1
|
Bruckert L, Lerma-Usabiaga G, Borchers LR, Marchman VA, Travis KE, Feldman HM. The optic radiations and reading development: A longitudinal study of children born term and preterm. Dev Cogn Neurosci 2025; 72:101520. [PMID: 39892155 PMCID: PMC11835579 DOI: 10.1016/j.dcn.2025.101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/22/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
PURPOSE To determine if reading development between ages 6 and 8 years related to changes in fractional anisotropy (FA) in the optic radiations (OR), and if these associations were similar in children born full term (FT) and preterm (PT) and in language tracts. METHODS FT (n = 34) and PT (n = 34) children completed the Word Identification subtest of the Woodcock Reading Mastery Test at 6, 7, and 8 years. Diffusion MRI (96-directions, b=2500 sec/mm2) was acquired at 6 and 8 years. Probabilistic tractography identified bilateral OR and three left-hemisphere language tracts: inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and arcuate fasciculus (AF). Linear mixed models determined if FA changes in these tracts were associated with reading growth. RESULTS Rates of reading growth were similar in both groups. For the OR, FA change from 6 to 8 years was negatively associated with reading growth in both groups. A similar pattern was observed in the left ILF but not in the SLF or AF. CONCLUSION Individual differences in reading development were associated with FA change of the OR and left ILF in FT and PT children. Negative associations implicate increasing axonal diameter and/or complexity in fiber structure as drivers of faster reading development.
Collapse
Affiliation(s)
- Lisa Bruckert
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Garikoitz Lerma-Usabiaga
- Department of Psychology, Stanford University, Stanford, CA, United States; BCBL. Basque Center on Brain, Cognition and Language, Donostia-San Sebastián, Spain; IKERBASQUE. Basque Foundation for Science, Bilbao, Spain
| | - Lauren R Borchers
- Department of Psychology, Stanford University, Stanford, CA, United States
| | | | - Katherine E Travis
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Heidi M Feldman
- Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States.
| |
Collapse
|
2
|
Zekelman LR, Cetin-Karayumak S, Chen Y, Almeida M, Legarreta JH, Rushmore J, Pieper S, Lan Z, Desmond JE, Baird LC, Makris N, Rathi Y, Zhang F, Golby AJ, O’Donnell LJ. Consistent cerebellar pathway-cognition associations across pre-adolescents & young adults: a diffusion MRI study of 9000+ participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636737. [PMID: 39974921 PMCID: PMC11839066 DOI: 10.1101/2025.02.05.636737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The cerebellum, long implicated in movement, is now recognized as a contributor to higher-order cognition. The cerebellar pathways provide key structural links between the cerebellum and cerebral regions integral to language, memory, and executive function. Here, we present a large-scale, cross-sectional diffusion MRI (dMRI) analysis investigating the relationships between cerebellar pathway microstructure and cognitive performance in over 9,000 participants spanning pre-adolescence (n>8,000 from the ABCD dataset) and young adulthood (n>900 from the HCP-YA dataset). We assessed the microstructure of five cerebellar pathways-the inferior, middle, and superior cerebellar peduncles; the parallel fibers; and input/Purkinje fibers-using three dMRI measures of fractional anisotropy, mean diffusivity, and number of streamlines. Cognitive performance was evaluated using seven NIH Toolbox assessments of language, executive function, and memory. In both datasets, we found numerous significant associations between cerebellar pathway microstructure and cognitive performance. These associations showed a strong correlation across the two datasets (r = 0.47, p < 0.0001), underscoring the reliability of cerebellar dMRI-cognition relationships in pre-adolescents and young adults. In both datasets, the strongest associations were found between the superior cerebellar peduncle and performance on language assessments, suggesting this pathway plays an important role in language function across age groups. In young adults, but not pre-adolescents, parallel fiber microstructure was linked to inhibitory control, suggesting that contributions to attentional processes may emerge or strengthen with maturation. Overall, our findings highlight the important role of cerebellar pathways in cognition and the utility of large-scale datasets for advancing our understanding of brain-cognition relationships.
Collapse
Affiliation(s)
- Leo R. Zekelman
- Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Suheyla Cetin-Karayumak
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Yuqian Chen
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Melyssa Almeida
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jon Haitz Legarreta
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jarrett Rushmore
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- Center for Morphometric Analysis, Departments of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | - Zhou Lan
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Clinical Investigation, Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - John E. Desmond
- Department of Neurology, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lissa C. Baird
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Nikos Makris
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Morphometric Analysis, Departments of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Alexandra J. Golby
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren J. O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Tao W, Liu L, Wu J, Luo YJ, Li H. Dynamic interaction between the cerebrum and the cerebellum during visual word processing. Cortex 2024; 180:147-162. [PMID: 39437591 DOI: 10.1016/j.cortex.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024]
Abstract
Numerous studies have investigated the relationship between the cerebellum and reading. Yet, the specific contribution of the cerebellum to reading and its interaction with the cerebrum remain elusive. To address these issues, we combined dynamic brain state analysis with large-scale network analysis to examine the imaging data gathered from the reading tasks (i.e., orthographic, phonological, and semantic tasks) and the resting period. Our analysis revealed three dynamic brain states. The first state (DFS1) exhibited a higher ratio and a longer duration in all tasks, indicating its involvement in general task-related processes. The second state (DFS2) was predominantly active during the resting stage, representing a resting-related state. The third state (DFS3) displayed a higher ratio in the reading tasks compared to the non-reading tasks, indicating its association with reading-dependent processes. In all states, hubs were predominantly distributed in the cerebrum. For DFS2, one hub was also observed in the cerebellum. Furthermore, DFS2 showed significant modularity between the cerebrum and the cerebellum. This study sheds light on the dynamic collaboration between the cerebrum and the cerebellum across different imaging modalities, offering a deeper and more comprehensive understanding of their interaction during reading and non-reading periods.
Collapse
Affiliation(s)
- Wuhai Tao
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, PR China
| | - Lanfang Liu
- Department of Psychology, School of Arts and Sciences, Beijing Normal University at Zhuhai, Zhuhai, PR China
| | - Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, PR China
| | - Yue-Jia Luo
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, PR China
| | - Hehui Li
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, PR China.
| |
Collapse
|
4
|
Schneider D, Bouhali F, Richter CG, Costache R, Costache C, Kirchhoffer K, Sheth V, MacDonald I, Hoeft F. Perinatal influences on academic achievement and the developing brain: a scoping systematic review. Front Psychol 2024; 15:1352241. [PMID: 38962224 PMCID: PMC11221367 DOI: 10.3389/fpsyg.2024.1352241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/16/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction and methods In this PRISMA-compliant systematic review, we identify and synthesize the findings of research in which neuroimaging and assessments of achievement have been used to examine the relationships among aspects of developmental programming, neurodevelopment, and achievement in reading and mathematics. Results Forty-seven studies met inclusion criteria. The majority examined the impact of prematurity (n = 32) and prenatal alcohol exposure (n = 13). Several prematurity studies reported a positive correlation between white-matter integrity of callosal fibers and executive functioning and/or achievement, and white matter properties were consistently associated with cognitive and academic performance in preterm and full-term children. Volumetric studies reported positive associations between academic and cognitive abilities and white and gray matter volume in regions such as the insula, putamen, and prefrontal lobes. Functional MRI studies demonstrated increased right-hemispheric language processing among preterm children. Altered activation of the frontoparietal network related to numerical abilities was also reported. Prenatal alcohol exposure studies reported alterations in white matter microstructure linked to deficits in cognitive functioning and academic achievement, including mathematics, reading, and vocabulary skills. Volumetric studies reported reductions in cerebral, cerebellar, and subcortical gray matter volumes associated with decreased scores on measures of executive functioning, attention, working memory, and academic performance. Functional MRI studies demonstrated broad, diffuse activation, reduced activation in canonical regions, and increased activation in non-canonical regions during numeric tasks. Discussion A preponderance of studies linked prematurity and prenatal alcohol exposure to altered neurodevelopmental processes and suboptimal academic achievement. Limitations and recommendations for future research are discussed. Systematic review registration Identifier: DOI 10.17605/OSF.IO/ZAN67.
Collapse
Affiliation(s)
- Deborah Schneider
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
- Webster University, Geneva, Switzerland
| | | | - Caroline G. Richter
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Radu Costache
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Catalina Costache
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Kaitlyn Kirchhoffer
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Vatsa Sheth
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Ibo MacDonald
- Institute of Higher Education and Research in Healthcare, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Hosoki M, Eidsness MA, Bruckert L, Travis KE, Feldman HM. Associations of behavioral problems with white matter circuits connecting to the frontal lobes in school-aged children born at term and preterm. NEUROIMAGE. REPORTS 2024; 4:100201. [PMID: 39301247 PMCID: PMC11412113 DOI: 10.1016/j.ynirp.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Introduction This study investigated whether internalizing and externalizing behavioral problems in children were associated with fractional anisotropy of white matter tracts connecting other brain regions to the frontal lobes. We contrasted patterns of association between children born at term (FT) and very preterm (PT: gestational age at birth =< 32 weeks). Methods Parents completed the Child Behavior Checklist/6-18 questionnaire to quantify behavioral problems when their children were age 8 years (N = 36 FT and 37 PT). Diffusion magnetic resonance scans were collected at the same age and analyzed using probabilistic tractography. Multiple linear regressions investigated the strength of association between age-adjusted T-scores of internalizing and externalizing problems and mean fractional anisotropy (mean-FA) of right and left uncinate, arcuate, anterior thalamic radiations, and dorsal cingulate bundle, controlling for birth group and sex. Results Models predicting internalizing T-scores found significant group-by-tract interactions for left and right arcuate and right uncinate. Internalizing scores were negatively associated with mean-FA of left and right arcuate only in FT children (p left AF = 0.01, p right AF = 0.01). Models predicting externalizing T-scores found significant group-by-tract interactions for the left arcuate and right uncinate. Externalizing scores were negatively associated with mean-FA of right uncinate in FT (p right UF = 0.01) and positively associated in PT children (p right UF preterm = 0.01). Other models were not significant. Conclusions In children with a full range of scores on behavioral problems from normal to significantly elevated, internalizing and externalizing behavioral problems were negatively associated with mean-FA of white matter tracts connecting to frontal lobes in FT children; externalizing behavioral problems were positively associated with mean-FA of the right uncinate in PT children. The different associations by birth group suggest that the neurobiology of behavioral problems differs in the two birth groups.
Collapse
Affiliation(s)
- Machiko Hosoki
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Margarita Alethea Eidsness
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, USA
| |
Collapse
|
6
|
Esteban-Cornejo I, Lara-Jimenez I, Rodriguez-Ayllon M, Verdejo-Roman J, Catena A, Erickson KI, Ortega FB. Early morning physical activity is associated with healthier white matter microstructure and happier children: the ActiveBrains project. Eur Child Adolesc Psychiatry 2024; 33:833-845. [PMID: 37058244 PMCID: PMC10894097 DOI: 10.1007/s00787-023-02197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The background of this study is to examine the associations of individual and combined early morning patterns (i.e., active commuting to school, physical activity before school, having breakfast and good sleep) with white matter microstructure (WMM) and, whether the associated white mater microstructure outcomes were related to mental health outcomes in children with overweight or obesity. 103 children with overweight or obesity (10.0 ± 1.1 years old, 42 girls) from the ActiveBrains project participated in this cross-sectional study. Early morning patterns and mental health indicators (i.e., self-esteem, optimism, positive and negative affect, stress, depression and anxiety) were self-reported by the children using validated questionnaires. WMM was assessed by magnetic resonance imaging using diffusion tensor imaging. When examined independently, early morning patterns were not related with WMM (all P > 0.05). However, the combination of early morning patterns was related with WMM (P < 0.05). Specifically, physically active early morning patterns (i.e., active commuting to school and physical activity before school) were associated with global fractional anisotropy (FA) (β = 0.298, P = 0.013) and global radial diffusivity (RD) (β = - 0.272, P = 0.021), as well as with tract-specific FA (β = 0.314, P = 0.004) and RD (β = - 0.234, P = 0.032) in the superior longitudinal fasciculus (SLF). Furthermore, combined physically active early morning pattern-associated global (i.e., FA and RD) and tract-specific (i.e., FA and RD in the SLF) WMM indicators were positively associated with happiness (β absolute value range from 0.252 to 0.298, all P < 0.05). A combination of physically active early morning patterns may positively relate to white matter microstructure in children with overweight or obesity, and, in turn, happiness.
Collapse
Affiliation(s)
- Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Inmaculada Lara-Jimenez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain
| | - Maria Rodriguez-Ayllon
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Juan Verdejo-Roman
- Department of Personality, Assessment and Psychological Treatment, Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Andres Catena
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Kirk I Erickson
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain
- Department of Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Carretera de Alfacar s/n, 18071, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| |
Collapse
|
7
|
Hosoki M, Eidsness MA, Bruckert L, Travis KE, Feldman HM. Associations of behavioral problems with white matter circuits connecting to the frontal lobes in school-aged children born at term and preterm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298268. [PMID: 37986772 PMCID: PMC10659456 DOI: 10.1101/2023.11.08.23298268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Introduction This study investigated whether behavioral problems in children were associated with fractional anisotropy (FA) of white matter tracts connecting from other brain regions to right and left frontal lobes. We considered internalizing and externalizing behavioral problems separately and contrasted patterns of associations in children born at term and very preterm. Methods Parents completed the Child Behavior Checklist/6-18 questionnaire to quantify behavioral problems when their children were age 8 years (N=36 FT and 37 PT). Diffusion magnetic resonance scans were collected at the same age and analyzed using probabilistic tractography. We used multiple linear regression to investigate the strength of association between age-adjusted T-scores of internalizing and externalizing problems and mean fractional anisotropy (mean-FA) of right and left uncinate, arcuate, and anterior thalamic radiations, controlling for birth group and sex. Results Regression models predicting internalizing T-scores from mean-FA found significant group-by-tract interactions for the left and right arcuate and right uncinate. Internalizing scores were negatively associated with mean-FA of left and right arcuate only in children born at term (pleft AF =0.01, pright AF =0.01). Regression models predicting externalizing T-scores from mean-FA found significant group-by-tract interactions for the left arcuate and right uncinate. Externalizing scores were negatively associated with mean-FA of right uncinate in children born at term (pright UF =0.01) and positively associated in children born preterm (pright UF preterm =0.01). Other models were not significant. Conclusions In this sample of children with scores for behavioral problems across the full range, internalizing and externalizing behavioral problems were negatively associated with mean-FA of white matter tracts connecting to frontal lobes in children born at term; externalizing behavioral problems were positively associated with mean-FA of the right uncinate in children born preterm. The different associations by birth group suggest that the neurobiology of behavioral problems differs in the two birth groups.
Collapse
Affiliation(s)
- Machiko Hosoki
- Corresponding Author: Machiko Hosoki, Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304,
| | - Margarita Alethea Eidsness
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine
| | | | - Katherine E. Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine
| |
Collapse
|
8
|
Marchman VA, Ashland MD, Loi EC, Munévar M, Shannon KA, Fernald A, Feldman HM. Associations between early efficiency in language processing and language and cognitive outcomes in children born full term and preterm: similarities and differences. Child Neuropsychol 2023; 29:886-905. [PMID: 36324057 PMCID: PMC10151433 DOI: 10.1080/09297049.2022.2138304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Associations between children's early language processing efficiency and later verbal and non-verbal outcomes shed light on the extent to which early information processing skills support later learning across different domains of function. Examining whether the strengths of associations are similar in typically developing and at-risk populations provides an additional lens into the varying routes to learning that children may take across development. In this follow-up study, children born full-term (FT, n = 49) and preterm (PT, n = 45, ≤32 weeks gestational age, birth weight <1800 g) were assessed in the Looking While Listening (LWL) task at 18 months (corrected for degree of prematurity in PT group). This eye-tracking task assesses efficiency of real-time spoken language comprehension as accuracy and speed (RT) of processing. At 4 ½ years, children were assessed on standardized tests of receptive vocabulary, expressive language, and non-verbal IQ. Language processing efficiency was associated with both language outcomes (r2-change: 7.0-19.7%, p < 0.01), after covariates. Birth group did not moderate these effects, suggesting similar mechanisms of learning in these domains for PT and FT children. However, birth group moderated the association between speed and non-verbal IQ (r2-change: 4.5%, p < 0.05), such that an association was found in the PT but not the FT group. This finding suggests that information processing skills reflected in efficiency of real-time language processing may be recruited to support learning in a broader range of verbal and non-verbal domains in the PT compared to the FT group.
Collapse
Affiliation(s)
- Virginia A. Marchman
- Department of Psychology, 450 Jane Stanford Way, Stanford University, Stanford, CA 94305, USA
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, 3145 Porter Drive, Palo Alto, CA 94304, USA
| | - Melanie D. Ashland
- Department of Psychology, 450 Jane Stanford Way, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth C. Loi
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, 3145 Porter Drive, Palo Alto, CA 94304, USA
| | - Mónica Munévar
- Department of Psychology, 450 Jane Stanford Way, Stanford University, Stanford, CA 94305, USA
| | - Katherine A. Shannon
- Department of Psychology, 450 Jane Stanford Way, Stanford University, Stanford, CA 94305, USA
| | - Anne Fernald
- Department of Psychology, 450 Jane Stanford Way, Stanford University, Stanford, CA 94305, USA
| | - Heidi M. Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, 3145 Porter Drive, Palo Alto, CA 94304, USA
| |
Collapse
|
9
|
Hosoki M, Bruckert L, Borchers LR, Marchman VA, Travis KE, Feldman HM. Associations of Behavioral Problems and White Matter Properties of the Cerebellar Peduncles in Boys and Girls Born Full Term and Preterm. CEREBELLUM (LONDON, ENGLAND) 2023; 22:163-172. [PMID: 35138604 PMCID: PMC9360188 DOI: 10.1007/s12311-022-01375-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
Abstract
Accumulating evidence suggests that the role of cerebellum includes regulation of behaviors; cerebellar impairment may lead to behavioral problems. Behavioral problems differ by sex: internalizing problems are more common in girls, externalizing problems in boys. Behavioral problems are also elevated in children born preterm (PT) compared to children born full term (FT). The current study examined internalizing and externalizing problems in 8-year-old children in relation to sex, birth-group, fractional anisotropy (FA) of the three cerebellar peduncles (superior, middle, and inferior), and interactions among these predictor variables. Participants (N = 78) were 44 boys (28 PT) and 34 girls (15 PT). We assessed behavioral problems via standardized parent reports and FA of the cerebellar peduncles using deterministic tractography. Internalizing problems were higher in children born PT compared to children born FT (p = .032); the interaction of sex and birth-group was significant (p = .044). When considering the contribution of the mean-tract FA of cerebellar peduncles to behavioral problems, there was a significant interaction of sex and mean-tract FA of the inferior cerebellar peduncle (ICP) with internalizing problems; the slope was negative in girls (p = .020) but not in boys. In boys, internalizing problems were only associated with mean-tract FA ICP in those born preterm (p = .010). We found no other significant associations contributing to internalizing or externalizing problems. Thus, we found sexual dimorphism and birth-group differences in the association of white matter metrics of the ICP and internalizing problems in school-aged children. The findings inform theories of the origins of internalizing behavioral problems in middle childhood and may suggest approaches to treatment at school age.
Collapse
Affiliation(s)
- Machiko Hosoki
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | - Lisa Bruckert
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | | | | | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, 3145 Porter Drive Mail Code 5395, Palo Alto, CA, 94304, USA.
| |
Collapse
|
10
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
11
|
Kelly KJ, Hutton JS, Parikh NA, Barnes-Davis ME. Neuroimaging of brain connectivity related to reading outcomes in children born preterm: A critical narrative review. Front Pediatr 2023; 11:1083364. [PMID: 36937974 PMCID: PMC10014573 DOI: 10.3389/fped.2023.1083364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Premature children are at high risk for delays in language and reading, which can lead to poor school achievement. Neuroimaging studies have assessed structural and functional connectivity by diffusion MRI, functional MRI, and magnetoencephalography, in order to better define the "reading network" in children born preterm. Findings point to differences in structural and functional connectivity compared to children born at term. It is not entirely clear whether this discrepancy is due to delayed development or alternative mechanisms for reading, which may have developed to compensate for brain injury in the perinatal period. This narrative review critically appraises the existing literature evaluating the neural basis of reading in preterm children, summarizes the current findings, and suggests future directions in the field.
Collapse
Affiliation(s)
- Kaitlyn J. Kelly
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - John S. Hutton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of General & Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Nehal A. Parikh
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Maria E. Barnes-Davis
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Kallankari H, Taskila HL, Heikkinen M, Hallman M, Saunavaara V, Kaukola T. Microstructural alterations in association tracts and language abilities in schoolchildren born very preterm and with poor fetal growth. Pediatr Radiol 2023; 53:94-103. [PMID: 35773359 PMCID: PMC9816217 DOI: 10.1007/s00247-022-05418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/07/2022] [Accepted: 06/02/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Prematurity and perinatal risk factors may influence white matter microstructure. In turn, these maturational changes may influence language development in this high-risk population of children. OBJECTIVE To evaluate differences in the microstructure of association tracts between preterm and term children and between preterm children with appropriate growth and those with fetal growth restriction and to study whether the diffusion tensor metrics of these tracts correlate with language abilities in schoolchildren with no severe neurological impairment. MATERIALS AND METHODS This study prospectively followed 56 very preterm children (mean gestational age: 28.7 weeks) and 21 age- and gender-matched term children who underwent diffusion tensor imaging at a mean age of 9 years. We used automated probabilistic tractography and measured fractional anisotropy in seven bilateral association tracts known to belong to the white matter language network. Both groups participated in language assessment using five standardised tests at the same age. RESULTS Preterm children had lower fractional anisotropy in the right superior longitudinal fasciculus 1 compared to term children (P < 0.05). Preterm children with fetal growth restriction had lower fractional anisotropy in the left inferior longitudinal fasciculus compared to preterm children with appropriate fetal growth (P < 0.05). Fractional anisotropy in three dorsal tracts and in two dorsal and one ventral tract had a positive correlation with language assessments among preterm children and preterm children with fetal growth restriction, respectively (P < 0.05). CONCLUSION There were some microstructural differences in language-related tracts between preterm and term children and between preterm children with appropriate and those with restricted fetal growth. Children with better language abilities had a higher fractional anisotropy in distinct white matter tracts.
Collapse
Affiliation(s)
- Hanna Kallankari
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Child Neurology, Oulu University Hospital, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland.
| | - Hanna-Leena Taskila
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Department of Neonatology, Oulu University Hospital, Oulu, Finland
| | - Minna Heikkinen
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Child Language Research Center, Faculty of Humanities, University of Oulu, Oulu, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Virva Saunavaara
- PET Center, Turku University Hospital, Turku, Finland ,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tuula Kaukola
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Department of Neonatology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
13
|
Brignoni-Pérez E, Dubner SE, Ben-Shachar M, Berman S, Mezer AA, Feldman HM, Travis KE. White matter properties underlying reading abilities differ in 8-year-old children born full term and preterm: A multi-modal approach. Neuroimage 2022; 256:119240. [PMID: 35490913 PMCID: PMC9213558 DOI: 10.1016/j.neuroimage.2022.119240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Many diffusion magnetic resonance imaging (dMRI) studies document associations between reading skills and fractional anisotropy (FA) within brain white matter, suggesting that efficient transfer of information across the brain contributes to individual differences in reading. Use of complementary imaging methods can determine if these associations relate to myelin content of white matter tracts. Compared to children born at term (FT), children born preterm (PT) are at risk for reading deficits. We used two MRI methods to calculate associations of reading and white matter properties in FT and PT children. Participants (N=79: 36 FT and 43 PT) were administered the Gray's Oral Reading Test at age 8. We segmented three dorsal (left arcuate and bilateral superior longitudinal fasciculus) and four ventral (bilateral inferior longitudinal fasciculus and bilateral uncinate) tracts and quantified (1) FA from dMRI and (2) R1 from quantitative T1 relaxometry. We examined correlations between reading scores and these metrics along the trajectories of the tracts. Reading positively correlated with FA in segments of left arcuate and bilateral superior longitudinal fasciculi in FT children; no FA associations were found in PT children. Reading positively correlated with R1 in segments of the left superior longitudinal, right uncinate, and left inferior longitudinal fasciculi in PT children; no R1 associations were found in FT children. Birth group significantly moderated the associations of reading and white matter metrics. Myelin content of white matter may contribute to individual differences in PT but not FT children.
Collapse
Affiliation(s)
- Edith Brignoni-Pérez
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States
| | - Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States
| | - Michal Ben-Shachar
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States.
| |
Collapse
|
14
|
Li H, Yuan Q, Luo YJ, Tao W. A new perspective for understanding the contributions of the cerebellum to reading: The cerebro-cerebellar mapping hypothesis. Neuropsychologia 2022; 170:108231. [DOI: 10.1016/j.neuropsychologia.2022.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
|
15
|
Collins SE, Thompson DK, Kelly CE, Yang JYM, Pascoe L, Inder TE, Doyle LW, Cheong JLY, Burnett AC, Anderson PJ. Development of brain white matter and math computation ability in children born very preterm and full-term. Dev Cogn Neurosci 2021; 51:100987. [PMID: 34273749 PMCID: PMC8319459 DOI: 10.1016/j.dcn.2021.100987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/08/2022] Open
Abstract
Children born very preterm (VPT; <32 weeks' gestation) have alterations in brain white matter and poorer math ability than full-term (FT) peers. Diffusion-weighted magnetic resonance imaging studies suggest a link between white matter microstructure and math in VPT and FT children, although longitudinal studies using advanced modelling are lacking. In a prospective longitudinal cohort of VPT and FT children we used Fixel-Based Analysis to investigate associations between maturation of white matter fibre density (FD), fibre-bundle cross-section (FC), and combined fibre density and cross-section (FDC) and math computation ability at 7 (n = 136 VPT; n = 32 FT) and 13 (n = 130 VPT; n = 44 FT) years, as well as between change in white matter and math computation ability from 7 to 13 years (n = 103 VPT; n = 21 FT). In both VPT and FT children, higher FD, FC and FDC in visual, sensorimotor and cortico-thalamic/thalamo-cortical white matter tracts were associated with better math computation ability at 7 and 13 years. Longitudinally, accelerated maturation of the posterior body of the corpus callosum (FDC) was associated with greater math computation development. White matter-math associations were similar for VPT and FT children. In conclusion, white matter maturation is associated with math computation ability across late childhood, irrespective of birth group.
Collapse
Affiliation(s)
- Simonne E Collins
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Deanne K Thompson
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Claire E Kelly
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Joseph Y M Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Neuroscience Advanced Clinical Imaging Suite (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia; Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia
| | - Leona Pascoe
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia
| | - Terrie E Inder
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lex W Doyle
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Premature Infant Follow-Up Program, Royal Women's Hospital, Melbourne, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Newborn Research, The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Premature Infant Follow-Up Program, Royal Women's Hospital, Melbourne, Australia
| | - Alice C Burnett
- Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Premature Infant Follow-Up Program, Royal Women's Hospital, Melbourne, Australia; Neonatal Medicine, Royal Children's Hospital, Melbourne, Australia
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Victorian Infant Brain Study (VIBeS), Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
16
|
Cerebellar volumes and language functions in school-aged children born very preterm. Pediatr Res 2021; 90:853-860. [PMID: 33469182 DOI: 10.1038/s41390-020-01327-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Volumes of cerebellar posterior lobes have been associated with cognitive skills, such as language functioning. Children born very preterm (VPT) often have language problems. However, only total cerebellar volume has been associated with language functioning, with contradicting results. The objective of this study was to ascertain whether total cerebellar structures or specific posterior lobular structures are associated with language ability of school-aged VPT children. METHODS This is a prospective cohort study of 42 school-aged VPT children without major handicaps. Structural MRI was performed and the cerebellum segmentation pipeline was used for segmentation of separate lobules. Narrative retelling assessment was performed and language content and language structure scores were extracted. Linear regression analyses were used to associate language scores with whole gray matter (GM) cerebellar volume and right Crus I+II GM volume. RESULTS Whole cerebellar GM volume was not significantly associated with language content nor with language structure; however, right Crus I+II GM volume was significantly associated with language content (β = 0.192 (CI = 0.033, 0.351), p = 0.020). CONCLUSIONS GM volume of Crus I+II appears to be associated with language functions in school-aged VPT children without major handicaps, while whole cerebellar volume is not. This study showed the importance of studying cerebellar lobules separately, rather than whole cerebellar volume only, in relation to VPT children's language functions. IMPACT GM volume of Crus I+II is associated with semantic language functions in school-aged very preterm children without overt brain injury, whereas whole cerebellar volume is not. This study showed the importance of studying cerebellar lobules separately, rather than whole cerebellar volume only, in relation to very preterm children's language functions. This study might impact future research in very preterm children. Lobular structures rather than whole cerebellar structures should be the region of interest in relation to language functions.
Collapse
|
17
|
Li H, Kepinska O, Caballero JN, Zekelman L, Marks RA, Uchikoshi Y, Kovelman I, Hoeft F. Decoding the role of the cerebellum in the early stages of reading acquisition. Cortex 2021; 141:262-279. [PMID: 34102410 PMCID: PMC8845234 DOI: 10.1016/j.cortex.2021.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/03/2021] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Numerous studies have consistently reported functional activation of the cerebellum during reading tasks, especially in the right cerebellar hemisphere. However, it remains unclear whether this region is also involved in reading during the earliest stages of reading acquisition. Here, we investigated whether and how the cerebellum contributes to reading acquisition. We tested 80 5-6-year-old kindergarteners, who performed a visual word matching task during which functional MRI (fMRI) data were collected. We found that bilateral cerebellar hemispheres were significantly activated during visual word processing. Moreover, activation of left cerebellar lobule VII extending to lobule VIII negatively and significantly correlated with current reading ability, whereas activation of right cerebellar lobule VII extending to lobule VIII significantly and positively correlated with future reading ability. Functional decoding via functional connectivity patterns further revealed that left and right cerebellar lobules connected with different cerebral cortex regions. Our results suggest a division of labor between the left and right cerebellar lobules in beginning readers.
Collapse
Affiliation(s)
- Hehui Li
- Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, PR China; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Olga Kepinska
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; Brain and Language Lab, Cognitive Science Hub, University of Vienna, Austria; Dept of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Austria; Department of Psychology, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Jocelyn N Caballero
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Leo Zekelman
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA, USA
| | - Rebecca A Marks
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Yuuko Uchikoshi
- School of Education, University of California Davis, Davis, CA, USA
| | - Ioulia Kovelman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Brain Imaging Research Center (BIRC), University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA.
| |
Collapse
|
18
|
Menegaux A, Meng C, Bäuml JG, Berndt MT, Hedderich DM, Schmitz-Koep B, Schneider S, Nuttall R, Zimmermann J, Daamen M, Zimmer C, Boecker H, Bartmann P, Wolke D, Sorg C. Aberrant cortico-thalamic structural connectivity in premature-born adults. Cortex 2021; 141:347-362. [PMID: 34126289 DOI: 10.1016/j.cortex.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/15/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Premature birth is associated with alterations in brain structure, particularly in white matter. Among white matter, alterations in cortico-thalamic connections are present in premature-born infants, and they have been suggested both to last until adulthood and to contribute to impaired cognitive functions. To test these hypotheses, 70 very premature-born adults and 67 full-term controls underwent cognitive testing and diffusion-weighted imaging. Each cortical hemisphere was parcellated into six lobes, from which probabilistic tractography was performed to the thalamus. Connection probability was chosen as metric of structural connectivity. We found increased cortico-thalamic connection probability between left prefrontal cortices and left medio-dorsal thalamus and reduced connection probability between bilateral temporal cortices and bilateral anterior thalami in very premature-born adults. Aberrant prefronto- and temporo-thalamic connection probabilities were correlated with birth weight and days on ventilation, respectively, supporting the suggestion that these connectivity changes relate with the degree of prematurity. Moreover, an increase in left prefronto-thalamic connection probability also correlated with lower verbal comprehension index indicating its relevance for verbal cognition. Together, our results demonstrate that cortico-thalamic structural connectivity is aberrant in premature-born adults, with these changes being linked with impairments in verbal cognitive abilities. Due to corresponding findings in infants, data suggest aberrant development of cortico-thalamic connectivity after premature birth with lasting effects into adulthood.
Collapse
Affiliation(s)
- Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Chun Meng
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Schneider
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rachel Nuttall
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Juliana Zimmermann
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; TUM Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
19
|
Stipdonk LW, Dudink J, Reiss IK, Franken MCJP. Does a narrative retelling task improve the assessment of language proficiency in school-aged children born very preterm? CLINICAL LINGUISTICS & PHONETICS 2020; 34:1112-1129. [PMID: 32013591 DOI: 10.1080/02699206.2020.1720824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Almost half of the children born very preterm (VP) experience language difficulties at school-age, specifically with more complex language tasks. Narrative retelling is such a task. Therefore, we explored the value of narrative retelling assessment in school-aged children born VP, compared to item-based language assessment. In 63 children born VP and 30 age-matched full-term (FT) controls Renfrew's Bus Story Test and Clinical Evaluation of Language Fundamentals were assessed. The retelling of the Bus Story was transcribed and language complexity and content measures were analyzed with Computerised Language Analysis software. Narrative outcomes of the VP group were worse than that of the FT group. Group differences were significant for the language complexity measures, but not for the language content measures. However, the mean narrative composite score of the VP group was significantly better than their mean item-based language score, while in the FT group the narrative score was worse than the item-based score. Significant positive correlations between narrative and item-based language scores were found only in the VP group. In conclusion, in VP children narrative retelling appears to be less sensitive to detecting academic language problems than item-based language assessment. This might be related to the mediating role of attention in item-based tasks, that appears not to affect more spontaneous language tasks such as retelling. Therefore, in school-aged children born VP we recommend using narrative assessment, in addition to item-based assessments, because it is more related to spontaneous language and less sensitive to attention problems.
Collapse
Affiliation(s)
- Lottie W Stipdonk
- Department of Otorhinolaryngology, Erasmus Medical University Centre-Sophia Children's Hospital , Rotterdam, Netherlands
| | - Jeroen Dudink
- Division of Neonatology, Department of Pediatrics, Erasmus Medical University Centre-Sophia Children's Hospital , Rotterdam, Netherlands
- Division of Neonatology, Department of Pediatrics, UMCU-Wilhelmina Children's Hospital , Utrecht, Netherlands
| | - Irwin K Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus Medical University Centre-Sophia Children's Hospital , Rotterdam, Netherlands
| | - Marie-Christine J P Franken
- Department of Otorhinolaryngology, Erasmus Medical University Centre-Sophia Children's Hospital , Rotterdam, Netherlands
| |
Collapse
|
20
|
Beaulieu C, Yip E, Low PB, Mädler B, Lebel CA, Siegel L, Mackay AL, Laule C. Myelin Water Imaging Demonstrates Lower Brain Myelination in Children and Adolescents With Poor Reading Ability. Front Hum Neurosci 2020; 14:568395. [PMID: 33192398 PMCID: PMC7596275 DOI: 10.3389/fnhum.2020.568395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/31/2020] [Indexed: 01/18/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides a means to non-invasively investigate the neurological links with dyslexia, a learning disability that affects one’s ability to read. Most previous brain MRI studies of dyslexia and reading skill have used structural or diffusion imaging to reveal regional brain abnormalities. However, volumetric and diffusion MRI lack specificity in their interpretation at the microstructural level. Myelin is a critical neural component for brain function and plasticity, and as such, deficits in myelin may impact reading ability. MRI can estimate myelin using myelin water fraction (MWF) imaging, which is based on evaluation of the proportion of short T2 myelin-associated water from multi-exponential T2 relaxation analysis, but has not yet been applied to the study of reading or dyslexia. In this study, MWF MRI, intelligence, and reading assessments were acquired in 20 participants aged 10–18 years with a wide range of reading ability to investigate the relationship between reading ability and myelination. Group comparisons showed markedly lower MWF by 16–69% in poor readers relative to good readers in the left and right thalamus, as well as the left posterior limb of the internal capsule, left/right anterior limb of the internal capsule, left/right centrum semiovale, and splenium of the corpus callosum. MWF over the entire group also correlated positively with three different reading scores in the bilateral thalamus as well as white matter, including the splenium of the corpus callosum, left posterior limb of the internal capsule, left anterior limb of the internal capsule, and left centrum semiovale. MWF imaging from T2 relaxation suggests that myelination, particularly in the bilateral thalamus, splenium, and left hemisphere white matter, plays a role in reading abilities. Myelin water imaging thus provides a potentially valuable in vivo imaging tool for the study of dyslexia and its remediation.
Collapse
Affiliation(s)
- Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Eugene Yip
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Pauline B Low
- Department of Education and Counseling Psychology, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Linda Siegel
- Department of Education and Counseling Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Alex L Mackay
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Dubner SE, Rose J, Bruckert L, Feldman HM, Travis KE. Neonatal white matter tract microstructure and 2-year language outcomes after preterm birth. NEUROIMAGE-CLINICAL 2020; 28:102446. [PMID: 33035964 PMCID: PMC7554644 DOI: 10.1016/j.nicl.2020.102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023]
Abstract
Preterm infant white matter tracts uniquely predict later toddler language. Neonatal medical history moderates posterior corpus callosum–language relations. Different associations by tract may relate to brain maturation and medical history.
Aim To determine whether variability in diffusion MRI (dMRI) white matter tract metrics, obtained in a cohort of preterm infants prior to neonatal hospital discharge, would be associated with language outcomes at age 2 years, after consideration of age at scan and number of major neonatal complications. Method 30 children, gestational age 28.9 (2.4) weeks, underwent dMRI at mean post menstrual age 36.4 (1.4) weeks and language assessment with the Bayley Scales of Infant Development–III at mean age 22.2 (1.7) months chronological age. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for 5 white matter tracts. Hierarchical linear regression assessed associations between tract FA, moderating variables, and language outcomes. Results FA of the left inferior longitudinal fasciculus accounted for 17% (p = 0.03) of the variance in composite language and FA of the posterior corpus callosum accounted for 19% (p = 0.02) of the variance in composite language, beyond that accounted for by post-menstrual age at scan and neonatal medical complications. The number of neonatal medical complications moderated the relationship between language and posterior corpus callosum FA but did not moderate the association in the other tract. Conclusion Language at age 2 is associated with white matter metrics in early infancy in preterm children. The different pattern of associations by fiber group may relate to the stage of brain maturation and/or the nature and timing of medical complications related to preterm birth. Future studies should replicate these findings with a larger sample size to assure reliability of the findings.
Collapse
Affiliation(s)
- Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jessica Rose
- Division of Pediatric Orthopaedics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
22
|
Savenko IV, Garbaruk ES, Boboshko MY. [Psychoacoustic methods in diagnosis of central auditory processing disorders in prematurely born children]. Vestn Otorinolaringol 2020; 85:11-17. [PMID: 32628376 DOI: 10.17116/otorino20208503111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The presence of numerous perinatal risk factors and comorbid pathology in prematurely born children, even in the absence of peripheral auditory deficit, can lead to disruptions in the processes of higher nervous sound information processing with the formation of central auditory disorders. OBJECTIVE Audiological assessment of the functional state of auditory system central parts in prematurely born children. MATERIAL AND METHODS The study involved 54 deeply premature born infants, which were divided into 3 groups depending on age (6-7, 8-9, and 10-11 years), 18 subjects in each group, and 70 healthy, term-born children of the corresponding age. In addition to the traditional audiological examination, all children underwent an assessment of functional state of the central parts of auditory system through a pause detection test (Random Gap Detection Test, RGDT); the perception of fast rhythmic sequences of stimuli, monaural low excess speech testing, binaural interaction test in alternating binaural speech format (ABS ), dichotic presentation of pairs of single digits, single digits and monosyllables, two-digit numerals, Russian matrix phrasal test in noise (RUMatrix) were studied. RESULTS Prematurely born infants of all age groups were significantly worse compared to control group (p<0.01) while having RGDT, a test for assessing the perception of fast rhythmic sequences of stimuli and dichotic binaural integration tests. Monaural intelligibility of monosyllabic words in silence in children of all three groups did not differ from normal values, but it suffered from contralateral use of noise interference in children aged 6-7. According to the RUMatrix test, legibility of phrases in noise was impaired in 65% of subjects. Test results in the ABS format revealed a significant violation of speech intelligibility (p<0.01) only in children of the younger age group. CONCLUSION In prematurely born children, there is a dysfunction of the central parts of the auditory system, which is multilevel in nature, partially leveling as children grow older. Moreover, the processes of temporary processing of acoustic information suffer to the greatest extent, not being compensated up to adolescence.
Collapse
Affiliation(s)
- I V Savenko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - E S Garbaruk
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, Saint Petersburg, Russia
| | - M Yu Boboshko
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,Mechnikov North-Western State Medical University of the Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
23
|
Socioeconomic status and brain injury in children born preterm: modifying neurodevelopmental outcome. Pediatr Res 2020; 87:391-398. [PMID: 31666689 DOI: 10.1038/s41390-019-0646-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Improved intensive care therapies have increased the survival of children born preterm. Yet, many preterm children experience long-term neurodevelopmental sequelae. Indeed, preterm birth remains a leading cause of lifelong neurodevelopmental disability globally, posing significant challenges to the child, family, and society. Neurodevelopmental disability in children born preterm is traditionally linked to acquired brain injuries such as white matter injury and to impaired brain maturation resulting from neonatal illness such as chronic lung disease. Socioeconomic status (SES) has long been recognized to contribute to variation in outcome in children born preterm. Recent brain imaging data in normative term-born cohorts suggest that lower SES itself predicts alterations in brain development, including the growth of the cerebral cortex and subcortical structures. Recent evidence in children born preterm suggests that the response to early-life brain injuries is modified by the socioeconomic circumstances of children and families. Exciting new data points to the potential of more favorable SES circumstances to mitigate the impact of neonatal brain injury. This review addresses emerging evidence suggesting that SES modifies the relationship between early-life exposures, brain injury, and neurodevelopmental outcomes in children born preterm. Better understanding these relationships opens new avenues for research with the ultimate goal of promoting optimal outcomes for those children born preterm at highest risk of neurodevelopmental consequence.
Collapse
|