1
|
Liao L, Lu J, Wang L, Zhang Y, Gao D, Wang M. CT-Net: an interpretable CNN-Transformer fusion network for fNIRS classification. Med Biol Eng Comput 2024; 62:3233-3247. [PMID: 38816665 DOI: 10.1007/s11517-024-03138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS), an optical neuroimaging technique, has been widely used in the field of brain activity recognition and brain-computer interface. Existing works have proposed deep learning-based algorithms for the fNIRS classification problem. In this paper, a novel approach based on convolutional neural network and Transformer, named CT-Net, is established to guide the deep modeling for the classification of mental arithmetic (MA) tasks. We explore the effect of data representations, and design a temporal-level combination of two raw chromophore signals to improve the data utilization and enrich the feature learning of the model. We evaluate our model on two open-access datasets and achieve the classification accuracy of 98.05% and 77.61%, respectively. Moreover, we explain our model by the gradient-weighted class activation mapping, which presents a high consistent between the contributing value of features learned by the model and the mapping of brain activity in the MA task. The results suggest the feasibility and interpretability of CT-Net for decoding MA tasks.
Collapse
Affiliation(s)
- Lingxiang Liao
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Jingqing Lu
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lutao Wang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Dongrui Gao
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Manqing Wang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China.
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
2
|
Poikonen H, Tobler S, Trninić D, Formaz C, Gashaj V, Kapur M. Math on cortex-enhanced delta phase synchrony in math experts during long and complex math demonstrations. Cereb Cortex 2024; 34:bhae025. [PMID: 38365270 PMCID: PMC11461154 DOI: 10.1093/cercor/bhae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Neural oscillations are important for working memory and reasoning and they are modulated during cognitively challenging tasks, like mathematics. Previous work has examined local cortical synchrony on theta (4-8 Hz) and alpha (8-13 Hz) bands over frontal and parietal electrodes during short mathematical tasks when sitting. However, it is unknown whether processing of long and complex math stimuli evokes inter-regional functional connectivity. We recorded cortical activity with EEG while math experts and novices watched long (13-68 seconds) and complex (bachelor-level) math demonstrations when sitting and standing. Fronto-parietal connectivity over the left hemisphere was stronger in math experts than novices reflected by enhanced delta (0.5-4 Hz) phase synchrony in experts. Processing of complex math tasks when standing extended the difference to right hemisphere, suggesting that other cognitive processes, such as maintenance of body balance when standing, may interfere with novice's internal concentration required during complex math tasks more than in experts. There were no groups differences in phase synchrony over theta or alpha frequencies. These results suggest that low-frequency oscillations modulate inter-regional connectivity during long and complex mathematical cognition and demonstrate one way in which the brain functions of math experts differ from those of novices: through enhanced fronto-parietal functional connectivity.
Collapse
Affiliation(s)
- Hanna Poikonen
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Centre of Excellence in Music, Mind, Body and Brain, Faculty of Educational Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Samuel Tobler
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Dragan Trninić
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Cléa Formaz
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| | - Venera Gashaj
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
- Department of Psychology, University of Tuebingen, Tuebingen 72076, Germany
| | - Manu Kapur
- Professorship for Learning Sciences and Higher Education, Department of Humanities, Social and Political Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich 8092, Switzerland
| |
Collapse
|
3
|
Viesel-Nordmeyer N, Prado J. Arithmetic skills are associated with left fronto-temporal gray matter volume in 536 children and adolescents. NPJ SCIENCE OF LEARNING 2023; 8:56. [PMID: 38065992 PMCID: PMC10709444 DOI: 10.1038/s41539-023-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/31/2023] [Indexed: 10/16/2024]
Abstract
There are large individual differences in arithmetic skills. Although a number of brain-wide association studies have attempted to identify the neural correlates of these individual differences, studies have focused on relatively small sample sizes and have yielded inconsistent results. In the current voxel-based morphometry study, we merged six structural imaging datasets of children and adolescents (from 7.5 to 15 years) whose levels of arithmetic skills were assessed, leading to a combined sample of n = 536. Controlling for individual differences in age, gender, as well as language, and intelligence, we found a unique positive relation between arithmetic skill and gray matter volume in the left inferior frontal gyrus (IFG) and middle temporal gyrus (MTG). Our results suggest that individual differences in arithmetic skills are associated with structural differences in left fronto-temporal areas, rather than in regions of the parietal cortex and hippocampus that are often associated with arithmetic processing.
Collapse
Affiliation(s)
- Nurit Viesel-Nordmeyer
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, 69500, Bron, France.
- Department of Rehabilitation Sciences, TU Dortmund University, Dortmund, Allemagne.
- Laboratoire de Psychologie Cognitive, Aix-Marseille University & CNRS, Marseille, France.
| | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, 69500, Bron, France.
| |
Collapse
|
4
|
Yu H. The neuroscience basis and educational interventions of mathematical cognitive impairment and anxiety: a systematic literature review. Front Psychol 2023; 14:1282957. [PMID: 38098529 PMCID: PMC10720715 DOI: 10.3389/fpsyg.2023.1282957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Mathematics is a fundamental subject with significant implications in education and neuroscience. Understanding the cognitive processes underlying mathematical cognition is crucial for enhancing educational practices. However, mathematical cognitive impairment and anxiety significantly hinder learning and application in this field. This systematic literature review aims to investigate the neuroscience basis and effective educational interventions for these challenges. Methods The review involved a comprehensive screening of 62 research articles that meet the ESSA evidence levels from multiple databases. The selection criteria focused on studies employing various methodologies, including behavioral experiments and neuroimaging techniques, to explore the neuroscience underpinnings and educational interventions related to mathematical cognitive impairment and anxiety. Results The review identified key themes and insights into the neuroscience basis of mathematical cognitive impairment and anxiety. It also examined their impact on educational practices, highlighting the interplay between cognitive processes and educational outcomes. The analysis of these studies revealed significant findings on how these impairments and anxieties manifest and can be addressed in educational settings. Discussion The review critically analyzes the shortcomings of existing research, noting gaps and limitations in current understanding and methodologies. It emphasizes the need for more comprehensive and diverse studies to better understand these phenomena. The discussion also suggests new directions and potential improvement strategies for future research, aiming to contribute to more effective educational interventions and enhanced learning experiences in mathematics. Conclusion This systematic review provides valuable insights into the neuroscience basis of mathematical cognitive impairment and anxiety, offering a foundation for developing more effective educational strategies. It underscores the importance of continued research in this area to improve educational outcomes and support learners facing these challenges.
Collapse
Affiliation(s)
- Hao Yu
- Faculty of Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Ren X, Libertus ME. Identifying the Neural Bases of Math Competence Based on Structural and Functional Properties of the Human Brain. J Cogn Neurosci 2023; 35:1212-1228. [PMID: 37172121 DOI: 10.1162/jocn_a_02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally.
Collapse
|
6
|
Waisman I, Brunner C, Grabner RH, Leikin M, Leikin R. (Lack of) neural efficiency related to general giftedness and mathematical excellence: An EEG study. Neuropsychologia 2023; 179:108448. [PMID: 36528220 DOI: 10.1016/j.neuropsychologia.2022.108448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Previous studies on intelligence have demonstrated that higher abilities are associated with lower brain activation, indicating a higher neural efficiency. In other words, more able individuals use fewer brain resources. However, it is unclear whether the neural efficiency phenomenon also appears for mathematical performance, which is influenced by both domain-general giftedness and domain-specific competencies. Therefore, this study examined the effects of general giftedness (G) and excellence in mathematics (EM) on performance and brain activation while solving learning-based mathematical tasks that required translation from graphical to symbolic representations of functions. Overall, 118 high school students (aged 16-18) participated in the present study and were divided according to G and EM using a 2 × 2 study design. Participants worked on a function task requiring translation between symbolic and graphical representations of functions. Analyses of the behavioral data revealed positive effects of both G and EM on the accuracy of solutions and an interaction effect of both factors on reaction times, reflecting a positive effect of EM only among the gifted individuals. EEG analyses focused on oscillatory activity in the theta and alpha frequency bands and showed a significant effect of EM in the upper alpha band (10-12 Hz) event-related desynchronization (ERD) for both graphical and symbolic representations. Specifically, higher (compared to lower) EM was associated with a larger alpha ERD, indicating a higher level of brain activity. This stands in contrast with the neural efficiency phenomenon. These findings suggest that the neural efficiency phenomenon cannot be generalized to higher-order mathematical demands in high-performing individuals. Several explanations for this limitation are offered.
Collapse
Affiliation(s)
- Ilana Waisman
- Faculty of Education, RANGE Center, University of Haifa, Israel.
| | | | | | - Mark Leikin
- Faculty of Education, RANGE Center, University of Haifa, Israel
| | - Roza Leikin
- Faculty of Education, RANGE Center, University of Haifa, Israel.
| |
Collapse
|
7
|
Shi L, Dong L, Zhao W, Tan D. Improving middle school students' geometry problem solving ability through hands-on experience: An fNIRS study. Front Psychol 2023; 14:1126047. [PMID: 36959998 PMCID: PMC10028175 DOI: 10.3389/fpsyg.2023.1126047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Hands-on learning is proposed as a prerequisite for mathematics learning in kindergarten and primary school. However, it remains unclear that whether hands-on experience aids understanding of geometry knowledge for middle school students. We also know little about the neural basis underlying the value of hands-on experience in math education. In this study, 40 right-handed Chinese students (20 boys and 20 girls) with different academic levels were selected from 126 seventh-grade students in the same school, who learnt "Axisymmetric of an Isosceles Triangle" in different learning style (hands-on operation vs. video observation). Half of them operated the concrete manipulatives while the other half watched the instructional videos. The learning-test paradigm and functional near-infrared spectroscopy (fNIRS) technique were used to compare the differences in geometry reasoning involved in solving well-structured problems and ill-structured problems. Behavioral results showed that hands-on experience promoted students' performances of geometry problem-solving. Students with lower academic level were more dependent on hands-on experience than those with higher academic level. The fNIRS results showed that meaningful hands-on experience with concrete manipulatives related to learning contents increased reactivation of the somatosensory association cortex during subsequent reasoning, which helped to improve the problem-solving performance. Hands-on experience also reduced students' cognitive load during the well-structured problem-solving process. These findings contribute to better understand the value of hands-on experience in geometry learning and the implications for future mathematics classroom practices.
Collapse
Affiliation(s)
- Licheng Shi
- School of Education Science, Nantong University, Nantong, China
| | - Linwei Dong
- Jiangsu Institute of Education Sciences, Nanjing, China
| | - Weikun Zhao
- Yulong Road Experimental School, Yancheng, China
| | - Dingliang Tan
- School of Education Science, Nanjing Normal University, Nanjing, China
- *Correspondence: Dingliang Tan,
| |
Collapse
|
8
|
Andin J, Elwér Å, Mäki‐Torkko E. Arithmetic in the signing brain: Differences and similarities in arithmetic processing between deaf signers and hearing non-signers. J Neurosci Res 2023; 101:172-195. [PMID: 36259315 PMCID: PMC9828253 DOI: 10.1002/jnr.25138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 01/12/2023]
Abstract
Deaf signers and hearing non-signers have previously been shown to recruit partially different brain regions during simple arithmetic. In light of the triple code model, the differences were interpreted as relating to stronger recruitment of the verbal system of numerical processing, that is, left angular and inferior frontal gyrus, in hearing non-signers, and of the quantity system of numerical processing, that is, right horizontal intraparietal sulcus, for deaf signers. The main aim of the present study was to better understand similarities and differences in the neural correlates supporting arithmetic in deaf compared to hearing individuals. Twenty-nine adult deaf signers and 29 hearing non-signers were enrolled in an functional magnetic resonance imaging study of simple and difficult subtraction and multiplication. Brain imaging data were analyzed using whole-brain analysis, region of interest analysis, and functional connectivity analysis. Although the groups were matched on age, gender, and nonverbal intelligence, the deaf group performed generally poorer than the hearing group in arithmetic. Nevertheless, we found generally similar networks to be involved for both groups, the only exception being the involvement of the left inferior frontal gyrus. This region was activated significantly stronger for the hearing compared to the deaf group but showed stronger functional connectivity with the left superior temporal gyrus in the deaf, compared to the hearing, group. These results lend no support to increased recruitment of the quantity system in deaf signers. Perhaps the reason for performance differences is to be found in other brain regions not included in the original triple code model.
Collapse
Affiliation(s)
- Josefine Andin
- Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden
| | - Åsa Elwér
- Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden
| | - Elina Mäki‐Torkko
- Audiological Research Center, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| |
Collapse
|
9
|
Huang B, Liu X, Wang Y, Li H, Si J, Wang D, Afzal K. Is the Discount Really Favorable? The Effect of Numeracy on Price Magnitude Judgment: Evidence From Electroencephalography. Front Neurosci 2022; 16:817450. [PMID: 35769701 PMCID: PMC9234211 DOI: 10.3389/fnins.2022.817450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Attractive price promotion will induce an unreasonable willingness to purchase, especially through shopping. However, it is not clear how numeracy, one of the essential abilities for understanding and applying numbers, influences the process of purchase judgment. In total, 61 participants were recruited to perform a price promotion task using electroencephalography. The results showed that consumers with low numeracy performed worse than their peers with high numeracy at the behavioral level, and they also had lower P3b amplitude and less alpha desynchronization, regardless of price promotion frameworks. These findings provided evidence on the processing of price information and provided further insights into how numeracy impacts price magnitude judgment.
Collapse
Affiliation(s)
| | | | | | | | - Jiwei Si
- School of Psychology, Shandong Normal University, Jinan, China
| | | | | |
Collapse
|
10
|
Predicting Math Ability Using Working Memory, Number Sense, and Neurophysiology in Children and Adults. Brain Sci 2022; 12:brainsci12050550. [PMID: 35624937 PMCID: PMC9139259 DOI: 10.3390/brainsci12050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Previous work has shown relations between domain-general processes, domain-specific processes, and mathematical ability. However, the underlying neurophysiological effects of mathematical ability are less clear. Recent evidence highlighted the potential role of beta oscillations in mathematical ability. Here we investigate whether domain-general (working memory) and domain-specific (number sense) processes mediate the relation between resting-state beta oscillations and mathematical ability, and how this may differ as a function of development (children vs. adults). We compared a traditional analysis method normally used in EEG studies with a more recently developed parameterization method that separates periodic from aperiodic activity. Regardless of methods chosen, we found no support for mediation of working memory and number sense, neither for children nor for adults. However, we found subtle differences between the methods. Additionally, we showed that the traditional EEG analysis method conflates periodic activity with aperiodic activity; in addition, the latter is strongly related to mathematical ability and this relation differs between children and adults. At the cognitive level, our findings do not support previous suggestions of a mediation of working memory and number sense. At the neurophysiological level our findings suggest that aperiodic, rather than periodic, activity is linked to mathematical ability as a function of development.
Collapse
|
11
|
Yeung MK, Chu VW. Viewing neurovascular coupling through the lens of combined EEG-fNIRS: A systematic review of current methods. Psychophysiology 2022; 59:e14054. [PMID: 35357703 DOI: 10.1111/psyp.14054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Neurovascular coupling is a key physiological mechanism that occurs in the healthy human brain, and understanding this process has implications for understanding the aging and neuropsychiatric populations. Combined electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) has emerged as a promising, noninvasive tool for probing neurovascular interactions in humans. However, the utility of this approach critically depends on the methodological quality used for multimodal integration. Despite a growing number of combined EEG-fNIRS applications reported in recent years, the methodological rigor of past studies remains unclear, limiting the accurate interpretation of reported findings and hindering the translational application of this multimodal approach. To fill this knowledge gap, we critically evaluated various methodological aspects of previous combined EEG-fNIRS studies performed in healthy individuals. A literature search was conducted using PubMed and PsycINFO on June 28, 2021. Studies involving concurrent EEG and fNIRS measurements in awake and healthy individuals were selected. After screening and eligibility assessment, 96 studies were included in the methodological evaluation. Specifically, we critically reviewed various aspects of participant sampling, experimental design, signal acquisition, data preprocessing, outcome selection, data analysis, and results presentation reported in these studies. Altogether, we identified several notable strengths and limitations of the existing EEG-fNIRS literature. In light of these limitations and the features of combined EEG-fNIRS, recommendations are made to improve and standardize research practices to facilitate the use of combined EEG-fNIRS when studying healthy neurovascular coupling processes and alterations in neurovascular coupling among various populations.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Vivian W Chu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
12
|
Gilmore N, Yücel MA, Li X, Boas DA, Kiran S. Investigating Language and Domain-General Processing in Neurotypicals and Individuals With Aphasia - A Functional Near-Infrared Spectroscopy Pilot Study. Front Hum Neurosci 2021; 15:728151. [PMID: 34602997 PMCID: PMC8484538 DOI: 10.3389/fnhum.2021.728151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Brain reorganization patterns associated with language recovery after stroke have long been debated. Studying mechanisms of spontaneous and treatment-induced language recovery in post-stroke aphasia requires a network-based approach given the potential for recruitment of perilesional left hemisphere language regions, homologous right hemisphere language regions, and/or spared bilateral domain-general regions. Recent hardware, software, and methodological advances in functional near-infrared spectroscopy (fNIRS) make it well-suited to examine this question. fNIRS is cost-effective with minimal contraindications, making it a robust option to monitor treatment-related brain activation changes over time. Establishing clear activation patterns in neurotypical adults during language and domain-general cognitive processes via fNIRS is an important first step. Some fNIRS studies have investigated key language processes in healthy adults, yet findings are challenging to interpret in the context of methodological limitations. This pilot study used fNIRS to capture brain activation during language and domain-general processing in neurotypicals and individuals with aphasia. These findings will serve as a reference when interpreting treatment-related changes in brain activation patterns in post-stroke aphasia in the future. Twenty-four young healthy controls, seventeen older healthy controls, and six individuals with left hemisphere stroke-induced aphasia completed two language tasks (i.e., semantic feature, picture naming) and one domain-general cognitive task (i.e., arithmetic) twice during fNIRS. The probe covered bilateral frontal, parietal, and temporal lobes and included short-separation detectors for scalp signal nuisance regression. Younger and older healthy controls activated core language regions during semantic feature processing (e.g., left inferior frontal gyrus pars opercularis) and lexical retrieval (e.g., left inferior frontal gyrus pars triangularis) and domain-general regions (e.g., bilateral middle frontal gyri) during hard versus easy arithmetic as expected. Consistent with theories of post-stroke language recovery, individuals with aphasia activated areas outside the traditional networks: left superior frontal gyrus and left supramarginal gyrus during semantic feature judgment; left superior frontal gyrus and right precentral gyrus during picture naming; and left inferior frontal gyrus pars opercularis during arithmetic processing. The preliminary findings in the stroke group highlight the utility of using fNIRS to study language and domain-general processing in aphasia.
Collapse
Affiliation(s)
- Natalie Gilmore
- Department of Speech Language & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Meryem Ayse Yücel
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States
| | - Xinge Li
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States.,Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, United States
| | - David A Boas
- Neurophotonics Center, Biomedical Engineering, Boston University, Boston, MA, United States
| | - Swathi Kiran
- Department of Speech Language & Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
13
|
|
14
|
Veit R, Schag K, Schopf E, Borutta M, Kreutzer J, Ehlis AC, Zipfel S, Giel KE, Preissl H, Kullmann S. Diminished prefrontal cortex activation in patients with binge eating disorder associates with trait impulsivity and improves after impulsivity-focused treatment based on a randomized controlled IMPULS trial. NEUROIMAGE-CLINICAL 2021; 30:102679. [PMID: 34215149 PMCID: PMC8102655 DOI: 10.1016/j.nicl.2021.102679] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023]
Abstract
Persons with binge eating disorder show increased impulsivity. We investigated cognitive control to food cues using fNIRS. Compared to healthy controls, binge eaters show weaker activation of the prefrontal cortex. After behavioral therapy, binge eaters increase prefrontal cortex activation.
Background Behavioral and cognitive control are vital for healthy eating behavior. Patients with binge eating disorder (BED) suffer under recurrent binge eating episodes accompanied by subjective loss of control that results, among other factors, from increased impulsivity. Methods In the current study, we investigated the frontal network using functional near-infrared spectroscopy (fNIRS) during a food specific go/nogo task to assess response inhibition in 24 patients with BED (BMI range 22.6–59.7 kg/m2) compared to 12 healthy controls (HC) (BMI range 20.9–27 kg/m2). Patients with BED were invited to undergo fNIRS measurements before an impulsivity-focused cognitive behavioral group treatment, directly after this treatment and 3 months afterwards. As this was a planned subgroup analysis of the randomized controlled IMPULS trial, patients with BED were randomized either to the treatment group (n = 14) or to a control group (n = 10). The treatment group received 8 weekly sessions of the IMPULS treatment. Results We found a significant response inhibition effect (nogo minus go), in terms of an increased oxygenated hemoglobin response in the bilateral prefrontal cortex in both groups. The greatest response was observed when participants were instructed to go for healthy and withhold their response to unhealthy high caloric food cues. The healthy nogo condition failed to show a significant prefrontal inhibitory response, which was probably related to the task design, as the condition was considered more demanding. BED patients, especially those with higher trait impulsivity, showed a weaker activation of the prefrontal cortex during response inhibition, predominantly in the right hemisphere. Interestingly, three months after the treatment, patients of the treatment group increased their right prefrontal cortex activity during response inhibition. Likewise, increased prefrontal cortex activation correlated with decreased trait impulsivity after treatment. Conclusions Our results suggest that patients with BED have limited resources to activate the prefrontal cortex when asked to inhibit a reaction onto food-specific stimuli. However, this effect could be partly driven by differences in BMI between the HC and BED group. Cognitive-behavioral therapy targeting impulsive eating behavior may improve prefrontal cortex recruitment during response inhibition.
Collapse
Affiliation(s)
- Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Kathrin Schag
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; Center of Excellence for Eating Disorders Tübingen (COMET), Tübingen, Germany
| | - Eric Schopf
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Maike Borutta
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Jann Kreutzer
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; Center of Excellence for Eating Disorders Tübingen (COMET), Tübingen, Germany
| | - Katrin E Giel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany; Center of Excellence for Eating Disorders Tübingen (COMET), Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Germany.
| |
Collapse
|