1
|
Aleksic S, Fleysher R, Weiss EF, Tal N, Darby T, Blumen HM, Vazquez J, Ye KQ, Gao T, Siegel SM, Barzilai N, Lipton ML, Milman S. Hypothalamic MRI-derived microstructure is associated with neurocognitive aging in humans. Neurobiol Aging 2024; 141:102-112. [PMID: 38850591 PMCID: PMC11295133 DOI: 10.1016/j.neurobiolaging.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The hypothalamus regulates homeostasis across the lifespan and is emerging as a regulator of aging. In murine models, aging-related changes in the hypothalamus, including microinflammation and gliosis, promote accelerated neurocognitive decline. We investigated relationships between hypothalamic microstructure and features of neurocognitive aging, including cortical thickness and cognition, in a cohort of community-dwelling older adults (age range 65-97 years, n=124). Hypothalamic microstructure was evaluated with two magnetic resonance imaging diffusion metrics: mean diffusivity (MD) and fractional anisotropy (FA), using a novel image processing pipeline. Hypothalamic MD was cross-sectionally positively associated with age and it was negatively associated with cortical thickness. Hypothalamic FA, independent of cortical thickness, was cross-sectionally positively associated with neurocognitive scores. An exploratory analysis of longitudinal neurocognitive performance suggested that lower hypothalamic FA may predict cognitive decline. No associations between hypothalamic MD, age, and cortical thickness were identified in a younger control cohort (age range 18-63 years, n=99). To our knowledge, this is the first study to demonstrate that hypothalamic microstructure is associated with features of neurocognitive aging in humans.
Collapse
Affiliation(s)
- Sandra Aleksic
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Roman Fleysher
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Radiology, Albert Einstein College of Medicine, Gruss Magnetic Resonance Research Center, Bronx, NY, United States
| | - Erica F Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Noa Tal
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Timothy Darby
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Helena M Blumen
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Juan Vazquez
- Department of Internal Medicine, John Hopkins University, Baltimore, MD, United States
| | - Kenny Q Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tina Gao
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Shira M Siegel
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Sofiya Milman
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Hoang-Dang B, Halavi SE, Rotstein NM, Spivak NM, Dang NH, Cvijanovic L, Hiller SH, Vallejo-Martelo M, Rosenberg BM, Swenson A, Becerra S, Sun M, Revett ME, Kronemyer D, Berlow R, Craske MG, Suthana N, Monti MM, Zbozinek TD, Bookheimer SY, Kuhn TP. Transcranial Focused Ultrasound Targeting the Amygdala May Increase Psychophysiological and Subjective Negative Emotional Reactivity in Healthy Older Adults. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100342. [PMID: 39092138 PMCID: PMC11293512 DOI: 10.1016/j.bpsgos.2024.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
Background The amygdala is highly implicated in an array of psychiatric disorders but is not accessible using currently available noninvasive neuromodulatory techniques. Low-intensity transcranial focused ultrasound (TFUS) is a neuromodulatory technique that has the capability of reaching subcortical regions noninvasively. Methods We studied healthy older adult participants (N = 21, ages 48-79 years) who received TFUS targeting the right amygdala and left entorhinal cortex (active control region) using a 2-visit within-participant crossover design. Before and after TFUS, behavioral measures were collected via the State-Trait Anxiety Inventory and an emotional reactivity and regulation task utilizing neutral and negatively valenced images from the International Affective Picture System. Heart rate and self-reported emotional valence and arousal were measured during the emotional reactivity and regulation task to investigate subjective and physiological responses to the task. Results Significant increases in both self-reported arousal in response to negative images and heart rate during emotional reactivity and regulation task intertrial intervals were observed when TFUS targeted the amygdala; these changes were not evident when the entorhinal cortex was targeted. No significant changes were found for state anxiety, self-reported valence to the negative images, cardiac response to the negative images, or emotion regulation. Conclusions The results of this study provide preliminary evidence that a single session of TFUS targeting the amygdala may alter psychophysiological and subjective emotional responses, indicating some potential for future neuropsychiatric applications. However, more work on TFUS parameters and targeting optimization is necessary to determine how to elicit changes in a more clinically advantageous way.
Collapse
Affiliation(s)
- Bianca Hoang-Dang
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Sabrina E. Halavi
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Natalie M. Rotstein
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Norman M. Spivak
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- UCLA David Geffen School of Medicine Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, California
| | - Nolan H. Dang
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Luka Cvijanovic
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Sonja H. Hiller
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Mauricio Vallejo-Martelo
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M. Rosenberg
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Andrew Swenson
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Sergio Becerra
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Michael Sun
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Malina E. Revett
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - David Kronemyer
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Rustin Berlow
- American Brain Stimulation Clinic, Del Mar, California
| | - Michelle G. Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Nanthia Suthana
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Martin M. Monti
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Tomislav D. Zbozinek
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Susan Y. Bookheimer
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Taylor P. Kuhn
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
3
|
Tan J, Wang Z, Tang Y, Tian Y. Alterations in Human Hippocampus Subregions across the Lifespan: Reflections on White Matter Structure and Functional Connectivity. Neural Plast 2023; 2023:7948140. [PMID: 37025422 PMCID: PMC10072963 DOI: 10.1155/2023/7948140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
During growth and aging, the role of the hippocampus in memory depends on its interactions with related brain regions. Particularly, two subregions, anterior hippocampus (aHipp) and posterior hippocampus (pHipp), play different and critical roles in memory processing. However, age-related changes of hippocampus subregions on structure and function are still unclear. Here, we investigated age-related structural and functional characteristics of 106 participants (7-85 years old) in resting state based on fractional anisotropy (FA) and functional connectivity (FC) in aHipp and pHipp in the lifespan. The correlation between FA and FC was also explored to identify the coupling. Furthermore, the Wechsler Abbreviated Scale of Intelligence (WASI) was used to explore the relationship between cognitive ability and hippocampal changes. Results showed that there was functional separation and integration in aHipp and pHipp, and the number of functional connections in pHipp was more than that in aHipp across the lifespan. The age-related FC changes showed four different trends (U-shaped/inverted U-shaped/linear upward/linear downward). And around the age of 40 was a critical period for transformation. Then, FA analyses indicated that all effects of age on the hippocampal structures were nonlinear, and the white matter integrity of pHipp was higher than that of aHipp. In the functional-structural coupling, we found that the age-related FA of the right aHipp (aHipp.R) was negatively related to the FC. Finally, through the WASI, we found that the age-related FA of the left aHipp (aHipp.L) was positively correlated with verbal IQ (VERB) and vocabulary comprehension (VOCAB.T), the FA of aHipp.R was only positively correlated with VERB, and the FA of the left pHipp (pHipp.L) was only positively correlated with VOCAB.T. These FC and FA results supported that age-related normal memory changes were closely related to the hippocampus subregions. We also provided empirical evidence that memory ability was altered with the hippocampus, and its efficiency tended to decline after age 40.
Collapse
|
4
|
Wang X, Zhao M, Lin L, Han Y. Plasma β-Amyloid Levels Associated With Structural Integrity Based on Diffusion Tensor Imaging in Subjective Cognitive Decline: The SILCODE Study. Front Aging Neurosci 2021; 12:592024. [PMID: 33510631 PMCID: PMC7835390 DOI: 10.3389/fnagi.2020.592024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Accumulating evidence has demonstrated that plasma β-amyloid (Aβ) levels are useful biomarkers to reflect brain amyloidosis and gray matter structure, but little is known about their correlation with subclinical white matter (WM) integrity in individuals at risk of Alzheimer's disease (AD). Here, we investigated the microstructural changes in WM between subjects with low and high plasma Aβ levels among individuals with subjective cognitive decline (SCD). Methods: This study included 142 cognitively normal individuals with SCD who underwent a battery of neuropsychological tests, plasma Aβ measurements, and diffusion tensor imaging (DTI) based on the Sino Longitudinal Study on Cognitive Decline (SILCODE). Using tract-based spatial statistics (TBSS), we compared fractional anisotropy (FA), and mean diffusivity (MD) in WM between subjects with low (N = 71) and high (N = 71) plasma Aβ levels (cut-off: 761.45 pg/ml for Aβ40 and 10.74 pg/ml for Aβ42). Results: We observed significantly decreased FA and increased MD in the high Aβ40 group compared to the low Aβ40 group in various regions, including the body, the genu, and the splenium of the corpus callosum; the superior longitudinal fasciculus; the corona radiata; the thalamic radiation; the external and internal capsules; the inferior fronto-occipital fasciculus; and the sagittal stratum [p < 0.05, familywise error (FWE) corrected]. Average FA values were associated with poor performance on executive and memory assessments. No significant differences were found in either MD or FA between the low and high Aβ42 groups. Conclusion: Our results suggest that a correlation exists between WM integrity and plasma Aβ40 levels in individuals with SCD.
Collapse
Affiliation(s)
- Xiaoni Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Mingyan Zhao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Li Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
5
|
Rhone AE, Kovach CK, Harmata GI, Sullivan AW, Tranel D, Ciliberto MA, Howard MA, Richerson GB, Steinschneider M, Wemmie JA, Dlouhy BJ. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight 2020; 5:134852. [PMID: 32163374 PMCID: PMC7213805 DOI: 10.1172/jci.insight.134852] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDSeizure-induced inhibition of respiration plays a critical role in sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying seizure-induced central apnea in pediatric epilepsy are unknown.METHODSWe studied 8 pediatric patients with intractable epilepsy undergoing intracranial electroencephalography. We recorded respiration during seizures and during electrical stimulation mapping of 174 forebrain sites. A machine-learning algorithm was used to delineate brain regions that inhibit respiration.RESULTSIn 2 patients, apnea coincided with seizure spread to the amygdala. Supporting a role for the amygdala in breathing inhibition in children, electrically stimulating the amygdala produced apnea in all 8 subjects (3-17 years old). These effects did not depend on epilepsy type and were relatively specific to the amygdala, as no other site affected breathing. Remarkably, patients were unaware that they had stopped breathing, and none reported dyspnea or arousal, findings critical for SUDEP. Finally, a machine-learning algorithm based on 45 stimulation sites and 210 stimulation trials identified a focal subregion in the human amygdala that consistently produced apnea. This site, which we refer to as the amygdala inhibition of respiration (AIR) site includes the medial subregion of the basal nuclei, cortical and medial nuclei, amygdala transition areas, and intercalated neurons.CONCLUSIONSA focal site in the amygdala inhibits respiration and induces apnea (AIR site) when electrically stimulated and during seizures in children with epilepsy. This site may prove valuable for determining those at greatest risk for SUDEP and as a therapeutic target.FUNDINGNational Institute of Neurological Disorders and Stroke - Congress of Neurological Surgeons, National Institute of General Medical Sciences, Roy J. Carver Charitable Trust.
Collapse
Affiliation(s)
| | | | - Gail I.S. Harmata
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Pharmacological Sciences Training Program
- Department of Psychiatry
| | | | - Daniel Tranel
- Iowa Neuroscience Institute
- Department of Psychological and Brain Sciences
- Department of Neurology
| | | | - Matthew A. Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| | - George B. Richerson
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - John A. Wemmie
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Psychiatry
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian J. Dlouhy
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| |
Collapse
|