1
|
Luo Y, Du J, Yu H, Fang F, Shi P. Resting-state fNIRS reveals changes in prefrontal cortex functional connectivity during TENS in patients with chronic pain. Sci Rep 2024; 14:29187. [PMID: 39587185 PMCID: PMC11589569 DOI: 10.1038/s41598-024-79820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Transcutaneous electrical nerve stimulation (TENS) has been used to treat chronic pain. However, the potential efficacy and mechanism of the effect of applying TENS for a short time in chronic pain patients remains unclear. To identify the effect of short-term TENS on chronic pain patients and to clarify the mechanism of the effect, we investigated abnormalities of functional connectivity (FC) within the prefrontal cortex (PFC) using resting-state functional near-infrared spectroscopy (rs-fNIRS). Fifteen patients (56.8 ± 17.4 years, nine females) with chronic pain participated in this rs-fNIRS study. The fNIRS scans included two parts: a 5-minute resting-state scan followed by a 5-minute scan during TENS (150 Hz) application. The pain intensity was measured using a Visual Analog Scale (VAS) and Pittsburgh Sleep Quality Index (PSQI). The spontaneous brain activity of the PFC and resting-state functional connectivity (rsFC) in the PFC were examined during TENS and compared to before TENS. The results showed that Pain intensity significantly decreased after TENS (p < 0.001). During TENS, fALFF values were significantly lower in BA46 (**p = 0.0025) and BA45 (**p = 0.0056). rsFC strength increased during TENS compared to before, with significant group-level increases in BA10, BA9, BA46, and BA44/45 (p < 0.05). Notably, the variation between BA10 and BA44/45 was highly significant (***p < 0.001). These findings suggest that FC between BA10 and BA44/45 was associated with analgesia of TENS in patients with chronic pain, indicating the potential role of FC as a novel objective parameter to predict the outcome of clinical use of TENS for pain relief in chronic pain patients.
Collapse
Affiliation(s)
- Yijing Luo
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, NO. 516, Jungong Road, Yangpu District, Shanghai, 200093, China
| | - Jiahao Du
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, NO. 516, Jungong Road, Yangpu District, Shanghai, 200093, China
| | - Hongliu Yu
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, NO. 516, Jungong Road, Yangpu District, Shanghai, 200093, China
| | - Fanfu Fang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of the Naval Medical University, Shanghai, 200433, China
| | - Ping Shi
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, NO. 516, Jungong Road, Yangpu District, Shanghai, 200093, China.
| |
Collapse
|
2
|
Faramarzi A, Fooladi M, Yousef Pour M, Khodamoradi E, Chehreh A, Amiri S, shavandi M, Sharini H. Clinical utility of fMRI in evaluating of LSD effect on pain-related brain networks in healthy subjects. Heliyon 2024; 10:e34401. [PMID: 39165942 PMCID: PMC11334886 DOI: 10.1016/j.heliyon.2024.e34401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Objective We aimed to evaluate the effect of Lysergic acid diethylamide (LSD) on the pain neural network (PNN) in healthy subjects using functional magnetic resonance imaging (fMRI). Methods Twenty healthy volunteers participated in a balanced-order crossover study, receiving intravenous administration of LSD and placebo in two fMRI scanning sessions. Brain regions associated with pain processing were analyzed by amplitude of low-frequency fluctuation (ALFF), independent component analysis (ICA), functional connectivity and dynamic casual modeling (DCM). Results ALFF analysis demonstrated that LSD effectively relieves pain due to modulation in the neural network associated with pain processing. ICA analysis showed more active voxels in anterior cingulate cortex (ACC), thalamus (THL)-left, THL-right, insula cortex (IC)-right, parietal operculum (PO)-left, PO-right and frontal pole (FP)-right in the placebo session than the LSD session. There were more active voxels in FP-left and IC-left in the LSD session compared to the placebo session. Functional brain connectivity was observed between THL-left and PO-right and between PO-left with FP-left, FP-right and IC-left in the placebo session. In the LSD session, functional connectivity of PO-left with FP-left and FP-right was observed. The effective connectivity between left anterior insula cortex (lAIC)-lAIC, lAIC-dorsolateral prefrontal cortex (dlPFC) and secondary somatosensory cortex (SII)-dlPFC were significantly different. Finally, the correlation between fMRI biomarkers and clinical pain criteria was calculated. Conclusion This study enhances our understanding of the LSD effect on the architecture and neural behavior of pain in healthy subjects and provides great promise for future research in the field of cognitive science and pharmacology.
Collapse
Affiliation(s)
- A. Faramarzi
- Department of Biomedical Engineering, Faculty of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - M. Fooladi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Yousef Pour
- Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - E. Khodamoradi
- Department of Radiology and Nuclear Medicine, Faculty of Paramedical, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - A. Chehreh
- Medical Physics Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S. Amiri
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M. shavandi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - H. Sharini
- Department of Biomedical Engineering, Faculty of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| |
Collapse
|
3
|
Peng K, Karunakaran KD, Green S, Borsook D. Machines, mathematics, and modules: the potential to provide real-time metrics for pain under anesthesia. NEUROPHOTONICS 2024; 11:010701. [PMID: 38389718 PMCID: PMC10883389 DOI: 10.1117/1.nph.11.1.010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
The brain-based assessments under anesthesia have provided the ability to evaluate pain/nociception during surgery and the potential to prevent long-term evolution of chronic pain. Prior studies have shown that the functional near-infrared spectroscopy (fNIRS)-measured changes in cortical regions such as the primary somatosensory and the polar frontal cortices show consistent response to evoked and ongoing pain in awake, sedated, and anesthetized patients. We take this basic approach and integrate it into a potential framework that could provide real-time measures of pain/nociception during the peri-surgical period. This application could have significant implications for providing analgesia during surgery, a practice that currently lacks quantitative evidence to guide patient tailored pain management. Through a simple readout of "pain" or "no pain," the proposed system could diminish or eliminate levels of intraoperative, early post-operative, and potentially, the transition to chronic post-surgical pain. The system, when validated, could also be applied to measures of analgesic efficacy in the clinic.
Collapse
Affiliation(s)
- Ke Peng
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Keerthana Deepti Karunakaran
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Stephen Green
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Boston, Massachusetts, United States
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Jain S, Armstrong M, Luna J, Thakkar RK, Fabia R, Groner JI, Noffsinger D, Ni A, Nelson E, Xiang H. Features of virtual reality impact effectiveness of VR pain alleviation therapeutics in pediatric burn patients: A randomized clinical trial. PLOS DIGITAL HEALTH 2024; 3:e0000440. [PMID: 38271320 PMCID: PMC10810440 DOI: 10.1371/journal.pdig.0000440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
Key features of virtual reality (VR) that impact the effectiveness of pain reduction remain unknown. We hypothesized that specific features of the VR experience significantly impact VR's effectiveness in reducing pain during pediatric burn dressing care. Our randomized controlled trial included children 6 to 17 years (inclusive) who were treated in the outpatient clinic of an American Burn Association-verified pediatric burn center. Participants were randomly assigned (1:1:1) to active VR (playing the VR), passive VR (immersed in the same VR environment without interactions), or standard-of-care. On a scale from 0 to 100, participants rated overall pain (primary outcome) and features of the VR experience (game realism, fun, and engagement). Path analysis assessed the interrelationships among these VR key features and their impact on self-reported pain scores. From December 2016 to January 2019, a total of 412 patients were screened for eligibility, and 90 were randomly assigned (31 in the active VR group, 30 in the passive VR group, and 29 in the standard-of-care group). The current study only included those in the VR groups. The difference in median scores of VR features was not statistically significant between the active (realism, 77.5 [IQR: 50-100]; fun, 100 [IQR: 81-100]; engagement, 90 [IQR: 70-100]) and passive (realism, 72 [IQR: 29-99]; fun, 93.5 [IQR: 68-100]; engagement, 95 [IQR: 50-100]) VR distraction types. VR engagement had a significant direct (-0.39) and total (-0.44) effect on self-reported pain score (p<0.05). Key VR features significantly impact its effectiveness in pain reduction. The path model suggested an analgesic mechanism beyond distraction. Differences in VR feature scores partly explain active VR's more significant analgesic effect than passive VR. Trial Registration: ClinicalTrials.gov Identifier: NCT04544631.
Collapse
Affiliation(s)
- Soumil Jain
- College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Pediatric Trauma Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Megan Armstrong
- Center for Pediatric Trauma Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Injury Research and Policy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - John Luna
- IT Research and Innovation, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Rajan K. Thakkar
- College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Pediatric Trauma Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Trauma and Burn Program, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Renata Fabia
- College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Pediatric Trauma Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Trauma and Burn Program, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jonathan I. Groner
- College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Pediatric Trauma Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Trauma and Burn Program, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Dana Noffsinger
- Center for Pediatric Trauma Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Trauma and Burn Program, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ai Ni
- Division of Biostatistics, The Ohio State University College of Public Health, Columbus, Ohio, United States of America
| | - Eric Nelson
- Center for Biobehavioral Health, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Henry Xiang
- College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Center for Pediatric Trauma Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Injury Research and Policy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| |
Collapse
|
5
|
Du J, Shi P, Fang F, Yu H. Cerebral cortical hemodynamic metrics to aid in assessing pain levels? A pilot study of functional near-infrared spectroscopy. Front Neurosci 2023; 17:1136820. [PMID: 37008231 PMCID: PMC10050350 DOI: 10.3389/fnins.2023.1136820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionEstablishing an accurate way to quantify pain is one of the most formidable tasks in neuroscience and medical practice. Functional near-infrared spectroscopy (fNIRS) can be utilized to detect the brain’s reaction to pain. The study sought to assess the neural mechanisms of the wrist-ankle acupuncture transcutaneous electrical nerve stimulation analgesic bracelet (E-WAA) in providing pain relief and altering cerebral blood volume dynamics, and to ascertain the reliability of cortical activation patterns as a means of objectively measuring pain.MethodsThe participants (mean age 36.6 ± 7.2 years) with the cervical-shoulder syndrome (CSS) underwent pain testing prior to, 1 min following, and 30 min after the left point Jianyu treatment. The E-WAA was used to administer an electrical stimulation therapy that lasted for 5 min. A 24-channel fNIRS system was utilized to monitor brain oxyhemoglobin (HbO) levels, and changes in HbO concentrations, cortical activation areas, and subjective pain assessment scales were documented.ResultsWe discovered that HbO concentrations in the prefrontal cortex significantly increased when CSS patients were exposed to painful stimuli at the cerebral cortex level. The second pain test saw a considerable decrease in the average HbO change amount in the prefrontal cortex when E-WAA was applied, which in turn led to a reduction in the amount of activation and the size of the activated area in the cortex.DiscussionThis study revealed that the frontal polar (FP) and dorsolateral prefrontal cortex (DLPFC) were linked to the analgesic modulation activated by the E-WAA.
Collapse
Affiliation(s)
- Jiahao Du
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- *Correspondence: Ping Shi,
| | - Fanfu Fang
- Department of Rehabilitation Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
- Fanfu Fang,
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Du J, Shi P, Liu J, Yu H, Fang F. Analgesic Electrical Stimulation Combined with Wrist-Ankle Acupuncture Reduces the Cortical Response to Pain in Patients with Myofasciitis: A Randomized Clinical Trial. PAIN MEDICINE 2023; 24:351-361. [PMID: 36102803 DOI: 10.1093/pm/pnac141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Transcutaneous electrical nerve stimulation (TENS) based on wrist-ankle acupuncture has been shown to relieve pain levels in patients with myofascial pain syndrome (MPS). However, its efficacy is highly subjective. The purpose of this study was to evaluate the feasibility and effectiveness of TENS based on wrist-ankle acupuncture for pain management in patients with MPS from the perspective of cerebral cortex hemodynamics. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS We designed a double-blind, randomized, controlled clinical trial. Thirty-one male patients with MPS were randomly assigned to two parallel groups. The experimental group (n = 16) received TENS based on wrist-ankle acupuncture for analgesic treatment, while the control group (n = 15) did not. The pain was induced by mechanically pressurized at acupoint Jianjing. The multichannel functional near-infrared spectroscopy (fNIRS) equipment was utilized for measuring oxyhemoglobin (HbO) levels in the cerebral cortex during the tasks. RESULTS After the intervention, visual analog scale (VAS), the activation degree and activation area of pain perception cortices were significantly reduced in the experimental group compared to the baseline values (P < .05). Particularly, Frontopolar Area (FPA), and Dorsolateral Prefrontal Cortex (DLPFC) are highly involved in the pain process and pain modulation. CONCLUSION Compared to no intervention, TENS based on wrist-ankle acupuncture can be effective in relieving pain in patients with MPS in terms of cerebral cortical hemodynamics. However, further studies are necessary to quantify the analgesic effect in terms of cerebral hemodynamics and brain activation.
Collapse
Affiliation(s)
- Jiahao Du
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Junwen Liu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Zhang J, Shi P, Du J, Yu H. A study based on functional near-infrared spectroscopy: Cortical responses to music interventions in patients with myofascial pain syndrome. Front Hum Neurosci 2023; 17:1119098. [PMID: 36778036 PMCID: PMC9911431 DOI: 10.3389/fnhum.2023.1119098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Object This study measured cerebral blood oxygen changes in patients with myofascial pain syndrome (MPS) using functional near-infrared spectroscopy (fNIRS). The aim was to investigate the effect of music intervention on pain relief in MPS patients. Materials and methods A total of 15 patients with MPS participated in this study. A self-controlled block task design was used to collect the oxy-hemoglobin ([HbO2]) and deoxy-hemoglobin ([HbR]) concentrations in the prefrontal cortex (PFC) and motor cortex using fNIRS. The cerebral cortex response and channel connectivity were further analyzed. In the experiment, the therapist was asked to apply compression of 3-4 kg/cm2 vertically using the thumb to induce pain. Soothing synthetic music with frequencies of 8-150 Hz and 50-70 dB was used as the audio for the music intervention. Result Compared to the group without music intervention, the activation of brain regions showed a decreasing trend in the group with music intervention under the onset of pain. The results of paired t-tests showed that nine of the data were significantly different (p < 0.05). It was also found that with music intervention, inter-channel connectivity was diminished. Besides, their dorsolateral prefrontal cortex (dlPFC) was significantly correlated with the anterior prefrontal cortex (aPFC) for pain response (r = 0.82), and weakly correlated with the premotor cortex (r = 0.40). Conclusion This study combines objective assessment indicators and subjective scale assessments to demonstrate that appropriate music interventions can be effective in helping to relieve pain to some extent. The analgesic mechanisms between relevant brain regions under music intervention were explored in depth. New insights into effective analgesic methods and quantitative assessment of pain conditions are presented.
Collapse
Affiliation(s)
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | | | | |
Collapse
|
8
|
Montero-Hernandez S, Pollonini L, Park L, Martorella G, Miao H, Mathis KB, Ahn H. Self-administered transcranial direct current stimulation treatment of knee osteoarthritis alters pain-related fNIRS connectivity networks. NEUROPHOTONICS 2023; 10:015011. [PMID: 37006323 PMCID: PMC10063907 DOI: 10.1117/1.nph.10.1.015011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Significance Knee osteoarthritis (OA) is a disease that causes chronic pain in the elderly population. Currently, OA is mainly treated pharmacologically with analgesics, although research has shown that neuromodulation via transcranial direct current stimulation (tDCS) may be beneficial in reducing pain in clinical settings. However, no studies have reported the effects of home-based self-administered tDCS on functional brain networks in older adults with knee OA. Aim We used functional near-infrared spectroscopy (fNIRS) to investigate the functional connectivity effects of tDCS on underlying pain processing mechanisms at the central nervous level in older adults with knee OA. Approach Pain-related brain connectivity networks were extracted using fNIRS at baseline and for three consecutive weeks of treatment from 120 subjects randomly assigned to two groups undergoing active tDCS and sham tDCS. Results Our results showed that the tDCS intervention significantly modulated pain-related connectivity correlation only in the group receiving active treatment. We also found that only the active treatment group showed a significantly reduced number and strength of functional connections evoked during nociception in the prefrontal cortex, primary motor (M1), and primary somatosensory (S1) cortices. To our knowledge, this is the first study in which the effect of tDCS on pain-related connectivity networks is investigated using fNIRS. Conclusions fNIRS-based functional connectivity can be effectively used to investigate neural circuits of pain at the cortical level in association with nonpharmacological, self-administered tDCS treatment.
Collapse
Affiliation(s)
| | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
- University of Houston, Department of Electrical and Computer Engineering, Houston, Texas, United States
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Lindsey Park
- Florida State University, College of Nursing, Tallahassee, Florida, United States
| | - Geraldine Martorella
- Florida State University, College of Nursing, Tallahassee, Florida, United States
| | - Hongyu Miao
- Florida State University, College of Nursing, Tallahassee, Florida, United States
| | - Kenneth B. Mathis
- The University of Texas Health Science Center at Houston, McGovern Medical School, Department of Orthopedic Surgery, Houston, Texas, United States
| | - Hyochol Ahn
- Florida State University, College of Nursing, Tallahassee, Florida, United States
| |
Collapse
|
9
|
Jotwani ML, Wu Z, Lunde CE, Sieberg CB. The missing mechanistic link: Improving behavioral treatment efficacy for pediatric chronic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1022699. [PMID: 36313218 PMCID: PMC9614027 DOI: 10.3389/fpain.2022.1022699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Pediatric chronic pain is a significant global issue, with biopsychosocial factors contributing to the complexity of the condition. Studies have explored behavioral treatments for pediatric chronic pain, but these treatments have mixed efficacy for improving functional and psychological outcomes. Furthermore, the literature lacks an understanding of the biobehavioral mechanisms contributing to pediatric chronic pain treatment response. In this mini review, we focus on how neuroimaging has been used to identify biobehavioral mechanisms of different conditions and how this modality can be used in mechanistic clinical trials to identify markers of treatment response for pediatric chronic pain. We propose that mechanistic clinical trials, utilizing neuroimaging, are warranted to investigate how to optimize the efficacy of behavioral treatments for pediatric chronic pain patients across pain types and ages.
Collapse
Affiliation(s)
- Maya L. Jotwani
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Ziyan Wu
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Claire E. Lunde
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Christine B. Sieberg
- Department of Psychiatry and Behavioral Sciences, Biobehavioral Pain Innovations Lab, Boston Children's Hospital, Boston, MA, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, Pain Medicine, Boston Children's Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Green S, Karunakaran KD, Peng K, Berry D, Kussman BD, Micheli L, Borsook D. Measuring "pain load" during general anesthesia. Cereb Cortex Commun 2022; 3:tgac019. [PMID: 35611143 PMCID: PMC9123643 DOI: 10.1093/texcom/tgac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Introduction Functional near-infrared spectroscopy (fNIRS) allows for ongoing measures of brain functions during surgery. The ability to evaluate cumulative effects of painful/nociceptive events under general anesthesia remains a challenge. Through observing signal differences and setting boundaries for when observed events are known to produce pain/nociception, a program can trigger when the concentration of oxygenated hemoglobin goes beyond ±0.3 mM from 25 s after standardization. Method fNIRS signals were retrieved from patients undergoing knee surgery for anterior cruciate ligament repair under general anesthesia. Continuous fNIRS measures were measured from the primary somatosensory cortex (S1), which is known to be involved in evaluation of nociception, and the medial polar frontal cortex (mPFC), which are both involved in higher cortical functions (viz. cognition and emotion). Results A ±0.3 mM threshold for painful/nociceptive events was observed during surgical incisions at least twice, forming a basis for a potential near-real-time recording of pain/nociceptive events. Evidence through observed true positives in S1 and true negatives in mPFC are linked through statistically significant correlations and this threshold. Conclusion Our results show that standardizing and observing concentrations over 25 s using the ±0.3 mM threshold can be an arbiter of the continuous number of incisions performed on a patient, contributing to a potential intraoperative pain load index that correlates with post-operative levels of pain and potential pain chronification.
Collapse
Affiliation(s)
- Stephen Green
- Corresponding author: 77 Lab, Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States.
| | - Keerthana Deepti Karunakaran
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Ke Peng
- Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Delany Berry
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Barry David Kussman
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Lyle Micheli
- Departments of Orthopedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02114, United States
| | - David Borsook
- Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada,Departments of Orthopedics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02114, United States,Departments of Psychiatry and Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, United States
| |
Collapse
|
11
|
Sieberg CB, Karunakaran KD, Kussman B, Borsook D. Preventing pediatric chronic postsurgical pain: Time for increased rigor. Can J Pain 2022; 6:73-84. [PMID: 35528039 PMCID: PMC9067470 DOI: 10.1080/24740527.2021.2019576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
Chronic postsurgical pain (CPSP) results from a cascade of events in the peripheral and central nervous systems following surgery. Several clinical predictors, including the prior pain state, premorbid psychological state (e.g., anxiety, catastrophizing), intraoperative surgical load (establishment of peripheral and central sensitization), and acute postoperative pain management, may contribute to the patient's risk of developing CPSP. However, research on the neurobiological and biobehavioral mechanisms contributing to pediatric CPSP and effective preemptive/treatment strategies are still lacking. Here we evaluate the perisurgical process by identifying key problems and propose potential solutions for the pre-, intra-, and postoperative pain states to both prevent and manage the transition of acute to chronic pain. We propose an eight-step process involving preemptive and preventative analgesia, behavioral interventions, and the use of biomarkers (brain-based, inflammatory, or genetic) to facilitate timely evaluation and treatment of premorbid psychological factors, ongoing surgical pain, and postoperative pain to provide an overall improved outcome. By achieving this, we can begin to establish personalized precision medicine for children and adolescents presenting to surgery and subsequent treatment selection.
Collapse
Affiliation(s)
- Christine B. Sieberg
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, Massachusetts, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
| | - Keerthana Deepti Karunakaran
- Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children’s Hospital, Boston, Massachusetts, United States
- Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Barry Kussman
- Department of Anesthesiology, Critical Care, & Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States
- Department of Anesthesiology, Harvard Medical School, Boston, Massachusetts, United States
| | - David Borsook
- Department of Anesthesiology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Psychiatry and Radiology, Massachusetts General Hospital, Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Karunakaran KD, Kussman BD, Peng K, Becerra L, Labadie R, Bernier R, Berry D, Green S, Zurakowski D, Alexander ME, Borsook D. Brain-based measures of nociception during general anesthesia with remifentanil: A randomized controlled trial. PLoS Med 2022; 19:e1003965. [PMID: 35452458 PMCID: PMC9075662 DOI: 10.1371/journal.pmed.1003965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/06/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Catheter radiofrequency (RF) ablation for cardiac arrhythmias is a painful procedure. Prior work using functional near-infrared spectroscopy (fNIRS) in patients under general anesthesia has indicated that ablation results in activity in pain-related cortical regions, presumably due to inadequate blockade of afferent nociceptors originating within the cardiac system. Having an objective brain-based measure for nociception and analgesia may in the future allow for enhanced analgesic control during surgical procedures. Hence, the primary aim of this study is to demonstrate that the administration of remifentanil, an opioid widely used during surgery, can attenuate the fNIRS cortical responses to cardiac ablation. METHODS AND FINDINGS We investigated the effects of continuous remifentanil on cortical hemodynamics during cardiac ablation under anesthesia. In a randomized, double-blinded, placebo (PL)-controlled trial, we examined 32 pediatric patients (mean age of 15.8 years,16 females) undergoing catheter ablation for cardiac arrhythmias at the Cardiology Department of Boston Children's Hospital from October 2016 to March 2020; 9 received 0.9% NaCl, 12 received low-dose (LD) remifentanil (0.25 mcg/kg/min), and 11 received high-dose (HD) remifentanil (0.5 mcg/kg/min). The hemodynamic changes of primary somatosensory and prefrontal cortices were recorded during surgery using a continuous wave fNIRS system. The primary outcome measures were the changes in oxyhemoglobin concentration (NadirHbO, i.e., lowest oxyhemoglobin concentration and PeakHbO, i.e., peak change and area under the curve) of medial frontopolar cortex (mFPC), lateral prefrontal cortex (lPFC) and primary somatosensory cortex (S1) to ablation in PL versus remifentanil groups. Secondary measures included the fNIRS response to an auditory control condition. The data analysis was performed on an intention-to-treat (ITT) basis. Remifentanil group (dosage subgroups combined) was compared with PL, and a post hoc analysis was performed to identify dose effects. There were no adverse events. The groups were comparable in age, sex, and number of ablations. Results comparing remifentanil versus PL show that PL group exhibit greater NadirHbO in inferior mFPC (mean difference (MD) = 1.229, 95% confidence interval [CI] = 0.334, 2.124, p < 0.001) and superior mFPC (MD = 1.206, 95% CI = 0.303, 2.109, p = 0.001) and greater PeakHbO in inferior mFPC (MD = -1.138, 95% CI = -2.062, -0.214, p = 0.002) and superior mFPC (MD = -0.999, 95% CI = -1.961, -0.036, p = 0.008) in response to ablation. S1 activation from ablation was greatest in PL, then LD, and HD groups, but failed to reach significance, whereas lPFC activation to ablation was similar in all groups. Ablation versus auditory stimuli resulted in higher PeakHbO in inferior mFPC (MD = 0.053, 95% CI = 0.004, 0.101, p = 0.004) and superior mFPC (MD = 0.052, 95% CI = 0.013, 0.091, p < 0.001) and higher NadirHbO in posterior superior S1 (Pos. SS1; MD = -0.342, 95% CI = -0.680, -0.004, p = 0.007) during ablation of all patients. Remifentanil group had smaller NadirHbO in inferior mFPC (MD = 0.098, 95% CI = 0.009, 0.130, p = 0.003) and superior mFPC (MD = 0.096, 95% CI = 0.008, 0.116, p = 0.003) and smaller PeakHbO in superior mFPC (MD = -0.092, 95% CI = -0.680, -0.004, p = 0.007) during both the stimuli. Study limitations were small sample size, motion from surgery, indirect measure of nociception, and shallow penetration depth of fNIRS only allowing access to superficial cortical layers. CONCLUSIONS We observed cortical activity related to nociception during cardiac ablation under general anesthesia with remifentanil. It highlights the potential of fNIRS to provide an objective pain measure in unconscious patients, where cortical-based measures may be more accurate than current evaluation methods. Future research may expand on this application to produce a real-time indication of pain that will aid clinicians in providing immediate and adequate pain treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT02703090.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barry D. Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ke Peng
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Département en Neuroscience, Centre de Recherche du CHUM, l’Université de Montréal Montreal, Québec, Canada
| | - Lino Becerra
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Labadie
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rachel Bernier
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Delany Berry
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen Green
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Zurakowski
- Division of Biostatistics, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark E. Alexander
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Borsook
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry and Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Alter BJ, Santosa H, Nguyen QH, Huppert TJ, Wasan AD. Offset analgesia is associated with opposing modulation of medial versus dorsolateral prefrontal cortex activations: A functional near-infrared spectroscopy study. Mol Pain 2022; 18:17448069221074991. [PMID: 35083928 PMCID: PMC9047820 DOI: 10.1177/17448069221074991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/02/2022] Open
Abstract
Offset analgesia is defined by a dramatic drop in perceived pain intensity with a relatively small decrease in noxious input. Although functional magnetic resonance imaging studies implicate subcortical descending inhibitory circuits during offset analgesia, the role of cortical areas remains unclear. The current study identifies cortical correlates of offset analgesia using functional near infrared spectroscopy (fNIRS). Twenty-four healthy volunteers underwent fNIRS scanning during offset (OS) and control (Con) heat stimuli applied to the forearm. After controlling for non-neural hemodynamic responses in superficial tissues, widespread increases in cortical oxygenated hemoglobin concentration were observed, reflecting cortical activation during heat pain. OS-Con contrasts revealed deactivations in bilateral medial prefrontal cortex (mPFC) and bilateral somatosensory cortex (SSC) associated with offset analgesia. Right dorsolateral prefrontal cortex (dlPFC) showed activation only during OS. These data demonstrate opposing cortical activation patterns during offset analgesia and support a model in which right dlPFC underlies ongoing evaluation of pain intensity change. With predictions of decreasing pain intensity, right dlPFC activation likely inhibits ascending noxious input via subcortical pathways resulting in SSC and mPFC deactivation. This study identifies cortical circuitry underlying offset analgesia and introduces the use of fNIRS to study pain modulation in an outpatient clinical environment.
Collapse
Affiliation(s)
- Benedict J. Alter
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Hendrik Santosa
- Department of Radiology, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Quynh H. Nguyen
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Theodore J. Huppert
- Department of Electrical and
Computer Engineering, University of
Pittsburgh, Pittsburgh, PA, USA
| | - Ajay D. Wasan
- Department of Anesthesiology and
Perioperative Medicine, University of
Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of
Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Green S, Karunakaran KD, Labadie R, Kussman B, Mizrahi-Arnaud A, Morad AG, Berry D, Zurakowski D, Micheli L, Peng K, Borsook D. fNIRS brain measures of ongoing nociception during surgical incisions under anesthesia. NEUROPHOTONICS 2022; 9:015002. [PMID: 35111876 PMCID: PMC8794294 DOI: 10.1117/1.nph.9.1.015002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Significance: Functional near-infrared spectroscopy (fNIRS) has evaluated pain in awake and anesthetized states. Aim: We evaluated fNIRS signals under general anesthesia in patients undergoing knee surgery for anterior cruciate ligament repair. Approach: Patients were split into groups: those with regional nerve block (NB) and those without (non-NB). Continuous fNIRS measures came from three regions: the primary somatosensory cortex (S1), known to be involved in evaluation of nociception, the lateral prefrontal cortex (BA9), and the polar frontal cortex (BA10), both involved in higher cortical functions (such as cognition and emotion). Results: Our results show three significant differences in fNIRS signals to incision procedures between groups: (1) NB compared with non-NB was associated with a greater net positive hemodynamic response to pain procedures in S1; (2) dynamic correlation between the prefrontal cortex (PreFC) and S1 within 1 min of painful procedures are anticorrelated in NB while positively correlated in non-NB; and (3) hemodynamic measures of activation were similar at two separate time points during surgery (i.e., first and last incisions) in PreFC and S1 but showed significant differences in their overlap. Comparing pain levels immediately after surgery and during discharge from postoperative care revealed no significant differences in the pain levels between NB and non-NB. Conclusion: Our data suggest multiple pain events that occur during surgery using devised algorithms could potentially give a measure of "pain load." This may allow for evaluation of central sensitization (i.e., a heightened state of the nervous system where noxious and non-noxious stimuli is perceived as painful) to postoperative pain levels and the resulting analgesic consumption. This evaluation could potentially predict postsurgical chronic neuropathic pain.
Collapse
Affiliation(s)
- Stephen Green
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Keerthana Deepti Karunakaran
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Robert Labadie
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Barry Kussman
- Boston Children’s Hospital, Harvard Medical School, Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Arielle Mizrahi-Arnaud
- Boston Children’s Hospital, Harvard Medical School, Division of Perioperative Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Andrea Gomez Morad
- Boston Children’s Hospital, Harvard Medical School, Division of Perioperative Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Delany Berry
- Boston Children’s Hospital, Harvard Medical School, The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - David Zurakowski
- Boston Children’s Hospital, Harvard Medical School, Division of Biostatistics, Department of Anesthesiology, Critical Care and Pain Medicine, Boston, Massachusetts, United States
| | - Lyle Micheli
- Boston Children’s Hospital, Harvard Medical School, Sports Medicine Division, Department of Orthopedic Surgery, Boston, Massachusetts, United States
| | - Ke Peng
- Université de Montréal, Département en Neuroscience, Centre de Recherche du CHUM, Montréal, Quebec, Canada
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Departments of Psychiatry and Radiology, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Hu XS, Nascimento TD, DaSilva AF. Shedding light on pain for the clinic: a comprehensive review of using functional near-infrared spectroscopy to monitor its process in the brain. Pain 2021; 162:2805-2820. [PMID: 33990114 PMCID: PMC8490487 DOI: 10.1097/j.pain.0000000000002293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pain is a complex experience that involves sensation, emotion, and cognition. The subjectivity of the traditional pain measurement tools has expedited the interest in developing neuroimaging techniques to monitor pain objectively. Among noninvasive neuroimaging techniques, functional near-infrared spectroscopy (fNIRS) has balanced spatial and temporal resolution; yet, it is portable, quiet, and cost-effective. These features enable fNIRS to image the cortical mechanisms of pain in a clinical environment. In this article, we evaluated pain neuroimaging studies that used the fNIRS technique in the past decade. Starting from the experimental design, we reviewed the regions of interest, probe localization, data processing, and primary findings of these existing fNIRS studies. We also discussed the fNIRS imaging's potential as a brain surveillance technique for pain, in combination with artificial intelligence and extended reality techniques. We concluded that fNIRS is a brain imaging technique with great potential for objective pain assessment in the clinical environment.
Collapse
Affiliation(s)
- Xiao-Su Hu
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Thiago D. Nascimento
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| | - Alexandre F. DaSilva
- University of Michigan, School of Dentistry, Biologic & Materials Sciences Department, Hedache & Orofacial Pain Effort Lab
| |
Collapse
|
16
|
Rhythmic Change of Cortical Hemodynamic Signals Associated with Ongoing Nociception in Awake and Anesthetized Individuals: An Exploratory Functional Near Infrared Spectroscopy Study. Anesthesiology 2021; 135:877-892. [PMID: 34610092 DOI: 10.1097/aln.0000000000003986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Patients undergoing surgical procedures are vulnerable to repetitive evoked or ongoing nociceptive barrage. Using functional near infrared spectroscopy, the authors aimed to evaluate the cortical hemodynamic signal power changes during ongoing nociception in healthy awake volunteers and in surgical patients under general anesthesia. The authors hypothesized that ongoing nociception to heat or surgical trauma would induce reductions in the power of cortical low-frequency hemodynamic oscillations in a similar manner as previously reported using functional magnetic resonance imaging for ongoing pain. METHODS Cortical hemodynamic signals during noxious stimuli from the fontopolar cortex were evaluated in two groups: group 1, a healthy/conscious group (n = 15, all males) where ongoing noxious and innocuous heat stimulus was induced by a contact thermode to the dorsum of left hand; and group 2, a patient/unconscious group (n = 13, 3 males) receiving general anesthesia undergoing knee surgery. The fractional power of low-frequency hemodynamic signals was compared across stimulation conditions in the healthy awake group, and between patients who received standard anesthesia and those who received standard anesthesia with additional regional nerve block. RESULTS A reduction of the total fractional power in both groups-specifically, a decrease in the slow-5 frequency band (0.01 to 0.027 Hz) of oxygenated hemoglobin concentration changes over the frontopolar cortex-was observed during ongoing noxious stimuli in the healthy awake group (paired t test, P = 0.017; effect size, 0.70), and during invasive procedures in the surgery group (paired t test, P = 0.003; effect size, 2.16). The reduction was partially reversed in patients who received a regional nerve block that likely diminished afferent nociceptive activity (two-sample t test, P = 0.002; effect size, 2.34). CONCLUSIONS These results suggest common power changes in slow-wave cortical hemodynamic oscillations during ongoing nociceptive processing in conscious and unconscious states. The observed signal may potentially promote future development of a surrogate signal to assess ongoing nociception under general anesthesia. EDITOR’S PERSPECTIVE
Collapse
|
17
|
Shi P, Liu J, Du J, Yu H, Fang F. Pain modulation induced by electronic wrist-ankle acupuncture: A functional near-infrared spectroscopy study. Pain Pract 2021; 22:182-190. [PMID: 34519161 DOI: 10.1111/papr.13076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND As a new technology, electronic wrist-ankle acupuncture (E-WAA) combines the advantages of wrist-ankle acupuncture and transcutaneous electrical nerve stimulation, but the analgesic effect and mechanism need to be clarified. The purpose of this study was to identify the pain modulation caused by E-WAA by evaluating the response of the prefrontal cortex (PFC) from the perspective of neurophysiology. METHODS Fifty male volunteers (age 25.00 ± 1.05 years) with trapezius myofascial pain syndrome were randomly allocated into intervention group (E-WAA treatment) or sham control group at a 1:1 ratio. An outcome evaluation system was used to induce tenderness on the Jianjing point and record the pain value. A multichannel functional near-infrared spectroscope was used to detect the PFC activation during tenderness before and after treatment to demonstrate the neuromodulation mechanism. A general linear model and t-test (p < 0.05) were used to analyze the difference in the oxyhemoglobin (HbO) concentration and pain value. RESULTS In the intervention group, the pain value of volunteers decreased significantly (p = 0.017) after E-WAA treatment, whereas there was no statistical difference (p = 0.082) in the sham group. Before treatment, the frontopolar (FP) and dorsolateral prefrontal cortex (DLPFC) were the activation areas of the PFC. The E-WAA treatment then suppressed the activation of the two areas. The HbO concentration of the FP and DLPFC changed from a sharp rise during tenderness to not changing with tenderness stimulation. CONCLUSION The results demonstrated that the E-WAA have a great analgesic effect. The FP and DLPFC were relative to the analgesia neuromodulation induced by the E-WAA.
Collapse
Affiliation(s)
- Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Junwen Liu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiahao Du
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
18
|
The mapping of cortical activation by near-infrared spectroscopy might be a biomarker related to the severity of fibromyalgia symptoms. Sci Rep 2021; 11:15754. [PMID: 34344913 PMCID: PMC8333354 DOI: 10.1038/s41598-021-94456-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
The delta value of oxyhemoglobin (Δ-HbO) determined by functional near-infrared spectroscopy at prefrontal cortex (PFC) and motor cortex (MC) based on primary (25 °C) and secondary (5 °C) thermal stimuli presented a larger peak latency at left MC in fibromyalgia than in controls. The difference between HbO concentration 15 s after the thermal stimuli ending and HbO concentration before the thermal stimuli onset (Δ-HbO*) at left PFC increased 47.82% in fibromyalgia and 76.66% in controls. This value had satisfactory discriminatory properties to differentiate cortical activation in fibromyalgia versus controls. A receiver operator characteristics (ROC) analysis showed the Δ-HbO* cutoffs of − 0.175 at left PFC and − 0.205 at right PFC offer sensitivity and specificity of at least 80% in screening fibromyalgia from controls. In fibromyalgia, a ROC analysis showed that these cutoffs could discriminate those with higher disability due to pain and more severe central sensitization symptoms (CSS). The ROC with the best discriminatory profile was the CSS score with the Δ-HbO* at left PFC (area under the curve = 0.82, 95% confidence interval = 0.61–100). These results indicate that cortical activation based on Δ-HbO* at left PFC might be a sensitive marker to identify fibromyalgia subjects with more severe clinical symptoms.
Collapse
|
19
|
Tan LL, Kuner R. Neocortical circuits in pain and pain relief. Nat Rev Neurosci 2021; 22:458-471. [PMID: 34127843 DOI: 10.1038/s41583-021-00468-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The sensory, associative and limbic neocortical structures play a critical role in shaping incoming noxious inputs to generate variable pain perceptions. Technological advances in tracing circuitry and interrogation of pathways and complex behaviours are now yielding critical knowledge of neocortical circuits, cellular contributions and causal relationships between pain perception and its abnormalities in chronic pain. Emerging insights into neocortical pain processing suggest the existence of neocortical causality and specificity for pain at the level of subdomains, circuits and cellular entities and the activity patterns they encode. These mechanisms provide opportunities for therapeutic intervention for improved pain management.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
21
|
Yang B, Gu X, Gao S, Xu D. Classification accuracy and functional difference prediction in different brain regions of drug abuser prefrontal lobe basing on machine-learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5692-5706. [PMID: 34517508 DOI: 10.3934/mbe.2021288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Taking different types of addictive drugs such as methamphetamine, heroin, and mixed drugs causes brain functional Changes. Based on the prefrontal functional near-infrared spectroscopy, this study was designed with an experimental paradigm that included the induction of resting and drug addiction cravings. Hemoglobin concentrations of 30 drug users (10 on methamphetamine, 10 on heroin, and 10 on mixed type) were collected. For these three types of individuals, the convolutional neural networks (CNN) was designed to classify eight Brodmann areas and the entire prefrontal area, and the average accuracy of the three classifications on each functional area was obtained. As a result, the classification accuracy was lower on the left side than on the right in the dorsolateral prefrontal cortex (DLPFC) of the drug users, while it was higher on the left than on the right in the ventrolateral prefrontal cortex (VLPFC), frontopolar prefrontal cortex (FPC), and orbitofrontal cortex (OFC). Then the differences in eight functional areas between the three types of individuals were statistically analyzed, and results showed significant differences in the right VLPFC and right OFC.
Collapse
Affiliation(s)
- Banghua Yang
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Xuelin Gu
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Shouwei Gao
- School of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai 200080, China
| |
Collapse
|
22
|
Öztürk Ö, Algun ZC, Bombacı H, Erdoğan SB. Changes in prefrontal cortex activation with exercise in knee osteoarthritis patients with chronic pain: An fNIRS study. J Clin Neurosci 2021; 90:144-151. [PMID: 34275540 DOI: 10.1016/j.jocn.2021.05.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
The role of exercise on pain modulatory mechanism of the prefrontal areas is not clear. We aimed to determine the effects of exercise on functional activity of the prefrontal cortex in patients with knee osteoarthritis (OA) with chronic pain and to assess the relationships between changes in clinical variables and cortical hemodynamics with exercise via functional near-infrared spectroscopy (fNIRS). Fifteen patients with knee OA with chronic pain were included. All participants attended an exercise program 3 times a week for 6 weeks. Pain during activity was assessed by visual analogue scale (VAS). Pain catastrophization, kinesiophobia and functionality were also measured. Brain hemodynamic activity was assessed with a 47-channel fNIRS system before and after the exercise. Pain, pain catastrophization, kinesiophobia and functionality scores significantly improved (p < 0.05) while functional activity of the dorsolateral prefrontal cortex (DLPFC) during painful stimuli was significantly reduced after exercise program (p < 0.05). Change in cortical hemodynamic activity within the DLPFC was significantly correlated with change in pain perception (R = 0.54, p < 0.05) and pain catastrophization scores (R = 0.44, p < 0.05). Exercise resulted in improvements in clinical assessments of pain severity and pain catastrophization which was accompanied by alterations in prefrontal cortex activation. We provided evidence about the pain modulatory effects of exercise at cortical level which is correlated with clinical improvements in patients with chronic pain. We demonstrate the feasibility and potential of fNIRS methodology for i) elucidating the neural mechanisms underlying chronic and stimulus evoked pain, and ii) exploring the effect of treatment methods on brain functionality.
Collapse
Affiliation(s)
- Özgül Öztürk
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
| | - Zeliha Candan Algun
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Hasan Bombacı
- Department of Orthopaedics and Traumatology, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | - Sinem Burcu Erdoğan
- Department of Biomedical Engineering, Faculty of Engineering, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| |
Collapse
|
23
|
Peng K, Karunakaran KD, Labadie R, Veliu M, Cheung C, Lee A, Yu PB, Upadhyay J. Suppressed prefrontal cortex oscillations associate with clinical pain in fibrodysplasia ossificans progressiva. Orphanet J Rare Dis 2021; 16:54. [PMID: 33516233 PMCID: PMC7847608 DOI: 10.1186/s13023-021-01709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pain is a highly prevalent symptom experienced by patients across numerous rare musculoskeletal conditions. Much remains unknown regarding the central, neurobiological processes associated with clinical pain in musculoskeletal disease states. Fibrodysplasia ossificans progressiva (FOP) is an inherited condition characterized by substantial physical disability and pain. FOP arises from mutations of the bone morphogenetic protein (BMP) receptor Activin A receptor type 1 (ACVR1) causing patients to undergo painful flare-ups as well as heterotopic ossification (HO) of skeletal muscles, tendons, ligaments, and fascia. To date, the neurobiological processes that underlie pain in FOP have rarely been investigated. We examined pain and central pain mechanism in FOP as a model primary musculoskeletal condition. Central nervous system (CNS) functional properties were investigated in FOP patients (N = 17) stratified into low (0–3; 0–10 Scale) and high (≥ 4) pain cohorts using functional near-infrared spectroscopy (fNIRS). Associations among clinical pain, mental health, and physical health were also quantified using responses derived from a battery of clinical questionnaires. Results Resting-state fNIRS revealed suppressed power of hemodynamic activity within the slow-5 frequency sub-band (0.01–0.027 Hz) in the prefrontal cortex in high pain FOP patients, where reduced power of slow-5, prefrontal cortex oscillations exhibited robust negative correlations with pain levels. Higher clinical pain intensities were also associated with higher magnitudes of depressive symptoms. Conclusions Our findings not only demonstrate a robust coupling among prefrontal cortex functionality and clinical pain in FOP but lays the groundwork for utilizing fNIRS to objectively monitor and central pain mechanisms in FOP and other musculoskeletal disorders.
Collapse
Affiliation(s)
- Ke Peng
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal, Montreal, QC, Canada
| | - Keerthana Deepti Karunakaran
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Labadie
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Miranda Veliu
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chandler Cheung
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arielle Lee
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
24
|
Karunakaran KD, Peng K, Berry D, Green S, Labadie R, Kussman B, Borsook D. NIRS measures in pain and analgesia: Fundamentals, features, and function. Neurosci Biobehav Rev 2020; 120:335-353. [PMID: 33159918 DOI: 10.1016/j.neubiorev.2020.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Current pain assessment techniques based only on clinical evaluation and self-reports are not objective and may lead to inadequate treatment. Having a functional biomarker will add to the clinical fidelity, diagnosis, and perhaps improve treatment efficacy in patients. While many approaches have been deployed in pain biomarker discovery, functional near-infrared spectroscopy (fNIRS) is a technology that allows for non-invasive measurement of cortical hemodynamics. The utility of fNIRS is especially attractive given its ability to detect specific changes in the somatosensory and high-order cortices as well as its ability to measure (1) brain function similar to functional magnetic resonance imaging, (2) graded responses to noxious and innocuous stimuli, (3) analgesia, and (4) nociception under anesthesia. In this review, we evaluate the utility of fNIRS in nociception/pain with particular focus on its sensitivity and specificity, methodological advantages and limitations, and the current and potential applications in various pain conditions. Everything considered, fNIRS technology could enhance our ability to evaluate evoked and persistent pain across different age groups and clinical populations.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| | - Ke Peng
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States; Département en Neuroscience, Centre de Recherche du CHUM, l'Université de Montréal Montreal, QC, Canada
| | - Delany Berry
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Stephen Green
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Robert Labadie
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - Barry Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, United States.
| |
Collapse
|
25
|
Gilman JM, Yücel MA, Pachas GN, Potter K, Levar N, Broos H, Manghis EM, Schuster RM, Evins AE. Delta-9-tetrahydrocannabinol intoxication is associated with increased prefrontal activation as assessed with functional near-infrared spectroscopy: A report of a potential biomarker of intoxication. Neuroimage 2019; 197:575-585. [PMID: 31075393 DOI: 10.1016/j.neuroimage.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 11/17/2022] Open
Abstract
The primary psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), binds to cannabinoid receptors (CB1) present in high concentrations in the prefrontal cortex (PFC). It is unknown whether the PFC hemodynamic response changes with THC intoxication. We conducted the first double-blind, placebo-controlled, cross-over study of the effect of THC intoxication on functional near infrared spectroscopy (fNIRS) measures of PFC activation. Fifty-four adult, regular (at least weekly) cannabis users received a single oral dose of synthetic THC (dronabinol; 5-50 mg, dose individually tailored to produce intoxication) and identical placebo on two visits at least one week apart. fNIRS recordings were obtained during a working memory task (N-Back) at three timepoints: before THC/placebo, at 100 min (when peak effects were expected), and at 200 min after THC/placebo administration. Functional data were collected using a continuous-wave NIRS device, with 8 sources and 7 detectors arrayed over the forehead, resulting in 20 channels covering PFC regions. Participants also completed frequent heart rate measures and subjective ratings of intoxication. Approximately half of participants reported significant intoxication. Intoxication ratings were not correlated with dose of THC. Increases in heart rate significantly correlated with intoxication ratings after THC dosing. Results indicated that 100 min after THC administration, oxygenated hemoglobin (HbO) response significantly increased from pre-dose HbO levels throughout the PFC in participants who reported significant intoxication. Changes in HbO response significantly correlated with self-reported intoxication at 100 min after THC administration. Among those who reported intoxication, HbO response decreased at 200 min after THC, when intoxication had largely resolved, compared to the peak THC time point. This study demonstrates that THC intoxication causes increased PFC activity, and fNIRS of the PFC can measure this effect. Increased neural activation in PFC represents a potential biomarker for cannabis intoxication.
Collapse
Affiliation(s)
- Jodi M Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Meryem A Yücel
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gladys N Pachas
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kevin Potter
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nina Levar
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hannah Broos
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
| | - Eve M Manghis
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
| | - Randi M Schuster
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - A Eden Evins
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|