1
|
Hestermann E, Schreve K, Vandenheever D. Enhancing Deep Sleep Induction Through a Wireless In-Ear EEG Device Delivering Binaural Beats and ASMR: A Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:7471. [PMID: 39686008 DOI: 10.3390/s24237471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
This study presents the development of a wireless in-ear EEG device designed to monitor brain activity during sleep and deliver auditory stimuli aimed at enhancing deep sleep. The device records EEG signals and plays a combined auditory stimulus consisting of autonomous sensory meridian response (ASMR) and 3 Hz binaural beats at a 60:30 dB ratio, intended to promote delta wave activity and non-rapid eye movement (NREM) stage 3 sleep. Fifteen participants completed this study, which included two consecutive nights: a baseline night and a testing night. Participants were divided into an experimental group, which received the combined ASMR and binaural beat stimulus, and a control group, which received only ASMR. The combined stimulus was delivered upon entering NREM stage 2 and replaced by ASMR when NREM stage 3 was reached. Results showed that the experimental group experienced an increase in NREM 3 sleep, a decrease in NREM 2 sleep, and a slight increase in NREM 3 latency compared to the baseline night. Although the findings are promising, further testing with a larger sample size is required to confirm the device's potential to enhance sleep quality and promote delta activity in the brain.
Collapse
Affiliation(s)
- Elke Hestermann
- Multi-Modality Medical Imaging (M3i) Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Mechanical and Mechatronics Engineering, University of Stellenbosch, Joubert Street, Stellenbosch 7602, South Africa
| | - Kristiaan Schreve
- Department of Mechanical and Mechatronics Engineering, University of Stellenbosch, Joubert Street, Stellenbosch 7602, South Africa
| | - David Vandenheever
- Department of Mechanical and Mechatronics Engineering, University of Stellenbosch, Joubert Street, Stellenbosch 7602, South Africa
- Neural Engineering Research Division, Mississippi State University, 75 B. S. Hood Rd, Mississippi State, MS 39762, USA
| |
Collapse
|
2
|
Fan Z, Zhu Y, Suzuki C, Suzuki Y, Watanabe Y, Watanabe T, Abe T. Binaural beats at 0.25 Hz shorten the latency to slow-wave sleep during daytime naps. Sci Rep 2024; 14:26062. [PMID: 39478090 PMCID: PMC11525714 DOI: 10.1038/s41598-024-76059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Binaural beats can entrain neural oscillations and modulate behavioral states. However, the effect of binaural beats, particularly those with slow frequencies (< 1 Hz), on sleep remains poorly understood. We hypothesized that 0.25-Hz beats can entrain neural oscillations and enhance slow-wave sleep by shortening its latency or increasing its duration. To investigate this, we included 12 healthy participants (six women; mean age, 25.4 ± 2.6 years) who underwent four 90-min afternoon nap sessions, comprising a sham condition (without acoustic stimulation) and three binaural-beat conditions (0, 0.25, or 1 Hz) with a 250-Hz carrier tone. The acoustic stimuli, delivered through earphones, were sustained throughout the 90-min nap period. Both N2- and N3- latencies were shorter in the 0.25-Hz binaural beats condition than in the sham condition. We observed no significant results regarding neural entrainment at slow frequencies, such as 0.25 and 1 Hz, and the modulation of sleep oscillations, including delta and sigma activity, by binaural beats. In conclusion, this study demonstrated the potential of binaural beats at slow frequencies, specifically 0.25 Hz, for inducing slow-wave sleep in generally healthy populations.
Collapse
Affiliation(s)
- Zhiwei Fan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- The Japan Society for the Promotion of Science (JSPS) Foreign Researcher, Tokyo, Japan
| | - Yunyao Zhu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Chihiro Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | | | | | - Takashi Abe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
3
|
Lee HAN, Lee WJ, Kim SU, Kim H, Ahn M, Kim J, Kim DW, Yun CH, Hwang HJ. Effect of dynamic binaural beats on sleep quality: a proof-of-concept study with questionnaire and biosignals. Sleep 2024; 47:zsae097. [PMID: 38629490 DOI: 10.1093/sleep/zsae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/27/2024] [Indexed: 08/15/2024] Open
Abstract
Binaural beat (BB) has been investigated as a potential modality to enhance sleep quality. In this study, we introduce a new form of BB, referred to as dynamic BB (DBB), which incorporates dynamically changing carrier frequency differences between the left and right ears. Specifically, the carrier frequency of the right ear varied between 100 and 103 Hz over a period, while the left ear remained fixed at 100 Hz, yielding a frequency difference range of 0 to 3 Hz. The objective of this study was to examine the effect of DBB on sleep quality. Ten healthy participants were included in a cross-over design, where they experienced both DBB and a SHAM (absence of sound) condition across two consecutive nights, with polysomnography evaluation. DBB was administrated during pre-sleep initiation, sleep onset, and transition from rapid eye movement (REM) to non-REM stage. DBB significantly reduced sleep latency compared to the SHAM condition. Electrocardiogram analysis revealed that exposure to DBB led to diminished heart rate variability during the pre-sleep initiation and sleep onset periods, accompanied by a decrease in low-frequency power of heart rate during the sleep onset period. DBB might be effective in improving sleep quality, suggesting its possible application in insomnia treatments.
Collapse
Affiliation(s)
- Hwa-Ah-Ni Lee
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - Woo-Jin Lee
- Department of Neurology, Seoul National University Bundang Hospital and College of Medicine Seoul National University, Seongnam, Republic of Korea
| | - Seong-Uk Kim
- SleepWave Company, LG Electronics Co. Ltd., Seoul, Republic of Korea
| | - Hyunji Kim
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Minkyu Ahn
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Jeonghui Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Chang-Ho Yun
- Department of Neurology, Seoul National University Bundang Hospital and College of Medicine Seoul National University, Seongnam, Republic of Korea
| | - Han-Jeong Hwang
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
4
|
Thomas RJ. Manipulating sleep brain networks for benefit with dynamic binaural stimulation. Sleep 2024; 47:zsae190. [PMID: 39140455 DOI: 10.1093/sleep/zsae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Robert Joseph Thomas
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
5
|
Mirmohamadi S, Norozpour Y, Zarrabian S. A Review of Binaural Bates and the Brain. Basic Clin Neurosci 2024; 15:133-146. [PMID: 39228447 PMCID: PMC11367212 DOI: 10.32598/bcn.2022.1406.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/22/2022] [Accepted: 06/29/2022] [Indexed: 09/05/2024] Open
Abstract
Binaural beat (BB), as a non-invasive auditory beat stimulation type, has found its potential applications in cognitive domains. This review presents a proper summary to deepen our understanding of the soundness of the BB technique by looking into its applications, possible mechanisms of action, effectiveness, limitations, and potential side effects. BB has been claimed to improve cognitive and psychological functions such as memory, attention, stress, anxiety, motivation, and confidence. We have also looked into preclinical and clinical research studies that have been performed using BB and proposed changes in the brain following the application of BB stimulations, including EEG changes. This review also presents applications outside the cognitive domain and evaluates BB as a possible treatment method.
Collapse
Affiliation(s)
| | - Yaser Norozpour
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Bogéa Ribeiro L, da Silva Filho M. Systematic Review on EEG Analysis to Diagnose and Treat Autism by Evaluating Functional Connectivity and Spectral Power. Neuropsychiatr Dis Treat 2023; 19:415-424. [PMID: 36861010 PMCID: PMC9968781 DOI: 10.2147/ndt.s394363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023] Open
Abstract
An abnormality in neural connectivity is linked to autism spectrum disorder (ASD). There is no way to test the concept of neural connectivity empirically. According to recent network theory and time series analysis findings, electroencephalography (EEG) can assess neural network architecture, a sign of activity in the brain. This systematic review aims to evaluate functional connectivity and spectral power using EEG signals. EEG records the brain activity of an individual by displaying wavy lines that depict brain cells' communication through electrical impulses. EEG can diagnose various brain disorders, including epilepsy and related seizure illness, brain dysfunction, tumors, and damage. We found 21 studies using two of the most common EEG analysis methods: functional connectivity and spectral power. ASD and non-ASD individuals were found to differ significantly in all selected papers. Due to high heterogeneity in the outcomes, generalizations cannot be drawn, and no single method is currently beneficial as a diagnostic tool. For ASD subtype delineation, the lack of research prevented the evaluation of these techniques as diagnostic tools. These findings confirm the presence of abnormalities in the EEG in ASD, but they are insufficient to diagnose. Our study suggests that EEG is useful in diagnosing ASD by evaluating entropy in the brain. Researchers may be able to develop new diagnostic methods for ASD which focuses on particular stimuli and brainwaves if they conduct more extensive studies with higher numbers and more rigorous study designs.
Collapse
|
7
|
Gantt MA. Study protocol to support the development of an all-night binaural beat frequency audio program to entrain sleep. Front Neurol 2023; 14:1024726. [PMID: 36779067 PMCID: PMC9909225 DOI: 10.3389/fneur.2023.1024726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Background Given that the stages of sleep have specific brainwave patterns, it may be feasible to manipulate brainwaves to induce stages of sleep to improve better sleep quality. Binaural beat frequencies (BBFs) are an auditory-neurologic technique that uses auditory tones via headphones to manipulate brainwave activity in turn affecting the listener's state of consciousness. However, BBFs are often sold in only one frequency which may not allow the listener to transition through the phases of sleep. This study is Phase 2 of a four-phase feasibility study to assess if systematically sequencing a variety of BBFs can improve sleep efficiency. Methods This protocol uses a two cohort unblinded and double-blinded, randomized, pre- and post-intervention methods and crossover matched group design. In Cohort 1, a sample of 106 participants with poor sleep quality will be randomized into two groups. All participants will start with 1 week of no intervention. Group 1 will use theta/delta BBF for 2 weeks followed by 1 week of no intervention followed by music for 2 weeks. Group 2 will do the reverse. In Cohort 2, 62 participants will be blinded and randomized into two groups. Group 3 will use music for 2 weeks followed by a 1-week break followed by music embedded with theta/delta BBF for 2 weeks. Group 4 will do the reverse. Using Cohort 1 music only as a control, data will be collected using sleep actigraphy, sleep quality questionnaires, and sleep diaries with a crossover and match group analysis between cohorts to compare the effect of no intervention vs. music vs. BBF only vs. music with BBF on sleep quality. Discussion Phase 1 concluded that theta BBF was able to decrease stress to help induce sleep. Phase 2 will assess if theta and delta BBFs, with breaks to allow for REM, will be able to sustain sleep to improve sleep efficiency. The data from Phase 1 and 2 will provide information to help construct an all-night audio program with the appropriate BBF and timing to trigger the correct sleep stage for better sleep efficiency. If this concept is feasible, it could be beneficial for many sleep disorders.
Collapse
|
8
|
Ingendoh RM, Posny ES, Heine A. Binaural beats to entrain the brain? A systematic review of the effects of binaural beat stimulation on brain oscillatory activity, and the implications for psychological research and intervention. PLoS One 2023; 18:e0286023. [PMID: 37205669 DOI: 10.1371/journal.pone.0286023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
Binaural beats are an auditory phenomenon that occurs when two tones of different frequencies, which are presented separately to each ear, elicit the sensation of a third tone oscillating at the difference frequency of the two tones. Binaural beats can be perceived in the frequency range of about 1-30 Hz, a range that coincides with the main human EEG frequency bands. The brainwave entrainment hypothesis, which assumes that external stimulation at a certain frequency leads to the brain's electrocortical activity oscillating at the same frequency, provides the basis for research on the effects of binaural beat stimulation on cognitive and affective states. Studies, particularly in more applied fields, usually refer to neuroscientific research demonstrating that binaural beats elicit systematic changes in EEG parameters. At first glance, however, the available literature on brainwave entrainment effects due to binaural beat stimulation appears to be inconclusive at best. The aim of the present systematic review is, thus, to synthesize existing empirical research. A sample of fourteen published studies met our criteria for inclusion. The results corroborate the impression of an overall inconsistency of empirical outcomes, with five studies reporting results in line with the brainwave entrainment hypothesis, eight studies reporting contradictory, and one mixed results. What is to be noticed is that the fourteen studies included in this review were very heterogeneous regarding the implementation of the binaural beats, the experimental designs, and the EEG parameters and analyses. The methodological heterogeneity in this field of study ultimately limits the comparability of research outcomes. The results of the present systematic review emphasize the need for standardization in study approaches so as to allow for reliable insight into brainwave entrainment effects in the future.
Collapse
Affiliation(s)
| | - Ella S Posny
- Department of Psychology, University of Duisburg-Essen, Essen, Germany
| | - Angela Heine
- Department of Psychology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Vahl JM, Keppeler JVA, Krahe D, Bahrke-Rein K, Reiter R, Hoffmann TK, Goldberg-Bockhorn E. [Infrasound - implications for human medicine]. HNO 2022; 70:921-930. [PMID: 36239759 DOI: 10.1007/s00106-022-01237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Infrasound describes ubiquitous, low-frequency sound (< 20 Hz) in the environment with a long wavelength below the median hearing threshold, which can nevertheless be heard and tactilely perceived, depending on the sound pressure level and frequency spectrum. In nature, infrasound emissions usually occur only in the low-threshold range. Nevertheless, after strong and chronic exposure to usually artificially generated infrasound emissions, various effects on the ear and the body, sometimes questionably critical to health, can be observed. Correct measurement and assessment of infrasound sources is complex and controversial. Established guidelines are scarce. Innovative research areas include infrasound monitoring for evaluation of natural events and infrasound applications in medicine. In the future, it is hoped that new insights will be gained from infrasound research and that a more extensive classification in occupational medicine will be possible.
Collapse
Affiliation(s)
- J M Vahl
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89075, Ulm, Deutschland.
| | - J V A Keppeler
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - D Krahe
- Fakultät für Elektrotechnik, Informations- und Medientechnik, Bergische Universität Wuppertal, Wuppertal, Deutschland
| | - K Bahrke-Rein
- Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik, Technische Universität Darmstadt, Darmstadt, Deutschland
| | - R Reiter
- Sektion Phoniatrie und Pädaudiologie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - T K Hoffmann
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| | - E Goldberg-Bockhorn
- Klinik für Hals‑, Nasen‑, Ohrenheilkunde und Kopf-Hals-Chirurgie, Universitätsklinikum Ulm, Frauensteige 12, 89075, Ulm, Deutschland
| |
Collapse
|
10
|
Al-Shargie F, Katmah R, Tariq U, Babiloni F, Al-Mughairbi F, Al-Nashash H. Stress management using fNIRS and binaural beats stimulation. BIOMEDICAL OPTICS EXPRESS 2022; 13:3552-3575. [PMID: 35781942 PMCID: PMC9208616 DOI: 10.1364/boe.455097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigate the effectiveness of binaural beats stimulation (BBs) in enhancing cognitive vigilance and mitigating mental stress level at the workplace. We developed an experimental protocol under four cognitive conditions: high vigilance (HV), vigilance enhancement (VE), mental stress (MS) and stress mitigation (SM). The VE and SM conditions were achieved by listening to 16 Hz of BBs. We assessed the four cognitive conditions using salivary alpha-amylase, behavioral responses, and Functional Near-Infrared Spectroscopy (fNIRS). We quantified the vigilance and stress levels using the reaction time (RT) to stimuli, accuracy of detection, and the functional connectivity metrics of the fNIRS estimated by Phase Locking Values (PLV). We propose using the orthogonal minimum spanning tree (OMST) to determine the true connectivity network patterns of the PLV. Our results show that listening to 16-Hz BBs has significantly reduced the level of alpha amylase by 44%, reduced the RT to stimuli by 20% and increased the accuracy of target detection by 25%, (p < 0.001). The analysis of the connectivity network across the four different cognitive conditions revealed several statistically significant trends. Specifically, a significant increase in connectivity between the right and left dorsolateral prefrontal cortex (DLPFC) areas and left orbitofrontal cortex was found during the vigilance enhancement condition compared to the high vigilance. Likewise, similar patterns were found between the right and left DLPFC, orbitofrontal cortex, right ventrolateral prefrontal cortex (VLPFC) and right frontopolar PFC (prefrontal cortex) area during stress mitigation compared to mental stress. Furthermore, the connectivity network under stress condition alone showed significant connectivity increase between the VLPFC and DLPFC compared to other areas. The laterality index demonstrated left frontal laterality under high vigilance and VE conditions, and right DLPFC and left frontopolar PFC while under mental stress. Overall, our results showed that BBs can be used for vigilance enhancement and stress mitigation.
Collapse
Affiliation(s)
- Fares Al-Shargie
- Department of Electrical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Rateb Katmah
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Usman Tariq
- Department of Electrical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Fabio Babiloni
- Department Molecular Medicine, University of Sapienza Rome, 00185 Rome, Italy
| | - Fadwa Al-Mughairbi
- Department of Clinical Psychology, College of Medicines and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Hasan Al-Nashash
- Department of Electrical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
11
|
Real-Time Excitation of Slow Oscillations during Deep Sleep Using Acoustic Stimulation. SENSORS 2021; 21:s21155169. [PMID: 34372405 PMCID: PMC8347755 DOI: 10.3390/s21155169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/20/2022]
Abstract
Slow-wave synchronous acoustic stimulation is a promising research and therapeutic tool. It is essential to clearly understand the principles of the synchronization methods, to know their performances and limitations, and, most importantly, to have a clear picture of the effect of stimulation on slow-wave activity (SWA). This paper covers the mentioned and currently missing parts of knowledge that are essential for the appropriate development of the method itself and future applications. Artificially streamed real sleep EEG data were used to quantitatively compare the two currently used real-time methods: the phase-locking loop (PLL) and the fixed-step stimulus in our own implementation. The fixed-step stimulation method was concluded to be more reliable and practically applicable compared to the PLL method. The sleep experiment with chronic insomnia patients in our sleep laboratory was analyzed in order to precisely characterize the effect of sound stimulation during deep sleep. We found that there is a significant phase synchronization of delta waves, which were shown to be the most sensitive metric of the effect of acoustic stimulation compared to commonly used averaged signal and power analyses. This finding may change the understanding of the effect and function of the SWA stimulation described in the literature.
Collapse
|
12
|
Baakek YNEH, Debbal SMEA. Digital drugs (binaural beats): how can it affect the brain/their impact on the brain. J Med Eng Technol 2021; 45:546-551. [PMID: 34184604 DOI: 10.1080/03091902.2021.1936236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To understand the principal functioning of binaural beats signals and the way it can affect the brain, eight drugs were used. This study was carried out on three groups: the first one contains four binaural beats signals, each one refers to a specific tone: alpha, beta, theta, and delta waves. The second group holds three records, representing three separate meditation binaural beats; however, the third one contains only one record that stands for the Marijuana e-drugs. Two types of analyses were performed on these groups, the temporal and the frequency analyses. In the first one, Hilbert transform was used to detect the envelope of the signal; we then determined the cross correlation function to understand the relationship between the two signals of the left and the right ears. However, in the frequency analysis, Fast Fourier Transform (FFT) was applied to extract binaural and carrier frequencies. The obtained results are very satisfactory and show that there is a delay between the two signals of the left and the right ears. Nevertheless, the frequency analysis shows that in the second group, Solfeggio frequencies lambda, theta and delta waves are used to obtain the meditation state, were gamma, lambda, alpha, and delta waves are applied to get the Marijuana effect in the third group.
Collapse
Affiliation(s)
- Yettou Nour El Houda Baakek
- Department of Biomedical Engineering, Faculty of Technology, Abou Bekr Belkaid University of Tlemcen, Algeria
| | | |
Collapse
|
13
|
Bakaeva ZV, Shumov DE, Yakunina EB, Starshinov YP, Sveshnikov DS, Torshin VI, Dorokhov VB, Karpov VI. [The effect of music embedded with binaural beats on heart rate parameters during nap]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:31-35. [PMID: 34078857 DOI: 10.17116/jnevro202112104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To test hypothesis that music embedded with binaural beats can boost activity of parasympathetic part of autonomic nervous system (PPANS) with the development of nap. MATERIAL AND METHODS The power of high-frequency component of heart rate variability spectrum computed on successive 2-minute intervals during 20-minute nap was a comparison criterion. The criterion was compared during nap accompanied by music with embedded binaural beats (stimulus condition) and nap in silence (control condition). RESULTS AND CONCLUSION Statistical comparison revealed the increase of PPANS activity during nap in stimulus condition vs. control condition. It is consistent with conclusions of other papers about positive effect of sound stimuli embedded with binaural beats on PPANS.
Collapse
Affiliation(s)
- Z V Bakaeva
- Medical Institute of Peoples' Friendship University of Russia, Moscow, Russia
| | - D E Shumov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - E B Yakunina
- Medical Institute of Peoples' Friendship University of Russia, Moscow, Russia
| | - Yu P Starshinov
- Medical Institute of Peoples' Friendship University of Russia, Moscow, Russia
| | - D S Sveshnikov
- Medical Institute of Peoples' Friendship University of Russia, Moscow, Russia
| | - V I Torshin
- Medical Institute of Peoples' Friendship University of Russia, Moscow, Russia
| | - V B Dorokhov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| | - V I Karpov
- Medical Institute of Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
14
|
Shumov DE, Yakovenko IA, Alipov NN, Bakaeva ZV, Yakunina EB, Minyuk AN, Vinokurov AV, Dorokhov VB. The effect of music containing binaural beats on daytime fall-asleep dynamics. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:39-44. [DOI: 10.17116/jnevro202012002139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Lee M, Song CB, Shin GH, Lee SW. Possible Effect of Binaural Beat Combined With Autonomous Sensory Meridian Response for Inducing Sleep. Front Hum Neurosci 2019; 13:425. [PMID: 31849629 PMCID: PMC6900908 DOI: 10.3389/fnhum.2019.00425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022] Open
Abstract
Sleep is important to maintain physical and cognitive functions in everyday life. However, the prevalence of sleep disorders is on the rise. One existing solution to this problem is to induce sleep using an auditory stimulus. When we listen to acoustic beats of two tones in each ear simultaneously, a binaural beat is generated which induces brain signals at a specific desired frequency. However, this auditory stimulus is uncomfortable for users to listen to induce sleep. To overcome this difficulty, we can exploit the feelings of calmness and relaxation that are induced by the perceptual phenomenon of autonomous sensory meridian response (ASMR). In this study, we proposed a novel auditory stimulus for inducing sleep. Specifically, we used a 6 Hz binaural beat corresponding to the center of the theta band (4-8 Hz), which is the frequency at which brain activity is entrained during non-rapid eye movement (NREM) in sleep stage 1. In addition, the "ASMR triggers" that cause ASMR were presented from natural sound as the sensory stimuli. In session 1, we combined two auditory stimuli (the 6 Hz binaural beat and ASMR triggers) at three-decibel ratios to find the optimal combination ratio. As a result, we determined that the combination of a 30:60 dB ratio of binaural beat to ASMR trigger is most effective for inducing theta power and psychological stability. In session 2, the effects of these combined stimuli (CS) were compared with an only binaural beat, only the ASMR trigger, or a sham condition. The combination stimulus retained the advantages of the binaural beat and resolved its shortcomings with the ASMR triggers, including psychological self-reports. Our findings indicate that the proposed auditory stimulus could induce the brain signals required for sleep, while simultaneously keeping the user in a psychologically comfortable state. This technology provides an important opportunity to develop a novel method for increasing the quality of sleep.
Collapse
Affiliation(s)
- Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Chae-Bin Song
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Gi-Hwan Shin
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
16
|
Shumov DE, Yakovenko IA, Dorokhov VB, Sveshnikov DS, Yakunina EB, Bakaeva ZV, Vinokurov AV, Putilov AA. Napping between scylla and charybdis of N1 and N3: latency to N2 in a brief afternoon nap can be reduced by binaural beating. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1587839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dmitry E. Shumov
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Irina A. Yakovenko
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir B. Dorokhov
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S. Sveshnikov
- Department of Normal Physiology, Medical institute of the People’s Friendship University of Russia, Moscow, Russia
| | - Elena B. Yakunina
- Department of Normal Physiology, Medical institute of the People’s Friendship University of Russia, Moscow, Russia
| | - Zarina V. Bakaeva
- Department of Normal Physiology, Medical institute of the People’s Friendship University of Russia, Moscow, Russia
| | | | - Arcady A. Putilov
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|