1
|
Criscuolo A, Schwartze M, Bonetti L, Kotz S. Aging Impacts Basic Auditory and Timing Processes. Eur J Neurosci 2025; 61:e70031. [PMID: 40026217 PMCID: PMC11874193 DOI: 10.1111/ejn.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/10/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Deterioration in the peripheral and central auditory systems is common in older adults and often leads to hearing and speech comprehension difficulties. Even when hearing remains intact, electrophysiological data of older adults frequently exhibit altered neural responses along the auditory pathway, reflected in variability in phase alignment of neural activity to speech sound onsets. However, it remains unclear whether challenges in speech processing in aging stem from more fundamental deficits in auditory and timing processes. Here, we investigated if and how aging individuals encoded temporal regularities in isochronous auditory sequences presented at 1.5Hz, and if they employed adaptive mechanisms of neural phase alignment in anticipation of next sound onsets. We recorded EEG in older and young individuals listening to simple isochronous tone sequences. We show that aging individuals displayed larger event-related neural responses, an increased 1/F slope, but reduced phase-coherence at the stimulation frequency (1.5Hz) and a reduced slope of phase-coherence over time in the delta and theta frequency-bands. These observations suggest altered top-down modulatory inhibition when processing repeated and predictable sounds in a sequence and altered mechanisms of continuous phase-alignment to expected sound onsets in aging. Given that deteriorations in these basic timing capacities may affect other higher-order cognitive processes (e.g., attention, perception, and action), these results underscore the need for future research examining the link between basic timing abilities and general cognition across the lifespan.
Collapse
Affiliation(s)
- Antonio Criscuolo
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Michael Schwartze
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical MedicineAarhus University & the Royal Academy of MusicAalborgDenmark
- Centre for Eudaimonia and Human Flourishing, Linacre CollegeUniversity of OxfordOxfordUK
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Sonja A. Kotz
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
2
|
Yukhnovich EA, Alter K, Sedley W. What Do Mismatch Negativity (MMN) Responses Tell Us About Tinnitus? J Assoc Res Otolaryngol 2025; 26:33-47. [PMID: 39681798 PMCID: PMC11861849 DOI: 10.1007/s10162-024-00970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Due to the heterogeneous causes, symptoms and associated comorbidities with tinnitus, there remains an unmet need for a clear biomarker of tinnitus presence. Previous research has suggested a "final pathway" of tinnitus presence, which occurs regardless of the specific mechanisms that resulted in alterations of auditory predictions and, eventually, tinnitus perception. Predictive inference mechanisms have been proposed as the possible basis for this final unifying pathway. A commonly used measure of prediction violation is mismatch negativity (MMN), an electrical potential generated in response to most stimuli that violate an established regularity. This narrative review discusses 16 studies comparing MMN between tinnitus and non-tinnitus groups. Methods varied considerably, including type of deviant, type of paradigm and carrier frequency. A minority of studies matched groups for age, sex and hearing, with few measuring hyperacusis. Frequency deviants were the most widely studied; at frequencies remote from tinnitus, MMN was consistently smaller in tinnitus groups, though hyperacusis or altered distress or attention could not be ruled out as explanatory factors. Few studies have used tinnitus-related frequencies; these showed larger MMN to upward frequency deviants above the tinnitus frequency, and larger MMN to upward intensity deviants at or close to the tinnitus frequency. However, the latter appears a correlate of hyperacusis rather than tinnitus, and tinnitus groups without hyperacusis instead show larger MMN to downward intensity deviants than controls. Other factors that affect MMN amplitudes included age, attention, and the specific characteristics of the range of stimuli across a particular experiment paradigm. As such, MMN cannot presently be considered a specific biomarker of tinnitus, but showed potential to objectively characterise a number of auditory processing traits relevant to tinnitus and hyperacusis.
Collapse
Affiliation(s)
| | - Kai Alter
- Newcastle University Medical School, Newcastle Upon Tyne, NE2 4HH, UK
- Faculty of Modern and Medieval Languages and Linguistics and the Languages Sciences Interdisciplinary Research Centre, University of Cambridge, Cambridge, UK
| | - William Sedley
- Newcastle University Medical School, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
3
|
Kangas ES, Li X, Vuoriainen E, Lindeman S, Astikainen P. Intensity dependence of auditory evoked potentials distinguish participants with unmedicated depression from non-depressed controls. Eur J Neurosci 2024; 60:6440-6469. [PMID: 39401940 DOI: 10.1111/ejn.16569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Depression is a heterogeneous syndrome that impacts an individual's emotional, social, cognitive and bodily functioning. Depression is associated with biases in emotional processing, but alterations in basic sensory processing have received less attention in depression research. Here, we measured event-related potentials (ERPs) in response to changes in the intensity of auditory stimuli and the location of somatosensory stimuli in participants with depression and in non-depressed control participants. We tested whether auditory mismatch negativity, P3a or N1 intensity dependence response or somatosensory mismatch response, P3a, P50 or N80 can dissociate depressed participants and non-depressed controls, and we also analysed the effects of depression medication and age in this sample. N1 intensity dependence response was increased in unmedicated depressed participants relative to non-depressed controls. When age was controlled for in the analysis, the effect of depression was only at a trend level. N1 intensity dependence response correlated with depression severity at the whole sample level. We did not observe any depression-related alterations in auditory mismatch negativity or P3a or somatosensory ERPs. Our results may reflect an association between the N1 intensity dependence response and altered neurotransmitter activity in depression, but this should be confirmed in future studies.
Collapse
Affiliation(s)
- Elina S Kangas
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Xueqiao Li
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| | - Elisa Vuoriainen
- Human Information Processing Laboratory, Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Sari Lindeman
- Wellbeing Services County of Central Finland, Jyväskylä, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Piia Astikainen
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
4
|
Zelger P, Seebacher J, Graf S, Rossi S. Is it too loud? Ask your brain! Neuroimage 2024; 299:120796. [PMID: 39153523 DOI: 10.1016/j.neuroimage.2024.120796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
PURPOSE In this study, the objectification of the subjective perception of loudness was investigated using electroencephalography (EEG). In particular, the emergence of objective markers in the domain of the acoustic discomfort threshold was examined. METHODS A cohort of 27 adults with normal hearing, aged between 18 and 30, participated in the study. The participants were presented with 500 ms long noise stimuli via in-ear headphones. The acoustic signals were presented with sound levels of [55, 65, 75, 85, 95 dB]. After each stimulus, the subjects provided their subjective assessment of the perceived loudness using a colored scale on a touchscreen. EEG signals were recorded, and afterward, event-related potentials (ERPs) locked to sound onset were analyzed. RESULTS Our findings reveal a linear dependency between the N100 component and both the sound level and the subjective loudness categorization of the sound. Additionally, the data demonstrated a nonlinear relationship between the P300 potential and the sound level as well as for the subjective loudness rating. The P300 potential was elicited exclusively when the stimuli had been subjectively rated as "very loud" or "too loud". CONCLUSION The findings of the present study suggest the possibility of the identification of the subjective uncomfortable loudness level by objective neural parameters.
Collapse
Affiliation(s)
- Philipp Zelger
- University Hospital for Hearing, Speech & Voice Disorders, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria; ICONE - Innsbruck Cognitive Neuroscience, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Josef Seebacher
- University Hospital for Hearing, Speech & Voice Disorders, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Simone Graf
- University Hospital for Hearing, Speech & Voice Disorders, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Sonja Rossi
- University Hospital for Hearing, Speech & Voice Disorders, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria; ICONE - Innsbruck Cognitive Neuroscience, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| |
Collapse
|
5
|
Wei G, Tian X, Yang H, Luo Y, Liu G, Sun S, Wang X, Wen H. Adjunct Methods for Alzheimer's Disease Detection: A Review of Auditory Evoked Potentials. J Alzheimers Dis 2024; 97:1503-1517. [PMID: 38277292 DOI: 10.3233/jad-230822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The auditory afferent pathway as a clinical marker of Alzheimer's disease (AD) has sparked interest in investigating the relationship between age-related hearing loss (ARHL) and AD. Given the earlier onset of ARHL compared to cognitive impairment caused by AD, there is a growing emphasis on early diagnosis and intervention to postpone or prevent the progression from ARHL to AD. In this context, auditory evoked potentials (AEPs) have emerged as a widely used objective auditory electrophysiological technique for both the clinical diagnosis and animal experimentation in ARHL due to their non-invasive and repeatable nature. This review focuses on the application of AEPs in AD detection and the auditory nerve system corresponding to different latencies of AEPs. Our objective was to establish AEPs as a systematic and non-invasive adjunct method for enhancing the diagnostic accuracy of AD. The success of AEPs in the early detection and prediction of AD in research settings underscores the need for further clinical application and study.
Collapse
Affiliation(s)
- Guoliang Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yinpei Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guisong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shuqing Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, School of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Pesonen H, Strömmer J, Li X, Parkkari J, Tarkka IM, Astikainen P. Magnetoencephalography reveals impaired sensory gating and change detection in older adults in the somatosensory system. Neuropsychologia 2023; 190:108702. [PMID: 37838067 DOI: 10.1016/j.neuropsychologia.2023.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/31/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Brain electrophysiological responses can provide information about age-related decline in sensory-cognitive functions with high temporal accuracy. Studies have revealed impairments in early sensory gating and pre-attentive change detection mechanisms in older adults, but no magnetoencephalographic (MEG) studies have been undertaken into both non-attentive and attentive somatosensory functions and their relationship to ageing. Magnetoencephalography was utilized to record cortical somatosensory brain responses in young (20-28 yrs), middle-aged (46-56 yrs), and older adults (64-78 yrs) under active and passive somatosensory oddball conditions. A repeated standard stimulus was occasionally replaced by a deviant stimulus (p = .1), which was an electrical pulse on a different finger. We examined the amplitudes of M50 and M100 responses reflecting sensory gating, and later components reflecting change detection and attention shifting (M190 and M250 for the passive condition, and M200 and M350 for the active condition, respectively). Spatiotemporal cluster-based permutation tests revealed that older adults had significantly larger M100 component amplitudes than young adults for task-irrelevant stimuli in both passive and active condition. Older adults also showed a reduced M250 component and an altered M350 in response to deviant stimuli. The responses of middle-aged adults did not differ from those of younger adults, but this study should be repeated with a larger sample size. By demonstrating changes in both somatosensory gating and attentional shifting mechanisms, our findings extend previous research on the effects of ageing on pre-attentive and attentive brain functions.
Collapse
Affiliation(s)
- Heidi Pesonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Juho Strömmer
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Xueqiao Li
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Jari Parkkari
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Piia Astikainen
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
7
|
Haumann NT, Petersen B, Vuust P, Brattico E. Age differences in central auditory system responses to naturalistic music. Biol Psychol 2023; 179:108566. [PMID: 37086903 DOI: 10.1016/j.biopsycho.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Aging influences the central auditory system leading to difficulties in the decoding and understanding of overlapping sound signals, such as speech in noise or polyphonic music. Studies on central auditory system evoked responses (ERs) have found in older compared to young listeners increased amplitudes (less inhibition) of the P1 and N1 and decreased amplitudes of the P2, mismatch negativity (MMN), and P3a responses. While preceding research has focused on simplified auditory stimuli, we here tested whether the previously observed age-related differences could be replicated with sounds embedded in medium and highly naturalistic musical contexts. Older (age 55-77 years) and younger adults (age 21-31 years) listened to medium naturalistic (synthesized melody) and highly naturalistic (studio recording of a music piece) stimuli. For the medium naturalistic music, the age group differences on the P1, N1, P2, MMN, and P3a amplitudes were all replicated. The age group differences, however, appeared reduced with the highly compared to the medium naturalistic music. The finding of lower P2 amplitude in older than young was replicated for slow event rates (0.3-2.9Hz) in the highly naturalistic music. Moreover, the ER latencies suggested a gradual slowing of the auditory processing time course for highly compared to medium naturalistic stimuli irrespective of age. These results support that age-related differences on ERs can partly be observed with naturalistic stimuli. This opens new avenues for including naturalistic stimuli in the investigation of age-related central auditory system disorders.
Collapse
Affiliation(s)
- Niels Trusbak Haumann
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark.
| | - Bjørn Petersen
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music, Aarhus/Aalborg, Universitetsbyen 3, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Neural responses to sensory novelty with and without conscious access. Neuroimage 2022; 262:119516. [PMID: 35931308 DOI: 10.1016/j.neuroimage.2022.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Detection of novel stimuli that violate statistical regularities in the sensory scene is of paramount importance for the survival of biological organisms. Event-related potentials, phasic increases in pupil size, and evoked changes in oscillatory power have been proposed as markers of sensory novelty detection. However, how conscious access to novelty modulates these different brain responses is not well understood. Here, we studied the neural responses to sensory novelty in the auditory modality with and without conscious access. We identified individual thresholds for conscious auditory discrimination and presented to our participants sequences of tones, where the last stimulus could be another standard, a subthreshold target or a suprathreshold target. Participants were instructed to report whether the last tone of each sequence was the same or different from those preceding it. Results indicate that attentional orientation to behaviorally relevant stimuli and overt decision-making mechanisms, indexed by the P3 event-related response and reaction times, best predict whether a novel stimulus will be consciously accessed. Theta power and pupil size do not predict conscious access to novelty, but instead reflect information maintenance and unexpected sensory uncertainty. These results highlight the interplay between bottom-up and top-down mechanisms and how the brain weights neural responses to novelty and uncertainty during perception and goal-directed behavior.
Collapse
|
9
|
Kangas ES, Vuoriainen E, Lindeman S, Astikainen P. Auditory event-related potentials in separating patients with depressive disorders and non-depressed controls: A narrative review. Int J Psychophysiol 2022; 179:119-142. [PMID: 35839902 DOI: 10.1016/j.ijpsycho.2022.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
This narrative review brings together the findings regarding the differences in the auditory event-related potentials (ERPs) between patients with depressive disorder and non-depressed control subjects. These studies' results can inform us of the possible alterations in sensory-cognitive processing in depressive disorders and the potential of using these ERPs in clinical applications. Auditory P3, mismatch negativity (MMN) and loudness dependence of auditory evoked potentials (LDAEP) were the subjects of the investigation. A search in PubMed yielded 84 studies. The findings of the reviewed studies were not highly consistent, but some patterns could be identified. For auditory P3b, the common findings were attenuated amplitude and prolonged latency among depressed patients. Regarding auditory MMN, especially the amplitude of duration deviance MMN was commonly attenuated, and the amplitude of frequency deviance MMN was increased in depressed patients. In LDAEP studies, generally, no differences between depressed patients and non-depressed controls were reported, although some group differences concerning specific depression subtypes were found. This review posits that future research should investigate whether certain stimulus conditions are particularly efficient at separating depressed and non-depressed participant groups. Future studies should contrast responses in different subpopulations of depressed patients, as well as different clinical groups (e.g., depressive disorder and anxiety disorder patients), to investigate the specificity of the auditory ERP alterations for depressive disorders.
Collapse
Affiliation(s)
- Elina S Kangas
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland.
| | - Elisa Vuoriainen
- Human Information Processing Laboratory, Faculty of Social Sciences / Psychology, Tampere University, Tampere, Finland
| | - Sari Lindeman
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Central Finland Health Care District, Jyväskylä, Finland
| | - Piia Astikainen
- Department of Psychology, University of Jyvaskyla, Jyväskylä, Finland
| |
Collapse
|
10
|
Barry RJ, De Blasio FM, Rushby JA, MacDonald B, Fogarty JS, Cave AE. Stimulus intensity effects and sequential processing in the passive auditory ERP. Int J Psychophysiol 2022; 176:149-163. [DOI: 10.1016/j.ijpsycho.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
|
11
|
Fatima Shad K, Soubra W, Cordato DJ. The Auditory Afferent Pathway as a Clinical Marker of Alzheimer's Disease. J Alzheimers Dis 2021; 85:47-53. [PMID: 34776450 DOI: 10.3233/jad-215206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Brain stem neural tracts and nuclei may be disturbed prior to observable neuronal atrophy in AD. In this perspective, we discuss the notion of functional deficits presenting prior to structural abnormalities in Alzheimer's disease (AD). Imaging of inferior colliculi using magnetic resonance spectroscopy (MRS) shows significant decrease in the neuronal markers, N acetyl aspartate/creatine ratio and increase in the glial marker myo-Inositol, in subjects with Mini-Mental State Examination scores greater than 24 and with no signs of atrophy in their MRI of the medial temporal lobe. Abnormalities in components of the auditory event-related potentials (ERPs) are described in cognitive impairment including AD. We observed a significant decrease in amplitude and increase in latency during the first 10 ms of auditory evoked potentials measured on electroencephalography (EEG) indicating slow auditory response of the brainstem. EEG spectral power recorded at the cortex is also associated with neural activity at the level of the inferior colliculi. We postulate that a functional examination of auditory afferent pathways, using non-invasive techniques, such as MRS, brain stem auditory evoked potentials (BAEPs) and ERPs may improve diagnostic accuracy of AD. Functional changes precede structural changes and it is important to further understand the relationship between biochemical and electrophysiological measures such as MRS, BAEPs and EEG.
Collapse
Affiliation(s)
- Kaneez Fatima Shad
- School of Life Sciences, University of Technology Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Wissam Soubra
- A Healthy Step Clinic, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Dennis John Cordato
- Department of Neurophysiology, Liverpool Hospital, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
12
|
Todd J, Yeark MD, Paton B, Jermyn A, Winkler I. Shorter Contextual Timescale Rather Than Memory Deficit in Aging. Cereb Cortex 2021; 32:2412-2423. [PMID: 34564713 DOI: 10.1093/cercor/bhab344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Many aspects of cognitive ability and brain function that change as we age look like deficits on account of measurable differences in comparison to younger adult groups. One such difference occurs in auditory sensory responses that index perceptual learning. Meta-analytic findings show reliable age-related differences in auditory responses to repetitive patterns of sound and to rare violations of those patterns, variously attributed to deficits in auditory sensory memory and inhibition. Here, we determine whether proposed deficits would render older adults less prone to primacy effects, robustly observed in young adults, which present as a tendency for first learning to have a disproportionate influence over later perceptual inference. The results confirm this reduced sensitivity to primacy effects but do not support impairment in auditory sensory memory as the origin of this difference. Instead, the aging brain produces data consistent with shorter timescales of contextual reference. In conclusion, age-related differences observed previously for perceptual inference appear highly context-specific necessitating reconsideration of whether and to what function the notion of deficit should be attributed, and even whether the notion of deficit is appropriate at all.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW 2308, USA
| | - Mattsen D Yeark
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW 2308, USA
| | - Bryan Paton
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW 2308, USA
| | - Alexandra Jermyn
- School of Psychology, University of Newcastle, University Drive, Callaghan, NSW 2308, USA
| | - István Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| |
Collapse
|
13
|
Mismatch negativity in patients with major depressive disorder: A meta-analysis. Clin Neurophysiol 2021; 132:2654-2665. [PMID: 34456164 DOI: 10.1016/j.clinph.2021.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Deficits of mismatch negativity (MMN), a general index of echoic memory function, have been documented in patients with schizophrenia. However, it remains controversial whether patients with major depressive disorder (MDD) demonstrate MMN defects compared with healthy controls (HC). METHODS After screening 41 potential studies identified in PubMed and Medline, 13 studies consisting of 343 HC and 339 patients with MDD were included in the present meta-analysis. The effect sizes (Hedges's g) with a random-effect and inverse-variance weighted model were estimated for the MMN amplitudes and latencies. The effects of different deviant types (i.e., frequency and duration) and of different illness stages (i.e., acute and chronic) on MMN were also examined. RESULTS We found that 1) MMN amplitudes (g = 1.273, p < 0.001) and latencies (g = 0.303, p = 0.027) to duration, but not frequency deviants, were significantly impaired in patients with MDD compared to HC; 2), acute patients exhibited lower MMN amplitudes (g = 1.735, p < 0.001) and prolonged MMN latencies (g = 0.461, p = 0.007) for the duration deviants compared to HC. Only the attenuated duration MMN amplitudes were detected in patients with chronic MDD (g = 0.822, p = 0.027); and 3) depressive symptoms did not significantly correlate with MMN responses. CONCLUSIONS Patients with MDD demonstrated abnormal MMN responses to duration deviants compared to HC. SIGNIFICANCE Duration MMN may constitute an electrophysiological indicator to differentiate HC from patients with MDD, particularly those in the acute stage.
Collapse
|
14
|
Kangas ES, Vuoriainen E, Li X, Lyyra P, Astikainen P. Somatosensory Deviance Detection ERPs and Their Relationship to Analogous Auditory ERPs and Interoceptive Accuracy. J PSYCHOPHYSIOL 2021. [DOI: 10.1027/0269-8803/a000288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Automatic deviance detection has been widely explored in terms of mismatch responses (mismatch negativity or mismatch response) and P3a components of event-related potentials (ERPs) under a predictive coding framework; however, the somatosensory mismatch response has been investigated less often regarding the different types of changes than its auditory counterpart. It is not known whether the deviance detection responses from different modalities correlate, reflecting a general prediction error mechanism of the central nervous system. Furthermore, interoceptive functions have been associated with predictive coding theory, but whether interoceptive accuracy correlates with deviance detection brain responses has rarely been investigated. Here, we measured ERPs to changes in somatosensory stimuli’s location and intensity and in sound intensity in healthy adults ( n = 34). Interoceptive accuracy was measured with a heartbeat discrimination task, where participants indicated whether their heartbeats were simultaneous or non-simultaneous with sound stimuli. We found a mismatch response and a P3a response to somatosensory location and auditory intensity changes, but for somatosensory intensity changes, only a P3a response was found. Unexpectedly, there were neither correlations between the somatosensory location deviance and intensity deviance brain responses nor between auditory and somatosensory brain responses. In addition, the brain responses did not correlate with interoceptive accuracy. The results suggest that although deviance detection in the auditory and somatosensory modalities are likely based on similar neural mechanisms at a cellular level, their ERP indexes do not indicate a linear association in sensitivity for deviance detection between the modalities. Furthermore, although sensory deviance detection and interoceptive detection are both associated with predictive coding functions, under these experimental settings, functional relationships were not observed. These results should be taken into account in the future development of theories related to human sensory functions and in extensions of the predictive coding theory in particular.
Collapse
Affiliation(s)
| | - Elisa Vuoriainen
- Human Information Processing Laboratory, Faculty of Social Sciences/Psychology, Tampere University, Finland
| | - Xueqiao Li
- Department of Psychology, University of Jyvaskyla, Finland
| | - Pessi Lyyra
- Department of Psychology, University of Jyvaskyla, Finland
| | | |
Collapse
|
15
|
The Mediating Effects of Coping Style on the Effects of Breath Count Mindfulness Training on Depressive Symptoms among International Students in China. Neural Plast 2020; 2020:8859251. [PMID: 32908488 PMCID: PMC7474765 DOI: 10.1155/2020/8859251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mindfulness training has gained popularity in the scientific field and has been proposed as an efficient way for emotional regulation. Mindfulness-based cognitive therapy (MBCT) is designed especially for depressive people in reducing risk of depression relapse and is recommended in national guidelines as a treatment choice for relapse prevention in recurrent depression. The aim of the current study was to investigate the effects of mindfulness training on depressive symptoms of international students and probe into the mediating role of mindfulness in stressful events and depression. In addition, we introduced a new kind of mindfulness training, the breathing exercise-based mindfulness training, which is based on the integration of Buddhism and Daoism. Self-report questionnaires assessing the coping style, abnormal depressive behavior, and stressful live events were completed in 260 international students in China (mean age = 21.4 years). The results showed that (1) many international students showed depression symptoms, (2) stressful life events play a completely mediating role in the initiation of depression and anxiety, and (3) mindfulness training for 8 weeks significantly reduced the depressive symptoms, and it was also related to a positive coping style. This study has certain theoretical significance in exploring the mechanism of the occurrence and development of depression among international students and provides useful tools for this special group of international students. In addition, the international students can also learn Chinese culture through the training. These findings indicate that mindfulness training and positive coping style are interrelated with treating depressive symptoms for international students.
Collapse
|
16
|
Francis AM, Knott VJ, Labelle A, Fisher DJ. Interaction of Background Noise and Auditory Hallucinations on Phonemic Mismatch Negativity (MMN) and P3a Processing in Schizophrenia. Front Psychiatry 2020; 11:540738. [PMID: 33093834 PMCID: PMC7523538 DOI: 10.3389/fpsyt.2020.540738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Auditory hallucinations (AHs) are among the cardinal symptoms of schizophrenia (SZ). During the presence of AHs aberrant activity of auditory cortices have been observed, including hyperactivation during AHs alone and hypoactivation when AHs are accompanied by a concurrent external auditory competitor. Mismatch negativity (MMN) and P3a are common ERPs of interest within the study of SZ as they are robustly reduced in the chronic phase of the illness. The present study aimed to explore whether background noise altered the auditory MMN and P3a in those with SZ and treatment-resistant AHs. METHODS MMN and P3a were assessed in 12 hallucinating patients (HPs), 11 non-hallucinating patients (NPs) and 9 healthy controls (HCs) within an auditory oddball paradigm. Standard (P = 0.85) and deviant (P = 0.15) stimuli were presented during three noise conditions: silence (SL), traffic noise (TN), and wide-band white noise (WN). RESULTS HPs showed significantly greater deficits in MMN amplitude relative to NPs in all background noise conditions, though predominantly at central electrodes. Conversely, both NPs and HPs exhibited significant deficits in P3a amplitude relative to HCs under the SL condition only. SIGNIFICANCE These findings suggest that the presence of AHs may specifically impair the MMN, while the P3a appears to be more generally impaired in SZ. That MMN amplitudes are specifically reduced for HPs during background noise conditions suggests HPs may have a harder time detecting changes in phonemic sounds during situations with external traffic or "real-world" noise compared to NPs.
Collapse
Affiliation(s)
- Ashley M Francis
- Department of Psychology, Saint Mary's University, Halifax, NS, Canada
| | - Verner J Knott
- Royal Ottawa Mental Health Centre, Ottawa, ON, Canada.,Department of Psychology, Carleton University, Ottawa, ON, Canada
| | - Alain Labelle
- Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Derek J Fisher
- Department of Psychology, Saint Mary's University, Halifax, NS, Canada.,Royal Ottawa Mental Health Centre, Ottawa, ON, Canada.,Department of Psychology, Carleton University, Ottawa, ON, Canada.,Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| |
Collapse
|