The patients were assessed by ECAS and ALSFRS-R scales. The Zarit care burden scale was administered to caregivers of ALS patients. The primary outcome measured was the rate of decline in the total ECAS score between pretreatment, 6 months post-treatment, and 12 months post-treatment. Secondary outcomes included the group difference in the slope of the Zarit score, ALSFRS-R total score, and the neurofilament light chain plasma levels. RESULTS The ECAS total score in the intention-to-treat population significantly changed from 79.74 ± 6.39 to 81.98 ± 6.51 and 79.22 ± 6.50 with rTMS intervention at the 6-month and 12-month follow-ups, respectively (p = 0.031, p = 0.042). The Zarit score also significantly decreased from 57.65 ± 3.42 to 52.24 ± 3.34 and 56.42 ± 3.41 at the 3-month and 6-month post-treatment time points, respectively (p = 0.003, p = 0.014). No significant differences were observed between the groups for other secondary endpoints. However, there was a trend of decreasing NF-L level rates in the treatment group over the first 6 months' follow-up. CONCLUSIONS rTMS could yield short-term positive effects on the ALS patients subgroup with cognitive impairment and alleviate caregivers' burden. No improvement was observed in the severity of ALS and ALS plasma biomarkers.
Collapse
Affiliation(s)
- Wensi Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jingjiong Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liren Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Kun Liu
- Department of Rehabilitation Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Zhouwei Xu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
3
|
Chang CH, Liu WC, Chou PH. Near-infrared spectroscopy-guided personalized repetitive transcranial magnetic stimulation for bipolar depression: a case report. Front Psychiatry 2025; 15:1514153. [PMID: 39902251 PMCID: PMC11788398 DOI: 10.3389/fpsyt.2024.1514153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is a common treatment for depression, particularly in patients unresponsive to conventional therapies. High-frequency (10 Hz), low-frequency (1 Hz), or bilateral (left, high-frequency; right, low-frequency) stimulation of the dorsolateral prefrontal cortex (DLPFC) has been demonstrated to be effective in studies based on prefrontal asymmetry theory, which suggests that depression is associated with reduced left frontal function and increased right frontal function. However, few reliable predictors or biomarkers are available for personalizing treatment protocols on the basis of a patient's brain function. Near-infrared spectroscopy (NIRS), a noninvasive neuroimaging tool that assesses functional changes in the brain during cognitive tasks, can measure a patient's bilateral frontal lobe function in real time. Thus, this tool can aid the development of personalized TMS protocols for patients with depression. Methods A 19-year-old woman presented to our psychiatric clinic with bipolar depression. NIRS was performed to select an appropriate TMS protocol for the patient. A verbal fluency test revealed bilateral low frontal lobe function. Thus, we selected a TMS protocol involving 10 sessions of bilateral high-frequency stimulation over 4 days, with each session delivering 3000 pulses on each side of the DLPFC. Results Before treatment, the patient's scores on the Hamilton Depression Rating Scale (HAMD), Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), and Young Mania Rating Scale were 40, 57, 40, and 6, respectively. After treatment, her depressive symptoms substantially improved, with HAMD, BDI, and BAI scores decreasing to 17, 21, and 14, respectively. Although the treatment led to side effects such as dizziness and headache, these effects resolved after the treatment. At the 6-month follow-up, the patient's condition was still stable, with HAMD, BDI, and BAI scores of 10, 13, and 7, respectively. Conclusion Our case suggests that NIRS can guide the selection of appropriate TMS protocols for patients with bipolar depression. Although our findings are promising, further randomized controlled trials are needed to validate the efficacy and safety of and determine the optimal parameters for this approach.
Collapse
Affiliation(s)
- Chun-Hung Chang
- An Nan Hospital, China Medical University, Tainan, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Wen-Chun Liu
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Po-Han Chou
- Department of Brain Reserch, Brain Mental Health Clinic, Zubei, Taiwan
| |
Collapse
|
4
|
Pu Z, Huang H, Li M, Li H, Shen X, Wu Q, Ni Q, Lin Y, Cui D. An exploration of distinguishing subjective cognitive decline and mild cognitive impairment based on resting-state prefrontal functional connectivity assessed by functional near-infrared spectroscopy. Front Aging Neurosci 2025; 16:1468246. [PMID: 39845444 PMCID: PMC11750998 DOI: 10.3389/fnagi.2024.1468246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose Functional near-infrared spectroscopy (fNIRS) has shown feasibility in evaluating cognitive function and brain functional connectivity (FC). Therefore, this fNIRS study aimed to develop a screening method for subjective cognitive decline (SCD) and mild cognitive impairment (MCI) based on resting-state prefrontal FC and neuropsychological tests via machine learning. Methods Functional connectivity data measured by fNIRS were collected from 55 normal controls (NCs), 80 SCD individuals, and 111 MCI individuals. Differences in FC were analyzed among the groups. FC strength and neuropsychological test scores were extracted as features to build classification and predictive models through machine learning. Model performance was assessed based on accuracy, specificity, sensitivity, and area under the curve (AUC) with 95% confidence interval (CI) values. Results Statistical analysis revealed a trend toward compensatory enhanced prefrontal FC in SCD and MCI individuals. The models showed a satisfactory ability to differentiate among the three groups, especially those employing linear discriminant analysis, logistic regression, and support vector machine. Accuracies of 94.9% for MCI vs. NC, 79.4% for MCI vs. SCD, and 77.0% for SCD vs. NC were achieved, and the highest AUC values were 97.5% (95% CI: 95.0%-100.0%) for MCI vs. NC, 83.7% (95% CI: 77.5%-89.8%) for MCI vs. SCD, and 80.6% (95% CI: 72.7%-88.4%) for SCD vs. NC. Conclusion The developed screening method based on resting-state prefrontal FC measured by fNIRS and machine learning may help predict early-stage cognitive impairment.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang, China
| | - Hongna Huang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Li
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang, China
| | - Hongyan Li
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang, China
| | - Xiaoyan Shen
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang, China
| | - Qingfeng Wu
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang, China
| | - Qin Ni
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang, China
| | - Yong Lin
- Department of Psychogeriatrics, Kangci Hospital of Jiaxing, Tongxiang, Zhejiang, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Luo Y, Bai Y, Wei K, Bi B. Toward a neurocircuit-based sequential transcranial magnetic stimulation treatment of pediatric bipolar II disorder. J Affect Disord 2024; 363:99-105. [PMID: 39009309 DOI: 10.1016/j.jad.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Abnormalities in large-scale neuronal networks-the frontoparietal central executive network (CEN)-are consistent findings in bipolar disorder and potential therapeutic targets for transcranial magnetic stimulation (TMS). OBJECTIVE The present study aimed to assess the effects of CEN neurocircuit-based sequential TMS on the clinical symptoms and cognitive functions of adolescents with bipolar II disorder. METHODS The study was a single-blinded, randomized, placebo-control trial. Participants with DSM-5-defined bipolar disorder II were recruited and randomized to receive either a sham treatment (n = 20) or an active TMS treatment (n = 22). The active group patients were taking medication, with intermittent theta burst stimulation (iTBS) treatment provided as adjunctive treatment targeting the left DLPFC, the left ITG, and the left PPC nodes consecutively. Patients completed the measurements of HAMD and the Das-Naglieri Cognition Assessment System at baseline and 3 weeks after the intervention. RESULTS A significant group-by-time interaction was observed in the HAMD, total cognition, and planning. Post-hoc analysis revealed that patients in the active group significantly improved HAMD scores following neurostimulation. Moreover, within-subject analysis indicated that the active group significantly improved in scores of total cognition and planning, while the sham group did not. No significant differences were seen in the other cognitive measures. CONCLUSION The neurocircuit-based sequential TMS protocol targeting three CEN nodes, in conjunction with medication, safely and effectively improved depressive symptoms and cognitive function in adolescents with bipolar II disorder.
Collapse
Affiliation(s)
- Yange Luo
- Department of Clinical Psychology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Yuyin Bai
- Department of Clinical Psychology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Kun Wei
- Department of Clinical Psychology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
| | - Bo Bi
- Department of Clinical Psychology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
6
|
Geng L, Feng Q, Wang X, Gao Y, Hao L, Qiu J. Connectome-based modeling reveals a resting-state functional network that mediates the relationship between social rejection and rumination. Front Psychol 2023; 14:1264221. [PMID: 37965648 PMCID: PMC10642796 DOI: 10.3389/fpsyg.2023.1264221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Background Rumination impedes problem solving and is one of the most important factors in the onset and maintenance of multiple psychiatric disorders. The current study aims to investigate the impact of social rejection on rumination and explore the underlying neural mechanisms involved in this process. Methods We utilized psychological questionnaire and resting-state brain imaging data from a sample of 560 individuals. The predictive model for rumination scores was constructed using resting-state functional connectivity data through connectome-based predictive modeling. Additionally, a mediation analysis was conducted to investigate the mediating role of the prediction network in the relationship between social rejection and rumination. Results A positive correlation between social rejection and rumination was found. We obtained the prediction model of rumination and found that the strongest contributions came from the intra- and internetwork connectivity within the default mode network (DMN), dorsal attention network (DAN), frontoparietal control network (FPCN), and sensorimotor networks (SMN). Analysis of node strength revealed the significance of the supramarginal gyrus (SMG) and angular gyrus (AG) as key nodes in the prediction model. In addition, mediation analysis showed that the strength of the prediction network mediated the relationship between social rejection and rumination. Conclusion The findings highlight the crucial role of functional connections among the DMN, DAN, FPCN, and SMN in linking social rejection and rumination, particular in brain regions implicated in social cognition and emotion, namely the SMG and AG regions. These results enhance our understanding of the consequences of social rejection and provide insights for novel intervention strategies targeting rumination.
Collapse
Affiliation(s)
- Li Geng
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qiuyang Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yixin Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Lei Hao
- College of Teacher Education, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Sankar A, Shen X, Colic L, Goldman DA, Villa LM, Kim JA, Pittman B, Scheinost D, Constable RT, Blumberg HP. Predicting depressed and elevated mood symptomatology in bipolar disorder using brain functional connectomes. Psychol Med 2023; 53:6656-6665. [PMID: 36891769 PMCID: PMC10491744 DOI: 10.1017/s003329172300003x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The study is aimed to identify brain functional connectomes predictive of depressed and elevated mood symptomatology in individuals with bipolar disorder (BD) using the machine learning approach Connectome-based Predictive Modeling (CPM). METHODS Functional magnetic resonance imaging data were obtained from 81 adults with BD while they performed an emotion processing task. CPM with 5000 permutations of leave-one-out cross-validation was applied to identify functional connectomes predictive of depressed and elevated mood symptom scores on the Hamilton Depression and Young Mania rating scales. The predictive ability of the identified connectomes was tested in an independent sample of 43 adults with BD. RESULTS CPM predicted the severity of depressed [concordance between actual and predicted values (r = 0.23, pperm (permutation test) = 0.031) and elevated (r = 0.27, pperm = 0.01) mood. Functional connectivity of left dorsolateral prefrontal cortex and supplementary motor area nodes, with inter- and intra-hemispheric connections to other anterior and posterior cortical, limbic, motor, and cerebellar regions, predicted depressed mood severity. Connectivity of left fusiform and right visual association area nodes with inter- and intra-hemispheric connections to the motor, insular, limbic, and posterior cortices predicted elevated mood severity. These networks were predictive of mood symptomatology in the independent sample (r ⩾ 0.45, p = 0.002). CONCLUSIONS This study identified distributed functional connectomes predictive of depressed and elevated mood severity in BD. Connectomes subserving emotional, cognitive, and psychomotor control predicted depressed mood severity, while those subserving emotional and social perceptual functions predicted elevated mood severity. Identification of these connectome networks may help inform the development of targeted treatments for mood symptoms.
Collapse
Affiliation(s)
- Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Danielle A. Goldman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Luca M. Villa
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jihoon A. Kim
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Wang D, Tang L, Xi C, Luo D, Liang Y, Huang Q, Wang Z, Chen J, Zhao X, Zhou H, Wang F, Hu S. Targeted visual cortex stimulation (TVCS): a novel neuro-navigated repetitive transcranial magnetic stimulation mode for improving cognitive function in bipolar disorder. Transl Psychiatry 2023; 13:193. [PMID: 37291106 DOI: 10.1038/s41398-023-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
A more effective and better-tolerated site for repetitive transcranial magnetic stimulation (rTMS) for treating cognitive dysfunction in patients with bipolar disorder (BD) is needed. The primary visual cortex (V1) may represent a suitable site. To investigate the use of the V1, which is functionally linked to the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), as a potential site for improving cognitive function in BD. Seed-based functional connectivity (FC) analysis was used to locate targets in the V1 that had significant FC with the DLPFC and ACC. Subjects were randomly assigned to 4 groups, namely, the DLPFC active-sham rTMS (A1), DLPFC sham-active rTMS (A2), ACC active-sham rTMS (B1), and ACC sham-active rTMS groups (B2). The intervention included the rTMS treatment once daily, with five treatments a week for four weeks. The A1 and B1 groups received 10 days of active rTMS treatment followed by 10 days of sham rTMS treatment. The A2 and B2 groups received the opposite. The primary outcomes were changes in the scores of five tests in the THINC-integrated tool (THINC-it) at week 2 (W2) and week 4 (W4). The secondary outcomes were changes in the FC between the DLPFC/ACC and the whole brain at W2 and W4. Of the original 93 patients with BD recruited, 86 were finally included, and 73 finished the trial. Significant interactions between time and intervention type (Active/Sham) were observed in the scores of the accuracy of the Symbol Check in the THINC-it tests at baseline (W0) and W2 in groups B1 and B2 (F = 4.736, p = 0.037) using a repeated-measures analysis of covariance approach. Group B1 scored higher in the accuracy of Symbol Check at W2 compared with W0 (p < 0.001), while the scores of group B2 did not differ significantly between W0 and W2. No significant interactions between time and intervention mode were seen between groups A1 and A2, nor was any within-group significance of FC between DLPFC/ACC and the whole brain observed between baseline (W0) and W2/W4 in any group. One participant in group B1 experienced disease progression after 10 active and 2 sham rTMS sessions. The present study demonstrated that V1, functionally correlated with ACC, is a potentially effective rTMS stimulation target for improving neurocognitive function in BD patients. Further investigation using larger samples is required to confirm the clinical efficacy of TVCS.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, P.R. China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210000, P.R. China
| | - Caixi Xi
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Dan Luo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Ward Five of The Third People's Hospital of Jiashan County, Jiaxing, 314000, China
| | - Yin Liang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Taizhou Second People's Hospital, Taizhou, 318000, China
| | - Qi Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Nanchong Psychosomatic Hospital, Nanchong, 637000, China
| | - Zhong Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Xudong Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Huzhou Third municipal hospital, Huzhou, 313000, China
| | - Hetong Zhou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, P.R. China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210000, P.R. China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Zhang J, Guan W, Chen X, Zhao Y, Liu P. Automatic emotion regulation prompts response inhibition to angry faces in sub-clinical depression: An ERP study. Biol Psychol 2023; 178:108515. [PMID: 36764597 DOI: 10.1016/j.biopsycho.2023.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The neurocognitive mechanism by which automatic emotion regulation (AER) affects emotion processing remains understudied in the context of psychopathology, such as depression. Participants with sub-clinical depression and healthy controls were randomly assigned to an emotion regulation priming group or a neutral priming group. All participants completed an emotional Go/No-go task by judging the gender of angry or happy faces. During the Go/No-go task, each trial was preceded by subliminal presentation of words describing emotion regulation goals or neutral goals as a manipulation of priming. The behavioral results showed that compared with neutral priming, subliminal priming of regulation goals increased the accuracy in No-go trials with angry faces only for sub-clinically depressed participants. In the ERP results, the main effect of regulation priming was significant in sub-clinically depressed participants, such that showing subliminal priming of regulation goals decreased the amplitude of N2 compared to the neutral priming. Similarly, for the sub-clinically depressed participants, regulation goal priming evoked smaller P3 in response to angry faces than to happy faces. No such pattern was found in neutral goal priming condition or for healthy controls. According to the automotive model of emotion regulation, once goals or norms related to emotion regulations are formed in the mind, a related regulation response could be activated without awareness. Our results suggest that subliminal priming of regulation goals could change the response inhibition to angry faces in sub-clinically depressed participants.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Psychology, Renmin University of China, Beijing, China.
| | - Wanyao Guan
- Department of Psychology, Renmin University of China, Beijing, China
| | - Xinxin Chen
- Department of Psychology, Renmin University of China, Beijing, China
| | - Yijia Zhao
- Department of Psychology, Renmin University of China, Beijing, China
| | - Pan Liu
- Department of Psychology, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
10
|
Mahal P, Deep R, Kumaran SS, Khandelwal SK. Elevated choline in dorsolateral prefrontal cortex of lithium responders with bipolar I disorder. Asian J Psychiatr 2023; 79:103318. [PMID: 36402079 DOI: 10.1016/j.ajp.2022.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Response to lithium maintenance varies widely across patients with bipolar disorder (BD). The studies on neurochemical correlates of long-term lithium response in BD remain scant. AIM To assess the neurochemical profile in DLPFC based on lithium response status among subjects with bipolar I disorder (BD-I) using in vivo MRS. MATERIALS AND METHOD This was an observational study of 40 right-handed, euthymic adult participants with DSM-5 BD-I on long-term lithium maintenance with no psychiatric comorbidities (MINI 7.0). Using Alda Lithium Response Scale (LRS), a cut-off ≥ 7 for excellent lithium response, the sample was grouped into study group I for responders and group II for non-responders. All participants were assessed using NIMH Life Chart Method and IGSLI typical/atypical features scale. 1H-MRS was carried out on a 3 T MR scanner (Achieva, Phillips) using a 32-channel head coil, with a voxel placed at the left DLPFC. LC model was used to measure absolute concentrations of neurochemicals and their ratios in relation to creatine. RESULTS Group I (n = 20) was comparable to Group II (n = 20) with respect to demographic and illness profile. The GPC/Cr+PCr ratio was significantly higher (p = 0.028) among excellent lithium responders (0.32 ± 0.20 mmol/l) compared to sub-optimal responders (0.25 ± 0.05 mmol/l). Choline-containing compounds reflect alterations in cell membrane synthesis or myelin turnover, and are a marker of overall cell density. No significant alterations were detected in NAA, glutamate, glutamine, myo-inositol and creatine. CONCLUSION The lithium responders exhibited elevated choline (GPC) in the left DLPFC compared to non-responders.
Collapse
Affiliation(s)
- Pankaj Mahal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Raman Deep
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - S Senthil Kumaran
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences, New Delhi 110029, India.
| | - S K Khandelwal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
11
|
Shim M, Hwang HJ, Lee SH. Impaired functional cortical networks in the theta frequency band of patients with post-traumatic stress disorder during auditory-cognitive processing. Front Psychiatry 2022; 13:811766. [PMID: 36032254 PMCID: PMC9403077 DOI: 10.3389/fpsyt.2022.811766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Impaired cognitive function related to intrusive memories of traumatic experiences is the most noticeable characteristic of post-traumatic stress disorder (PTSD); nevertheless, the brain mechanism involved in the cognitive processing is still elusive. To improve the understanding of the neuropathology in PTSD patients, we investigated functional cortical networks that are based on graph theory, by using electroencephalogram (EEG). EEG signals, elicited by an auditory oddball paradigm, were recorded from 53 PTSD patients and 39 healthy controls (HCs). Source signals in 68 regions of interests were estimated using EEG data for each subject using minimum-norm estimation. Then, using source signals of each subject, time-frequency analysis was conducted, and a functional connectivity matrix was constructed using the imaginary part of coherence, which was used to evaluate three global-level (strength, clustering coefficient, and path length) and two nodal-level (strength and clustering coefficients) network indices in four frequency bands (theta, alpha, low-beta, and high-beta). The relationships between the network indices and symptoms were evaluated using Pearson's correlation. Compared with HCs, PTSD patients showed significantly reduced spectral powers around P300 periods and significantly altered network indices (diminished strength and clustering coefficient, and prolonged path length) in theta frequency band. In addition, the nodal strengths and nodal clustering coefficients in theta band of PTSD patients were significantly reduced, compared with those of HCs, and the reduced nodal clustering coefficients in parieto-temporo-occipital regions had negative correlations with the symptom scores (Impact of Event Scale-Revises, Beck Depression Inventory, and Beck Anxiety Inventory). The characterization of this disrupted pattern improves the understanding of the neuropathophysiology underlying the impaired cognitive function in PTSD patients.
Collapse
Affiliation(s)
- Miseon Shim
- Industry Development Institute, Korea University, Sejong, South Korea
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
| | - Han-Jeong Hwang
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, South Korea
| | - Seung-Hwan Lee
- Psychiatry Department, Ilsan Paik Hospital, Inje University, Goyang, South Korea
- Clinical Emotion and Cognition Research Laboratory, Goyang, South Korea
| |
Collapse
|
12
|
Rostami R, Kazemi R, Nasiri Z, Ataei S, Hadipour AL, Jaafari N. Cold Cognition as Predictor of Treatment Response to rTMS; A Retrospective Study on Patients With Unipolar and Bipolar Depression. Front Hum Neurosci 2022; 16:888472. [PMID: 35959241 PMCID: PMC9358278 DOI: 10.3389/fnhum.2022.888472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/06/2022] [Indexed: 01/10/2023] Open
Abstract
BackgroundCognitive impairments are prevalent in patients with unipolar and bipolar depressive disorder (UDD and BDD, respectively). Considering the fact assessing cognitive functions is increasingly feasible for clinicians and researchers, targeting these problems in treatment and using them at baseline as predictors of response to treatment can be very informative.MethodIn a naturalistic, retrospective study, data from 120 patients (Mean age: 33.58) with UDD (n = 56) and BDD (n = 64) were analyzed. Patients received 20 sessions of bilateral rTMS (10 Hz over LDLPFC and 1 HZ over RDLPFC) and were assessed regarding their depressive symptoms, sustained attention, working memory, and executive functions, using the Beck Depression Inventory (BDI-II) and Neuropsychological Test Automated Battery Cambridge, at baseline and after the end of rTMS treatment course. Generalized estimating equations (GEE) and logistic regression were used as the main statistical methods to test the hypotheses.ResultsFifty-three percentage of all patients (n = 64) responded to treatment. In particular, 53.1% of UDD patients (n = 34) and 46.9% of BDD patients (n = 30) responded to treatment. Bilateral rTMS improved all cognitive functions (attention, working memory, and executive function) except for visual memory and resulted in more modulations in the working memory of UDD compared to BDD patients. More improvements in working memory were observed in responded patients and visual memory, age, and sex were determined as treatment response predictors. Working memory, visual memory, and age were identified as treatment response predictors in BDD and UDD patients, respectively.ConclusionBilateral rTMS improved cold cognition and depressive symptoms in UDD and BDD patients, possibly by altering cognitive control mechanisms (top-down), and processing negative emotional bias.
Collapse
Affiliation(s)
- Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
- *Correspondence: Reza Rostami
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies>, Tehran, Iran
| | - Zahra Nasiri
- Convergent Technologies Research Center, University of Tehran, Tehran, Iran
| | - Somayeh Ataei
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Abed L. Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Nematollah Jaafari
- Unité de Recherche Clinique Intersectorielle en Psychiatrie Pierre Deniker, Centre Hospitalier Henri Laborit, Poitiers, France
- University Poitiers & CHU Poitiers, INSERM U1084, Laboratoire Expérimental et Clinique en Neurosciences, Poitiers, France
| |
Collapse
|
13
|
Li LX, Lu JK, Li BJ, Gao Q, He CQ, Zhang SH, Zhao YJ, He S, Wen Q. The optimum parameters and neuroimaging mechanism of repetitive transcranial magnetic stimulation to post-stroke cognitive impairment, a protocol of an orthogonally-designed randomized controlled trial. PLoS One 2022; 17:e0271283. [PMID: 35862342 PMCID: PMC9302729 DOI: 10.1371/journal.pone.0271283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Repetitive Transcranial Magnetic Stimulation (rTMS) has been used in cognition impairment due to various neuropsychiatric disorders. However, its optimum parameters and the neuroimaging mechanism are still of uncertainty. In order to simulate a study setting as close to real world as possible, the present study introduces a new orthogonally-designed protocol, consisting of the rTMS intervention with four key parameters (stimulating site, frequency, intensity and pulse number) and three different levels in each one, and aims to investigate the optimum parameters and the brain activity and connectivity in default mode network (DMN), dorsal attention network (DAN), central executive network (CEN) following rTMS intervention to post-stroke cognition impairment (PSCI). Methods A single-center, orthogonally-designed, triple-blind randomized controlled trial will be conducted and forty-five PSCI patients will be recruited and randomly assigned to one of nine active rTMS groups based on four rTMS paraments: stimulating site, frequency, intensity and pulse number. Neuropsychological, activities of daily living, quality of life and functional magnetic resonance imaging (fMRI) evaluations were be performed pre-, post- and 3 months after rTMS. Discussion This study evaluates the optimum parameters of rTMS for patients with post-stroke cognition impairment and explores the alteration of neural function in DMN, DAN, CEN brain network. These results would facilitate the standardized application of rTMS in cognition impairment rehabilitation.
Collapse
Affiliation(s)
- Ling-Xin Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing-Kang Lu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bao-Jin Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| | - Shi-Hong Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - You-Jin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuai He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Wen
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Toprak G, Hanoglu L, Cakir T, Guntekin B, Velioglu HA, Yulug B. DLPF Targeted Repetitive Transcranial Magnetic Stimulation Improves Brain Glucose Metabolism Along with the Clinical and Electrophysiological Parameters in CBD Patients. Endocr Metab Immune Disord Drug Targets 2022; 22:415-424. [PMID: 35100961 DOI: 10.2174/1871530322666220131120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corticobasal Degeneration (CBD) is a rare neurological disease caused by the pathological accumulation of tau protein. The primary pathological features of CBD include progressive neurodegenerative processes resulting in remarkable frontoparietal and basal ganglia atrophy. OBJECTIVE Like in many other neurodegenerative disorders, there is still no effective disease-modifying drug therapy in CBD. Therefore, the development of new treatment methods is of great importance. In this study, we aimed to assess the stimulating effects of high-frequency DLPFC rTMS on the motor, cognitive and behavioral disturbances in four CBD patients. METHODS Four (three females, one male) CBD patients who had been diagnosed as CBD were enrolled in this study. Patients were evaluated before and after the rTMS procedure regarding the motor, neuropsychometric and behavioral tests. The results of statistical analysis of behavioral and neuropsychometric evaluation were assessed via SPSS 18.0 package program. Data are expressed as mean, standard deviation. Before and after values of the groups were compared with the Wilcoxon sign rank test, and p<0.05 was considered significant. RESULTS We have provided strong preliminary evidence that the improvement in clinical parameters was associated with the normalizations of the theta activity and glucose metabolism. CONCLUSION Our current results are consistent with some previous trials showing a strong association between DLPFC targeted rTMS and electrophysiological normalizations in the left DLPFC.
Collapse
Affiliation(s)
- Guven Toprak
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Tansel Cakir
- Department of Nuclear Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Guntekin
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Halil Aziz Velioglu
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
15
|
Bi B, Che D, Bai Y. Neural network of bipolar disorder: Toward integration of neuroimaging and neurocircuit-based treatment strategies. Transl Psychiatry 2022; 12:143. [PMID: 35383150 PMCID: PMC8983759 DOI: 10.1038/s41398-022-01917-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Bipolar disorder (BD) is a complex psychiatric disorder characterized by dysfunctions in three domains including emotional processing, cognitive processing, and psychomotor dimensions. However, the neural underpinnings underlying these clinical profiles are not well understood. Based on the reported data, we hypothesized that (i) the core neuropathology in BD is damage in fronto-limbic network, which is associated with emotional dysfunction; (ii) changes in intrinsic brain network, such as sensorimotor network, salience network, default-mode network, central executive network are associated with impaired cognition function; and (iii) beyond the dopaminergic-driven basal ganglia-thalamo-cortical motor circuit modulated by other neurotransmitter systems, such as serotonin (subcortical-cortical modulation), the sensorimotor network and related motor function modulated by other non-motor networks such as the default-mode network are involved in psychomotor function. In this review, we propose a neurocircuit-based clinical characteristics and taxonomy to guide the treatment of BD. We draw on findings from neuropsychological and neuroimaging studies in BD and link variations in these clinical profiles to underlying neurocircuit dysfunctions. We consider pharmacological, psychotherapy, and neuromodulatory treatments that could target those specific neurocircuit dysfunctions in BD. Finally, it is suggested that the methods of testing the neurocircuit-based taxonomy and important limitations to this approach should be considered in future.
Collapse
Affiliation(s)
- Bo Bi
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Dongfang Che
- grid.452787.b0000 0004 1806 5224Neurosurgery department, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yuyin Bai
- grid.12981.330000 0001 2360 039XDepartment of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
16
|
Zhu W, Tang W, Liang Y, Jiang X, Li Y, Chen Z, Zhu C. Aberrant Functional Connectivity of Sensorimotor Network and Its Relationship With Executive Dysfunction in Bipolar Disorder Type I. Front Neurosci 2022; 15:823550. [PMID: 35264921 PMCID: PMC8898951 DOI: 10.3389/fnins.2021.823550] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background The key pathophysiological mechanism of executive dysfunction in patients with bipolar disorder type I (BD-I) is still unclear. Previous studies have demonstrated that it may be related to the disbalance of the sensory motor network (SMN). Objective This study was designed to explore the aberrant functional connectivity (FC) of SMN in BD-I patients and its potential associations with executive dysfunction. Methods Eighteen BD-I patients and 20 healthy controls (HCs) underwent resting-state fMRI scans. The intranetwork and internetwork functional connectivities of SMN were extracted by independent component analysis (ICA). Clinical symptoms were assessed by the Bech-Rafaelsen Mania Rating Scale (BRMS) and Positive and Negative Syndrome Scale (PANSS). Executive function was measured by digit span tasks and a verbal fluency test. Finally, linear regression and correlation analyses were applied to measure the potential associations between clinical symptoms, intranetwork and internetwork functional connectivities, and executive function performance. Results (1) Patients with BD-I showed increased connectivity in the right paracentral lobule and the right postcentral gyrus within the SMN, and the increased connectivity value was positively correlated with the BRMS score (P < 0.05) but negatively correlated with digit span forward scores (P < 0.05). (2) Compared with HC, the connectivity value increased between the SMN and dorsal attention network (DAN) (P < 0.01) and between the default mode network (DMN) and DAN (P < 0.05) but decreased between the DAN and auditory network (AN) (P < 0.05) and between the SMN and DMN (P < 0.01) in patients with BD-I. (3) Digit span forward scores and education of all participants were negatively correlated with FC between SMN and DAN. Age of all subjects was positively correlated with FC between SMN and DMN. Conclusion Our findings suggest that the sensorimotor network of BD-I has abnormal functional connections within and between networks, and the abnormal FC value correlated with clinical symptoms and executive function, which provide new information for exploring the neural physiopathology of executive dysfunction in BD-I patients.
Collapse
Affiliation(s)
- Wenjing Zhu
- Hangzhou Seventh People’s Hospital, Hangzhou, China
- Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Wenxin Tang
- Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Yan Liang
- Hangzhou Seventh People’s Hospital, Hangzhou, China
| | | | - Yi Li
- Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Zhiyu Chen
- Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Cheng Zhu
- Hangzhou Seventh People’s Hospital, Hangzhou, China
| |
Collapse
|
17
|
Konstantinou G, Hui J, Ortiz A, Kaster TS, Downar J, Blumberger DM, Daskalakis ZJ. Repetitive transcranial magnetic stimulation (rTMS) in bipolar disorder: A systematic review. Bipolar Disord 2022; 24:10-26. [PMID: 33949063 DOI: 10.1111/bdi.13099] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) is commonly used in unipolar depression; yet, its evidence in bipolar disorder (BD) is limited. We sought to review the evidence on the use of rTMS across the different stages of BD. METHODS MEDLINE database was systematically searched using the PubMed interface following the PRISMA guidelines. Inclusion criteria were as follows: (i) randomized clinical trials (RCTs), open-label studies, and case series; (ii) specific evaluation of the treatment outcomes using psychometric scales; (iii) clinical studies in adults; and (iv) articles in the English language. The systematic review has been registered on PROSPERO (CRD42020192788). RESULTS Thirty-one papers were included in the review. Most studies included participants diagnosed with a bipolar depressive episode (N = 24), have yielded mixed findings, and have yet to reach a consensus on the most effective rTMS protocol. Few studies examined the effect of rTMS during manic (N = 5) or mixed episode (N = 1), or as maintenance treatment (N = 1). The limited data thus far suggest rTMS to be relatively safe and well tolerated. Small sample sizes, heterogeneity among study designs, patients and control groups recruited, rTMS parameters, and outcome measures are among the most significant limitations to these studies. CONCLUSION The current data regarding the application of rTMS in BD patients remain limited. More adequately powered sham-controlled studies are required to verify its efficacy. Large-scale clinical trials are needed to also determine whether its effects extend to manic and mixed episodes, as well as its role in mood stabilization and amelioration of suicidal behavior.
Collapse
Affiliation(s)
- Gerasimos Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeanette Hui
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Abigail Ortiz
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Mood and Anxiety Ambulatory Services, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tyler S Kaster
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health and Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Elias GJB, Germann J, Loh A, Boutet A, Pancholi A, Beyn ME, Bhat V, Woodside DB, Giacobbe P, Kennedy SH, Lozano AM. Habenular Involvement in Response to Subcallosal Cingulate Deep Brain Stimulation for Depression. Front Psychiatry 2022; 13:810777. [PMID: 35185654 PMCID: PMC8854862 DOI: 10.3389/fpsyt.2022.810777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The habenula (Hb) is a small, evolutionarily conserved epithalamic structure implicated in functions such as reward and mood regulation. Prior imaging work suggests that Hb's structural and functional properties may relate to treatment response in depression and other mood disorders. We used multimodal MRI techniques to investigate the potential involvement of Hb in response to subcallosal cingulate area deep brain stimulation (SCC-DBS) for treatment-resistant mood disorders. Using an automated segmentation technique, we compared Hb volume at baseline and at a subsequent post-operative timepoint (4.4 ± 3.0 years after surgery) in a cohort of 32 patients who received SCC-DBS. Clinical response to treatment (≥50% decrease in HAMD-17 from baseline to 12 months post-operation) was significantly associated with longitudinal Hb volume change: responders tended to have increased Hb volume over time, while non-responders showed decreased Hb volume (t = 2.4, p = 0.021). We additionally used functional MRI (fMRI) in a subcohort of SCC-DBS patients (n = 12) to investigate immediate within-patient changes in Hb functional connectivity associated with SCC-DBS stimulation. Active DBS was significantly associated with increased Hb connectivity to several prefrontal and corticolimbic regions (TFCE-adjusted p Bonferroni < 0.0001), many of which have been previously implicated in the neurocircuitry of depression. Taken together, our results suggest that Hb may play an important role in the antidepressant effect of SCC-DBS.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Centre for Mental Health and Krembil Research Centre, University Health Network, Toronto, ON, Canada
| | - D Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sidney H Kennedy
- Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Vergara VM, Rafiei F, Wokke ME, Lau H, Rahnev D, Calhoun VD. Evidence for Transcranial Magnetic Stimulation Induced Functional Connectivity Oscillations in the Brain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1407-1411. [PMID: 34891548 DOI: 10.1109/embc46164.2021.9629899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcranial magnetic stimulation (TMS) is an effective research tool to elucidate mechanisms of function in the brain. Despite its widespread use, very few studies have looked at dynamic functional connectivity responses to TMS. This work performs an exploratory analysis of dynamic functional network connectivity (dynFNC) to evaluate evidence of brain response to TMS. Results show clear functional dynamic patterns categorized by frequency. Some patterns appear to be more directly linked to TMS, but there is one pattern that might be a TMS-independent response to the excitation. This first look presents an analysis methodology and important results to consider in future research.
Collapse
|
20
|
Rai S, Griffiths KR, Breukelaar IA, Barreiros AR, Chen W, Boyce P, Hazell P, Foster SL, Malhi GS, Harris AWF, Korgaonkar MS. Default-mode and fronto-parietal network connectivity during rest distinguishes asymptomatic patients with bipolar disorder and major depressive disorder. Transl Psychiatry 2021; 11:547. [PMID: 34689161 PMCID: PMC8542033 DOI: 10.1038/s41398-021-01660-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
Bipolar disorder (BD) is commonly misdiagnosed as major depressive disorder (MDD). This is understandable, as depression often precedes mania and is otherwise indistinguishable in both. It is therefore imperative to identify neural mechanisms that can differentiate the two disorders. Interrogating resting brain neural activity may reveal core distinguishing abnormalities. We adopted an a priori approach, examining three key networks documented in previous mood disorder literature subserving executive function, salience and rumination that may differentiate euthymic BD and MDD patients. Thirty-eight patients with BD, 39 patients with MDD matched for depression severity, and 39 age-gender matched healthy controls, completed resting-state fMRI scans. Seed-based and data-driven Independent Component analyses (ICA) were implemented to examine group differences in resting-state connectivity (pFDR < 0.05). Seed analysis masks were target regions identified from the fronto-parietal (FPN), salience (SN) and default-mode (DMN) networks. Seed-based analyses identified significantly greater connectivity between the subgenual cingulate cortex (DMN) and right dorsolateral prefrontal cortex (FPN) in BD relative to MDD and controls. The ICA analyses also found greater connectivity between the DMN and inferior frontal gyrus, an FPN region in BD relative to MDD. There were also significant group differences across the three networks in both clinical groups relative to controls. Altered DMN-FPN functional connectivity is thought to underlie deficits in the processing, management and regulation of affective stimuli. Our results suggest that connectivity between these networks could potentially distinguish the two disorders and could be a possible trait mechanism in BD persisting even in the absence of symptoms.
Collapse
Affiliation(s)
- Sabina Rai
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia.
| | - Kristi R Griffiths
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Isabella A Breukelaar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Ana R Barreiros
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Wenting Chen
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Philip Boyce
- Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Philip Hazell
- Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Sydney, NSW, Australia
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gin S Malhi
- Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Anthony W F Harris
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia
- Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, NSW, Australia.
- Discipline of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Borserio BJ, Sharpley CF, Bitsika V, Sarmukadam K, Fourie PJ, Agnew LL. Default mode network activity in depression subtypes. Rev Neurosci 2021; 32:597-613. [PMID: 33583166 DOI: 10.1515/revneuro-2020-0132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023]
Abstract
Depression continues to carry a major disease burden worldwide, with limitations on the success of traditional pharmacological or psychological treatments. Recent approaches have therefore focused upon the neurobiological underpinnings of depression, and on the "individualization" of depression symptom profiles. One such model of depression has divided the standard diagnostic criteria into four "depression subtypes", with neurological and behavioral pathways. At the same time, attention has been focused upon the region of the brain known as the "default mode network" (DMN) and its role in attention and problem-solving. However, to date, no review has been published of the links between the DMN and the four subtypes of depression. By searching the literature studies from the last 20 years, 62 relevant papers were identified, and their findings are described for the association they demonstrate between aspects of the DMN and the four depression subtypes. It is apparent from this review that there are potential positive clinical and therapeutic outcomes from focusing upon DMN activation and connectivity, via psychological therapies, transcranial magnetic stimulation, and some emerging pharmacological models.
Collapse
Affiliation(s)
- Bernard J Borserio
- Brain-Behaviour Research Group, University of New England, Armidale, NSW, Australia
| | - Christopher F Sharpley
- Brain-Behaviour Research Group, University of New England, Armidale, NSW, Australia.,School of Science and Technology, University of New England, Queen Elizabeth Drive, Armidale, NSW2351, Australia
| | - Vicki Bitsika
- Brain-Behaviour Research Group, University of New England, Armidale, NSW, Australia
| | - Kimaya Sarmukadam
- Brain-Behaviour Research Group, University of New England, Armidale, NSW, Australia
| | - Phillip J Fourie
- Brain-Behaviour Research Group, University of New England, Armidale, NSW, Australia
| | - Linda L Agnew
- Brain-Behaviour Research Group, University of New England, Armidale, NSW, Australia
| |
Collapse
|
22
|
Hett D, Marwaha S. Repetitive Transcranial Magnetic Stimulation in the Treatment of Bipolar Disorder. Ther Adv Psychopharmacol 2020; 10:2045125320973790. [PMID: 33282175 PMCID: PMC7682206 DOI: 10.1177/2045125320973790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bipolar disorder (BD) is a debilitating mood disorder marked by manic, hypomanic and/or mixed or depressive episodes. It affects approximately 1-2% of the population and is linked to high rates of suicide, functional impairment and poorer quality of life. Presently, treatment options for BD are limited. There is a strong evidence base for pharmacological (e.g., lithium) and psychological (e.g., psychoeducation) treatments; however, both of these pose challenges for treatment outcomes (e.g., non-response, side-effects, limited access). Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, is a recommended treatment for unipolar depression, but it is unclear whether rTMS is an effective, safe and well tolerated treatment in people with BD. This article reviews the extant literature on the use of rTMS to treat BD across different mood states. We found 34 studies in total (N = 611 patients), with most assessing bipolar depression (n = 26), versus bipolar mania (n = 5), mixed state bipolar (n = 2) or those not in a current affective episode (n = 1). Across all studies, there appears to be a detectable signal of efficacy for rTMS treatment, as most studies report that rTMS treatment reduced bipolar symptoms. Importantly, within the randomised controlled trial (RCT) study designs, most reported that rTMS was not superior to sham in the treatment of bipolar depression. However, these RCTs are based on small samples (NBD ⩽ 52). Reported side effects of rTMS in BD include headache, dizziness and sleep problems. Ten studies (N = 14 patients) reported cases of affective switching; however, no clear pattern of potential risk factors for affective switching emerged. Future adequately powered, sham-controlled trials are needed to establish the ideal rTMS treatment parameters to help better determine the efficacy of rTMS for the treatment of BD.
Collapse
Affiliation(s)
- Danielle Hett
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- National Centre for Mental Health, Birmingham, UK
| | - Steven Marwaha
- Institute for Mental Health, University of Birmingham, Edgbaston, Birmingham, UK
- National Centre for Mental Health, Birmingham, UK
- Specialist Mood Disorders Clinic, Zinnia Centre, Birmingham and Solihull Mental Health Trust, Birmingham, UK
| |
Collapse
|
23
|
Li Y, Luo H, Yu Q, Yin L, Li K, Li Y, Fu J. Cerebral Functional Manipulation of Repetitive Transcranial Magnetic Stimulation in Cognitive Impairment Patients After Stroke: An fMRI Study. Front Neurol 2020; 11:977. [PMID: 33013646 PMCID: PMC7506052 DOI: 10.3389/fneur.2020.00977] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: Recently, the area of repetitive transcranial magnetic stimulation (rTMS) targeting neurological rehabilitation has been advanced as a potential treatment for post-stroke cognitive impairment (PSCI). However, the underlying mechanisms remains to be elusived. This study aims to figure out cerebral functional manipulation of rTMS in patients with PSCI through using the resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Thirty patients with PSCI were recruited and randomly allocated into two groups: the rTMS intervention group and control group. The rTMS intervention group was given 20 min of 5 Hz rTMS (or control) over left dorsolateral prefrontal cortex (DLPFC) besides routine cognitive intervention training for 3 consecutive weeks, five times per week, on weekdays. Cognition performance was assessed by the Minimum Mental State Examination (MMSE) and Montreal cognitive assessment (MoCA). Neural activity and functional connectivity (FC) changes were acquired by rs-fMRI with fractional amplitude of low-frequency fluctuation (fALFF) and seed-based correlation analysis. Results: Cognition improvements were observed both in rTMS intervention group and control group (P < 0.01), while the rTMS group got more significant improvent than control group (P < 0.05). To be specified, compared with the control group, the rTMS group got higher fALFF values in these brain regions including superior temporal gyrus, inferior frontal gyrus and parahippocampal gyrus, while lower fALFF values in middle temporal gyrus, middle frontal gyrus and fusiform gyrus. In addition, the rTMS group showed increased FC between LDPFC and toprecuneus, inferior temporal gyrus, middle and inferior frontal gyrus and marginal gyrus, while decreased FC between LDPFC and middle temporal gyrus and thalamus. Conclusion: The increase and decrease of neural activity and FC in cognition-related regions detected by rs-fMRI are good indicators to clarify the underlining mechanisms of rTMS on PSCI.
Collapse
Affiliation(s)
- Yamei Li
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Luo
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Yu
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longlin Yin
- Department of Radiology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuide Li
- Department of Radiology, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Fu
- Department of Rehabilitation Medicine, School of Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Shao J, Dai Z, Zhu R, Wang X, Tao S, Bi K, Tian S, Wang H, Sun Y, Yao Z, Lu Q. Early identification of bipolar from unipolar depression before manic episode: Evidence from dynamic rfMRI. Bipolar Disord 2019; 21:774-784. [PMID: 31407477 DOI: 10.1111/bdi.12819] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Misdiagnosis of bipolar disorder (BD) as unipolar disorder (UD) may cause improper treatment strategy to be chosen, especially in the early stages of disease. The aim of this study was to characterize alterations in specific brain networks for depressed patients who transformed into BD (tBD) from UD. METHOD The module allegiance from resting-fMRI by applying a multilayer modular method was estimated in 99 patients (33 tBD, 33 BD, 33 UD) and 33 healthy controls (HC). A classification model was trained on tBD and UD patients. HC was used to explore the functional declination patterns of BD, tBD, and UD. RESULTS Based on our classification model, difference mainly reflected in default-mode network (DMN). Compared with HC, both BD and tBD focused on the difference of somatomotor network (SMN), while UD on the abnormity of DMN. The patterns of brain network between patients with BD and tBD were well-overlapped, except for cognitive control network (CCN). CONCLUSION The functional declination of internal interaction in DMN was suggested to be useful for the identification of BD from UD in the early stage. The higher recruitment of DMN may predispose patients to depressive states, while higher recruitment of SMN makes them more sensitive to external stimuli and prone to mania. Furthermore, CCN may be a critical network for identifying different stages of BD, suggesting that the onset of mania in depressed patients is accompanied by CCN related cognitive impairments.
Collapse
Affiliation(s)
- Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Shiwan Tao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kun Bi
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| |
Collapse
|
25
|
Gold AK, Ornelas AC, Cirillo P, Caldieraro MA, Nardi AE, Nierenberg AA, Kinrys G. Clinical applications of transcranial magnetic stimulation in bipolar disorder. Brain Behav 2019; 9:e01419. [PMID: 31566935 PMCID: PMC6790310 DOI: 10.1002/brb3.1419] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/31/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Many patients with bipolar disorder (BD) fail to experience benefit following traditional pharmacotherapy, necessitating alternative treatment options that will enable such patients to achieve remission. Transcranial magnetic stimulation (TMS) is a relatively new, noninvasive neuromodulation technique that involves the application of magnetic pulses on hyperactive or hypoactive cortical brain areas. We evaluated the existing literature on TMS as a treatment for BD across varied mood states. METHODS We searched PubMed up to October 2018 for original data articles published in English that evaluated outcomes in a bipolar sample across depressive, manic, mixed, and maintenance phases of BD. RESULTS Clinical trials of TMS for BD particularly suggest the potential of repetitive TMS for reducing depressive symptoms. Studies of TMS for mania have yielded more mixed findings. Few studies have evaluated TMS in other phases of the bipolar illness. TMS is generally associated with mild side effects though, in a few studies, it has been shown to contribute to a manic switch in previously depressed bipolar patients. CONCLUSIONS Transcranial magnetic stimulation is a promising approach for treating patients with BD who have failed to respond to pharmacological or psychosocial treatment. Future research should more clearly elucidate which TMS protocols may be most effective for a given bipolar patient.
Collapse
Affiliation(s)
- Alexandra K Gold
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Ana Claudia Ornelas
- Outpatient Resistant Depression Clinic and Laboratory of Panic & Respiration, Institute of Psychiatry, Rio de Janeiro, Brazil
| | - Patricia Cirillo
- Outpatient Resistant Depression Clinic and Laboratory of Panic & Respiration, Institute of Psychiatry, Rio de Janeiro, Brazil
| | - Marco Antonio Caldieraro
- Serviço de Psiquiatria, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Departamento de Psiquiatria e Medicina Legal, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Antonio Egidio Nardi
- Outpatient Resistant Depression Clinic and Laboratory of Panic & Respiration, Institute of Psychiatry, Rio de Janeiro, Brazil
| | - Andrew A Nierenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Gustavo Kinrys
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Hui J, Tremblay S, Daskalakis ZJ. The Current and Future Potential of Transcranial Magnetic Stimulation With Electroencephalography in Psychiatry. Clin Pharmacol Ther 2019; 106:734-746. [DOI: 10.1002/cpt.1541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jeanette Hui
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Sara Tremblay
- Royal's Institute of Mental Health Research Ottawa Ontario Canada
- School of Psychology University of Ottawa Ottawa Ontario Canada
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention Centre for Addiction and Mental Health Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Department of Psychiatry University of Toronto Toronto Ontario Canada
| |
Collapse
|