1
|
Yuk K, Lim J, Kim S, Kim TY, Moon HY. Exploring the effects of aerobic and resistance exercise on mood-related symptoms and EEG activity. Front Hum Neurosci 2025; 19:1562702. [PMID: 40225840 PMCID: PMC11985855 DOI: 10.3389/fnhum.2025.1562702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Anxiety and depression are psychiatric disorders that have a deleterious effect on human mental health. Meanwhile, various forms of exercise have been demonstrated to have beneficial effects on the reduction of symptoms of anxiety and depression. However, the disparate effects of each exercise on mood symptoms remain to be elucidated. This research examines the different effects of each type of exercise on mood symptoms and electroencephalography (EEG) activity. Methods Accordingly, subjects engaged in six weeks of aerobic and resistance exercises with a 3-week washout period between each intervention. The Score of Hospital Anxiety and Depression Scale (HADS) was employed to assess the severity of both anxiety and depression. For the purposes of EEG analysis, we calculated the values of theta/beta ratio (TBR), Higuchi Fractal Dimension (HFD), and frontal alpha asymmetry (FAA). Results Both types of exercise resulted in the alleviation of both anxiety and depression. Notably, aerobic exercise significantly decreased the score of HADS-A (anxiety), while resistance exercise significantly improved HADS-D (depression). In the context of EEG analysis, a significant decrease of TBR in the left frontal region was observed after aerobic exercise. Discussion Therefore, these findings emphasize the importance of personalized exercise strategies for those suffering from anxiety and depression. Furthermore, further investigation into the impact of exercise on brain wave activities associated with anxiety and depression are needed.
Collapse
Affiliation(s)
- Kihoon Yuk
- Department of Physical Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Jawon Lim
- Department of Physical Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Sangyun Kim
- Department of Physical Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Tae Yeon Kim
- Department of Physical Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Institute of Aging, Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Boere K, Copithorne F, Krigolson OE. The impact of a two-hour endurance run on brain activity monitored over 24 h. Exp Brain Res 2025; 243:101. [PMID: 40126627 DOI: 10.1007/s00221-025-07056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Acute exercise has been shown to enhance cognitive abilities, particularly those governed by the prefrontal cortex, such as executive function. However, the effects of prolonged exercise on cognition and brain activity, especially over extended recovery periods, remain underexplored. This pilot study investigated the effects of two hours of moderate-intensity running on oscillatory brain activity and working memory performance, monitored across a 24-hour recovery period-an interval not previously studied. Using electroencephalography (EEG) and a 2-back task, resting-state brain activity and task-specific frontal theta power were assessed. While task accuracy and reaction times showed no significant changes, frontal theta power increased one hour post-exercise, reflecting heightened cognitive effort. Resting-state EEG demonstrated a sustained increase in high-alpha power, which persisted until the 24-hour mark and indicated cortical recovery processes. While limited by the lack of a control group, these findings suggest that prolonged moderate-intensity exercise may elicit complex and delayed neurophysiological responses, supporting recovery and neural resilience in trained individuals. Therefore, our research offers new insights into the interplay between exercise, cognition, and recovery, with implications for optimizing performance in physically demanding contexts.
Collapse
Affiliation(s)
- Katherine Boere
- The University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada.
| | - Frances Copithorne
- The University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | - Olave E Krigolson
- The University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
3
|
Park J, Ho RLM, Wang WE, Chiu SY, Shin YS, Coombes SA. Age-related changes in neural oscillations vary as a function of brain region and frequency band. Front Aging Neurosci 2025; 17:1488811. [PMID: 40040743 PMCID: PMC11876397 DOI: 10.3389/fnagi.2025.1488811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Advanced aging is associated with robust changes in neural activity. In addition to the well-established age-related slowing of the peak alpha frequency, there is a growing body of evidence showing that older age is also associated with changes in alpha power and beta power. Despite the important progress that has been made, the interacting effects of age and frequency band have not been directly tested in sensor and source space while controlling for aperiodic components. In the current study we address these limitations. We recruited 54 healthy younger and older adults and measured neural oscillations using a high-density electroencephalogram (EEG) system during resting-state with eyes closed. After preprocessing the EEG data and controlling for aperiodic components, we computed alpha and beta power in both sensor and source space. Permutation two-way ANOVAs between frequency band and age group were performed across all electrodes and across all dipoles. Our findings revealed significant interactions in sensorimotor, parietal, and occipital regions. The pattern driving the interaction varied across regions, with older age associated with a progressive decrease in alpha power and a progressive increase in beta power from parietal to sensorimotor regions. Our findings demonstrate that age-related changes in neural oscillations vary as a function of brain region and frequency band. We interpret our findings in the context of clinical and preclinical evidence of age effects on the cholinergic circuit and the Cortico-Basal Ganglia-Thalamo-Cortical (CBGTC) circuit.
Collapse
Affiliation(s)
- Jinhan Park
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rachel L. M. Ho
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Wei-en Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Shannon Y. Chiu
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Young Seon Shin
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Stephen A. Coombes
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Franco-García JM, Pérez-Gómez J, Castillo-Paredes A, Redondo PC, Rojo-Ramos J, Mayordomo-Pinilla N, Villafaina S, Gómez-Álvaro MC, Melo-Alonso M, Carlos-Vivas J. Effects of Twelve Weeks of Square Stepping Exercises on Physical and Cognitive Function and Plasma Content of SMP30: A Randomised Control Trial. Geriatrics (Basel) 2025; 10:22. [PMID: 39997521 PMCID: PMC11855813 DOI: 10.3390/geriatrics10010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Ageing and sedentary lifestyles affect physical and cognitive function and markers of frailty, increasing the risk of falls in older adults and affecting their quality of life. The aim of this study was to evaluate the effects of a Square Step Exercise programme on physical and cognitive function and plasma SMP30 levels for the prevention of falls in older adults. METHODS A randomised controlled trial was designed with 44 participants assigned to an experimental group (SSE group) and a control group. The SSE group performed SSE sessions twice a week for three months, with a follow-up in the fourth month. The assessments of physical function included tests such as the Four-Square Step Test, Brisk Walking and its dual-task variant, Time Up and Go and its imagined and dual-task variants, 30 s Sit-to-Stand and its dual-task and imagined variants and a 6 min walking test. Questionnaires were also used to assess the risk and fear of falling. Resting EEG activity was also recorded to assess electrocortical brain activity. SMP30 levels were measured by Western blotting. RESULTS The SSE group showed significant improvements compared to the control group in the Four-Square Step Test (p < 0.001), Brisk Walking (p < 0.05) and reduction in the fear of falling (p < 0.001) after the training programme, but these adaptations were not maintained one month after the programme ended (p < 0.05). No significant changes were observed in the remaining variables of physical function, cognitive function, fall risk questionnaire, EEG activity or plasma levels of SMP30 compared to the control group (p > 0.05). CONCLUSIONS The SSE programme showed efficacy in improving balance, gait speed and reducing fear of falling in older adults but did not show improvement over the control group in other areas of physical or cognitive function or plasma SMP30 levels for fall prevention.
Collapse
Affiliation(s)
- Juan Manuel Franco-García
- Health, Economy, Motricity and Education (HEME) Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (J.M.F.-G.); (J.P.-G.)
| | - Jorge Pérez-Gómez
- Health, Economy, Motricity and Education (HEME) Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain; (J.M.F.-G.); (J.P.-G.)
| | - Antonio Castillo-Paredes
- Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de Las Américas, Santiago 8370040, Chile
| | - Pedro Cosme Redondo
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain;
| | - Jorge Rojo-Ramos
- Promoting a Healthy Society Research Group (PHeSO), Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain;
| | - Noelia Mayordomo-Pinilla
- BioErgon Research Group, Faculty of Sports Sciences, University of Extremadura, 10003 Cáceres, Spain;
| | - Santos Villafaina
- Grupo de Investigación en Actividad Física, Calidad de Vida y Salud (AFYCAV), Departamento de Didáctica de la Expresión Musical, Plástica y Corporal, Facultad de Ciencias del Deporte, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain; (S.V.); (M.C.G.-Á.); (M.M.-A.)
| | - Mari Carmen Gómez-Álvaro
- Grupo de Investigación en Actividad Física, Calidad de Vida y Salud (AFYCAV), Departamento de Didáctica de la Expresión Musical, Plástica y Corporal, Facultad de Ciencias del Deporte, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain; (S.V.); (M.C.G.-Á.); (M.M.-A.)
| | - Maria Melo-Alonso
- Grupo de Investigación en Actividad Física, Calidad de Vida y Salud (AFYCAV), Departamento de Didáctica de la Expresión Musical, Plástica y Corporal, Facultad de Ciencias del Deporte, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain; (S.V.); (M.C.G.-Á.); (M.M.-A.)
| | - Jorge Carlos-Vivas
- Physical Activity for Education, Performance and Health (PAEPH) Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain;
| |
Collapse
|
5
|
Braunsmann L, Beermann F, Strüder HK, Abeln V. Self-selected versus imposed running intensity and the acute effects on mood, cognition, and (a)periodic brain activity. Cogn Neurodyn 2024; 18:2221-2241. [PMID: 39555283 PMCID: PMC11564500 DOI: 10.1007/s11571-024-10084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 11/19/2024] Open
Abstract
The beneficial psychological effects of exercise might be explained by self-determination theory and autonomy. However, the underlying neurophysiological mechanisms are even less elucidated. Previously neglected, aperiodic (1/f) brain activity is suggested to indicate enhanced cortical inhibition when the slope is steeper. This is thought to be associated with an increased cognitive performance. Therefore, we hypothesize that running with a self-selected intensity and thus given autonomy leads to stronger neural inhibition accompanied by psychological improvements. Twenty-nine runners performed two 30-min runs. First, they chose their individual feel-good intensity (self-selected run; SR). After a 4-weeks washout, the same speed was blindly prescribed (imposed run; IR). Acute effects on mood (Feeling Scale, Felt Arousal Scale, MoodMeter®), cognition (d2-R, digit span test) and electrocortical activity (slope, offset, 1/f-corrected alpha and low beta band) were analyzed before and after the runs. Both runs had an equal physical workload and improved mood in the Felt Arousal Scale, but not in the Feeling Scale or MoodMeter®. Cognitive performance improved after both runs in the d2-R, while it remained stable in the digit span test after SR, but decreased after IR. After running, the aperiodic slope was steeper, and the offset was reduced. Alpha activity increased after SR only, while low beta activity decreased after both conditions. The aperiodic features partially correlated with mood and cognition. SR was not clearly superior regarding psychological effects. Reduced aperiodic brain activity indicates enhanced neural inhibition after both runs. The 1/f-corrected alpha band may emphasize a different neural processing between both runs. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10084-2.
Collapse
Affiliation(s)
- Leonard Braunsmann
- Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| | - Finja Beermann
- Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | - Heiko K. Strüder
- Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| | - Vera Abeln
- Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| |
Collapse
|
6
|
Scaramuzzi GF, Spina AC, Manippa V, Amico F, Cornacchia E, Palmisano A, Scianatico G, Buscombe R, Avery R, Thoma V, Rivolta D. Darts fast-learning reduces theta power but is not affected by Hf-tRNS: A behavioral and electrophysiological investigation. Brain Res 2024; 1846:149249. [PMID: 39313166 DOI: 10.1016/j.brainres.2024.149249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Sports trainers have recently shown increasing interest in innovative methods, including transcranial electric stimulation, to enhance motor performance and boost the acquisition of new skills during training. However, studies on the effectiveness of these tools on fast visuomotor learning and brain activity are still limited. In this randomized single-blind, sham-controlled, between-subjects study, we investigated whether a single training session, either coupled or not with 2 mA online high-frequency transcranial random noise stimulation (hf-tRNS) over the bilateral primary motor cortex (M1), would affect dart-throwing performance (i.e., radial error, arm range of motion, and movement variability) in 37 healthy volunteers. In addition, potential neurophysiological correlates were monitored before and after the training through a 32-electrode portable electroencephalogram (EEG). Results revealed that a single training session improved radial error and arm range of motion during the dart-throwing task, but not movement variability. Furthermore, after the training, resting state-EEG data showed a decrease in theta power. Radial error, arm movement, and EEG were not further modulated by hf-tRNS. This indicates that a single training session, regardless of hf-tRNS administration, improves dart-throwing precision and movement accuracy. However, it does not improve movement variability, which might require multiple training sessions (expertise resulting in slow learning). Theta power decrease could describe a more efficient use of cognitive resources (i.e., attention and visuomotor skills) due to the fast dart-throwing learning. Further research could explore different sports by applying longer stimulation protocols and evaluating other EEG variables to enhance our understanding of the lasting impacts of multi-session hf-tRNS on the sensorimotor cortex within the framework of slow learning and training assistance.
Collapse
Affiliation(s)
| | - Anna Concetta Spina
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy
| | - Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy.
| | - Francesca Amico
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy
| | - Ester Cornacchia
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy
| | - Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Gaetano Scianatico
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy
| | - Richard Buscombe
- Department of Applied Sport and Exercise Sciences, School of Health, Sport and Bioscience, University of East London, University Way, London E16 2RD, United Kingdom
| | - Richard Avery
- Department of Applied Sport and Exercise Sciences, School of Health, Sport and Bioscience, University of East London, University Way, London E16 2RD, United Kingdom
| | - Volker Thoma
- Department of Psychological Sciences, School of Psychology, University of East London, United Kingdom
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, 70122 Bari, Italy
| |
Collapse
|
7
|
Millard SK, Speis DB, Skippen P, Chiang AKI, Chang WJ, Lin AJ, Furman AJ, Mazaheri A, Seminowicz DA, Schabrun SM. Can non-invasive brain stimulation modulate peak alpha frequency in the human brain? A systematic review and meta-analysis. Eur J Neurosci 2024; 60:4182-4200. [PMID: 38779808 DOI: 10.1111/ejn.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Peak alpha frequency (PAF), the dominant oscillatory frequency within the alpha range (8-12 Hz), is associated with cognitive function and several neurological conditions, including chronic pain. Manipulating PAF could offer valuable insight into the relationship between PAF and various functions and conditions, potentially providing new treatment avenues. This systematic review aimed to comprehensively synthesise effects of non-invasive brain stimulation (NIBS) on PAF speed. Relevant studies assessing PAF pre- and post-NIBS in healthy adults were identified through systematic searches of electronic databases (Embase, PubMed, PsychINFO, Scopus, The Cochrane Library) and trial registers. The Cochrane risk-of-bias tool was employed for assessing study quality. Quantitative analysis was conducted through pairwise meta-analysis when possible; otherwise, qualitative synthesis was performed. The review protocol was registered with PROSPERO (CRD42020190512) and the Open Science Framework (https://osf.io/2yaxz/). Eleven NIBS studies were included, all with a low risk-of-bias, comprising seven transcranial alternating current stimulation (tACS), three repetitive transcranial magnetic stimulation (rTMS), and one transcranial direct current stimulation (tDCS) study. Meta-analysis of active tACS conditions (eight conditions from five studies) revealed no significant effects on PAF (mean difference [MD] = -0.12, 95% CI = -0.32 to 0.08, p = 0.24). Qualitative synthesis provided no evidence that tDCS altered PAF and moderate evidence for transient increases in PAF with 10 Hz rTMS. However, it is crucial to note that small sample sizes were used, there was substantial variation in stimulation protocols, and most studies did not specifically target PAF alteration. Further studies are needed to determine NIBS's potential for modulating PAF.
Collapse
Affiliation(s)
- Samantha K Millard
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales (UNSW), Kensington, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Darrah B Speis
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
| | - Patrick Skippen
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Alan K I Chiang
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales (UNSW), Kensington, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- School of Health Science, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J Lin
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ali Mazaheri
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| | - David A Seminowicz
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Siobhan M Schabrun
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- School of Physical Therapy, University of Western Ontario, London, Ontario, Canada
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Ontario, Canada
| |
Collapse
|
8
|
Bange M, Herz DM, Ciolac D, Gonzalez-Escamilla G, Groppa S. Modifying the progression of Parkinson's disease through movement interventions: multimodal quantification of underlying mechanisms. Neural Regen Res 2024; 19:1651-1652. [PMID: 38103225 PMCID: PMC10960283 DOI: 10.4103/1673-5374.389633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Manuel Bange
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Damian Marc Herz
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
9
|
Moussiopoulou J, Handrack‐Bonnet M, Pross B, Pogarell O, Keeser D, Halle M, Falkai P, Scherr J, Hasan A, Roeh A. Comparative electroencephalography analysis: Marathon runners during tapering versus sedentary controls reveals no significant differences. Brain Behav 2024; 14:e3480. [PMID: 38680019 PMCID: PMC11056696 DOI: 10.1002/brb3.3480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
INTRODUCTION Previous studies described various adaptive neuroplastic brain changes associated with physical activity (PA). EEG studies focused mostly on effects during or shortly after short bouts of exercise. This is the first study to investigate the capability of EEG to display PA-induced long-lasting plasticity in runners compared to a sedentary control group. METHODS Thirty trained runners and 30 age- and sex-matched sedentary controls (SC) were included as a subpopulation of the ReCaP (Running effects on Cognition and Plasticity) study. PA was measured with the International Physical Activity Questionnaire (IPAQ). Resting-state EEG of the runners was recorded in the tapering phase of the training for the Munich marathon 2017. Power spectrum analyses were conducted using standardized low-resolution electromagnetic tomography (sLORETA) and included the following frequency bands: delta: 1.5-6 Hz, theta: 6.5-8.0 Hz, alpha1: 8.5-10 Hz, alpha2: 10.5-12.0 Hz, beta1: 12.5-18.0 Hz, beta2: 18.5-21.0 Hz, beta3: 21.5-30.0 Hz, and total power (1.5-30 Hz). RESULTS PA (IPAQ) and BMI differed significantly between the groups. The other included demographic parameters were comparable. Statistical nonparametric mapping showed no significant power differences in EEG between the groups. DISCUSSION Heterogeneity in study protocols, especially in time intervals between exercise cessation and EEG recordings and juxtaposition of acute exercise-induced effects on EEG in previous studies, could be possible reasons for the differences in results. Future studies should record EEG at different time points after exercise cessation and in a broader spectrum of exercise intensities and forms to further explore the capability of EEG in displaying long-term exercise-induced plasticity.
Collapse
Affiliation(s)
- J. Moussiopoulou
- Department of Psychiatry and PsychotherapyLMU University Hospital, LMU MunichMunichGermany
| | - M. Handrack‐Bonnet
- Department of Psychiatry and PsychotherapyLMU University Hospital, LMU MunichMunichGermany
| | - B. Pross
- Department of Psychiatry and PsychotherapyLMU University Hospital, LMU MunichMunichGermany
- Medical Faculty, Department of Psychiatry, Psychotherapy and Psychosomatics, Bezirkskrankenhaus AugsburgUniversity of AugsburgAugsburgGermany
| | - O. Pogarell
- Department of Psychiatry and PsychotherapyLMU University Hospital, LMU MunichMunichGermany
| | - D. Keeser
- Department of Psychiatry and PsychotherapyLMU University Hospital, LMU MunichMunichGermany
| | - M. Halle
- Department of Prevention and Sports MedicineKlinikum rechts der Isar, Technische Universitaet MuenchenMunichGermany
- Partner Site Munich Heart AllianceDeutsches Zentrum für Herz‐ und Kreislauf‐Forschung (DZHK) e.V. (German Center for Cardiovascular Research)MunichGermany
| | - P. Falkai
- Department of Psychiatry and PsychotherapyLMU University Hospital, LMU MunichMunichGermany
| | - J. Scherr
- Department of Prevention and Sports MedicineKlinikum rechts der Isar, Technische Universitaet MuenchenMunichGermany
- University Center for Preventive and Sports Medicine, Balgrist University Hospital, University of ZurichZurichSwitzerland
| | - A. Hasan
- Medical Faculty, Department of Psychiatry, Psychotherapy and Psychosomatics, Bezirkskrankenhaus AugsburgUniversity of AugsburgAugsburgGermany
| | - A. Roeh
- Medical Faculty, Department of Psychiatry, Psychotherapy and Psychosomatics, Bezirkskrankenhaus AugsburgUniversity of AugsburgAugsburgGermany
| |
Collapse
|
10
|
Ammar A, Boujelbane MA, Simak ML, Fraile-Fuente I, Rizzi N, Washif JA, Zmijewski P, Jahrami H, Schöllhorn WI. Unveiling the acute neurophysiological responses to strength training: An exploratory study on novices performing weightlifting bouts with different motor learning models. Biol Sport 2024; 41:249-274. [PMID: 38524821 PMCID: PMC10955729 DOI: 10.5114/biolsport.2024.133481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 03/26/2024] Open
Abstract
Currently, there is limited evidence regarding various neurophysiological responses to strength exercise and the influence of the adopted practice schedule. This study aimed to assess the acute systemic effects of snatch training bouts, employing different motor learning models, on skill efficiency, electric brain activity (EEG), heart rate variability (HRV), and perceived exertion as well as mental demand in novices. In a within-subject design, sixteen highly active males (mean age: 23.13 ± 2.09 years) randomly performed snatch learning bouts consisting of 36 trials using repetitive learning (RL), contextual interference (blocked, CIb; and serial, CIs), and differential learning (DL) models. Spontaneous resting EEG and HRV activities were recorded at PRE and POST training bouts while measuring heart rate. Perceived exertion and mental demand were assessed immediately after, and barbell kinematics were recorded during three power snatch trials performed following the POST measurement. The results showed increases in alpha, beta, and gamma frequencies from pre- to post-training bouts in the majority of the tested brain regions (p values ranging from < 0.0001 to 0.02). The CIb model exhibited increased frequencies in more regions. Resting time domain HRV parameters were altered following the snatch bouts, with increased HR (p < 0.001) and decreased RR interval (p < 0.001), SDNN, and RMSSD (p values ranging from < 0.0001 to 0.02). DL showed more pronounced pulse-related changes (p = 0.01). Significant changes in HRV frequency domain parameters were observed, with a significant increase in LFn (p = 0.03) and a decrease in HFn (p = 0.001) registered only in the DL model. Elevated HR zones (> HR zone 3) were more dominant in the DL model during the snatch bouts (effect size = 0.5). Similarly, the DL model tended to exhibit higher perceived physical (effect size = 0.5) and mental exertions (effect size = 0.6). Despite the highest psycho-physiological response, the DL group showed one of the fewest significant EEG changes. There was no significant advantage of one learning model over the other in terms of technical efficiency. These findings offer preliminary support for the acute neurophysiological benefits of coordination-strength-based exercise in novices, particularly when employing a DL model. The advantages of combining EEG and HRV measurements for comprehensive monitoring and understanding of potential adaptations are also highlighted. However, further studies encompassing a broader range of coordination-strength-based exercises are warranted to corroborate these observations.
Collapse
Affiliation(s)
- Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), UFR STAPS (Faculty of Sport Sciences), UPL, Paris Nanterre University, Nanterre, France
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine of Sfax,University of Sfax, Sfax 3029, Tunisia
- High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Mohamed Ali Boujelbane
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Tunisia
- Research Unit: “Physical Activity, Sport, and Health”, UR18JS01, National Observatory of Sport, Tunis 1003, Tunisia
| | - Marvin Leonard Simak
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irene Fraile-Fuente
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nikolas Rizzi
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jad Adrian Washif
- Sports Performance Division, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Piotr Zmijewski
- Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland
| | - Haitham Jahrami
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
- Government Hospitals, Manama, Kingdom of Bahrain
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Looser VN, Gerber M, Ludyga S. Physical activity and verbal memory performance: Mediating effects of resting-state brain activity. PROGRESS IN BRAIN RESEARCH 2024; 286:33-66. [PMID: 38876578 DOI: 10.1016/bs.pbr.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Verbal short-term and long-term memory are crucial neuropsychological functions involved in core cognitive abilities. They constitute vital components of subjective well-being and academic achievement. To date, there is limited research on the association between regular physical activity and memory abilities during young adulthood. The Individual Alpha Peak Frequency (IAPF) contributes to various cognitive abilities and also appears to be sensitive to physical activity. Consequently, the IAPF has the potential to underlie the association between physical activity and verbal memory. We examined the direct relation of physical activity and verbal memory, and the potential indirect relation via IAPF in young adults. Regular physical activity was assessed via accelerometry on seven consecutive days in 115 participants (N=115, 48% female) aged 18-35 years (M=24.1, SD=3.8). In addition, verbal memory performance was assessed using an immediate and delayed free-recall task. Brain activity during rest was recorded with EEG, and IAPF was extracted for mediation analyses. Path analysis revealed pronounced sex differences in the association between physical activity, IAPF, and verbal memory performance. Exclusively in female participants, higher vigorous physical activity levels were associated with better recall performance. In contrast, no association of physical activity and memory was found in male participants. However, being more physically active was related to a higher IAPF exclusively in male participants. Physical activity shows differential associations between IAPF and verbal memory in male and female participants. However, the lack of a mediating role of IAPF suggests that this neurophysiological marker cannot explain these specific associations in young adults.
Collapse
Affiliation(s)
- Vera Nina Looser
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland.
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Sebastian Ludyga
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Peier F, Mouthon M, De Pretto M, Chabwine JN. Response to experimental cold-induced pain discloses a resistant category among endurance athletes, with a distinct profile of pain-related behavior and GABAergic EEG markers: a case-control preliminary study. Front Neurosci 2024; 17:1287233. [PMID: 38287989 PMCID: PMC10822956 DOI: 10.3389/fnins.2023.1287233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Pain is a major public health problem worldwide, with a high rate of treatment failure. Among promising non-pharmacological therapies, physical exercise is an attractive, cheap, accessible and innocuous method; beyond other health benefits. However, its highly variable therapeutic effect and incompletely understood underlying mechanisms (plausibly involving the GABAergic neurotransmission) require further research. This case-control study aimed to investigate the impact of long-lasting intensive endurance sport practice (≥7 h/week for the last 6 months at the time of the experiment) on the response to experimental cold-induced pain (as a suitable chronic pain model), assuming that highly trained individual would better resist to pain, develop advantageous pain-copying strategies and enhance their GABAergic signaling. For this purpose, clinical pain-related data, response to a cold-pressor test and high-density EEG high (Hβ) and low beta (Lβ) oscillations were documented. Among 27 athletes and 27 age-adjusted non-trained controls (right-handed males), a category of highly pain-resistant participants (mostly athletes, 48.1%) was identified, displaying lower fear of pain, compared to non-resistant non-athletes. Furthermore, they tolerated longer cold-water immersion and perceived lower maximal sensory pain. However, while having similar Hβ and Lβ powers at baseline, they exhibited a reduction between cold and pain perceptions and between pain threshold and tolerance (respectively -60% and - 6.6%; -179.5% and - 5.9%; normalized differences), in contrast to the increase noticed in non-resistant non-athletes (+21% and + 14%; +23.3% and + 13.6% respectively). Our results suggest a beneficial effect of long-lasting physical exercise on resistance to pain and pain-related behaviors, and a modification in brain GABAergic signaling. In light of the current knowledge, we propose that the GABAergic neurotransmission could display multifaceted changes to be differently interpreted, depending on the training profile and on the homeostatic setting (e.g., in pain-free versus chronic pain conditions). Despite limitations related to the sample size and to absence of direct observations under acute physical exercise, this precursory study brings into light the unique profile of resistant individuals (probably favored by training) allowing highly informative observation on physical exercise-induced analgesia and paving the way for future clinical translation. Further characterizing pain-resistant individuals would open avenues for a targeted and physiologically informed pain management.
Collapse
Affiliation(s)
- Franziska Peier
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael De Pretto
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Neurology Division, Department of Internal Medicine, Fribourg-Cantonal Hospital, Fribourg, Switzerland
| |
Collapse
|
13
|
Li L, Wang P, Li S, Zhao Q, Yin Z, Guan W, Chen S, Wang X, Liao J. Construction of a resting EEG-based depression recognition model for college students and possible mechanisms of action of different types of exercise. BMC Psychiatry 2023; 23:849. [PMID: 37974123 PMCID: PMC10655461 DOI: 10.1186/s12888-023-05352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVES To investigate the method of resting EEG assessment of depressive symptoms in college students and to clarify the relationship between physical activity level and depressive symptoms in college students. METHODS Using a cross-sectional study design, 140 current full-time college students were recruited to complete the Self-Rating Depression Scale and the International Physical Activity Questionnaire, and 10-min resting EEGs were obtained. RESULTS 1) The power values of δ and α2 in the central (C3, C4) and parietal (P3, P4) regions of depressed college students were significantly higher than those of normal college students. And the degree of lateralization of δ, θ, α1, and α2 in the prefrontal regions (F3, F4) of depressed college students was significantly higher than that of normal college students (all P < 0. 008). 2) The recall rate of the depression recognition model for college students based on resting EEG was 66.67%, the precision was 65.05%, and the AUCs of the training group and validation group were 0.791 and 0.786, respectively, with better detection effects. 3) The two indicators, δ (C3 + C4) and α1 (F4-F3), are significantly correlated with IPAQ scores, and among college students who engage in ball games most commonly, those with a higher level of physical activity have lower δ (C3 + C4) and higher α1 (F4-F3), while among those who engage in resistance training most commonly, higher levels of physical activity are associated with lower δ (C3 + C4). CONCLUSION The resting EEG of depressed college students has a certain specificity that can objectively assess the risk of developing depressive symptoms in college students. Physical activity is associated with abnormal EEG signals of depressive symptoms. Different types of physical activity may modulate the relationship between physical activity levels and EEG indicators.
Collapse
Affiliation(s)
- Lili Li
- Department of Physical Education, Shanghai University of Engineering Science, Shanghai, China
| | - Peng Wang
- Shanghai University of Sport, Shanghai, China
| | - Shufan Li
- Shanghai University of Sport, Shanghai, China
| | - Qun Zhao
- Department of Physical Education, Donghua University, Shanghai, China
| | | | - Wei Guan
- Shanghai University of Sport, Shanghai, China
| | | | - Xing Wang
- Shanghai University of Sport, Shanghai, China
| | - Jinlin Liao
- College of Physical Education and Health, Longyan University, Longyan, China.
| |
Collapse
|
14
|
O'Neil-Pirozzi TM, Cappon DB, Pascual-Leone A. Adherence to cognitive and physical exercise engagement: a challenge to successful dementia risk reduction and prevention efforts. FRONTIERS IN DEMENTIA 2023; 2:1254986. [PMID: 39081974 PMCID: PMC11285648 DOI: 10.3389/frdem.2023.1254986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/10/2023] [Indexed: 08/02/2024]
Abstract
With human life expectancy and proportion of older adults increasing, global use of evidence-supported preventative methods to minimize risk of brain-related disabilities such as Alzheimer's disease and other dementias-as well as interventions to slow rate of disease progression-is important. Sustained engagement in cognitive and physical exercise programs may prevent or delay dementia onset as well as maximize health and function of those with dementia. Despite awareness of the importance of cognitive and physical exercise to brain health, exercise program adherence by older adults is extremely challenging. In this Perspective article, we summarize what is known about contributors to exercise program adherence and strategies to promote it. We discuss our viewpoint on knowledge gaps regarding exercise adherence and research that needs to be conducted. We conclude by proposing a multi-dimensional exercise adherence assessment framework that includes portable neurophysiologic technologies to inform initial design and updating of individualized exercise programs that optimize sustained exercise program engagement and, ultimately, maximize brain health in older adults with and without mild cognitive impairment and dementia.
Collapse
Affiliation(s)
- Therese M. O'Neil-Pirozzi
- Cognitive-Community Integration Lab, Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Davide B. Cappon
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Deanna and Sidney Wolk Center for Memory Health at Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a La UAB, Badalona, Spain
| |
Collapse
|
15
|
Liu Y, Dong X, Huo H, Feng L, Tong D, Liu J, Zhang H, Zheng Y, Wang S, Wang D. Effects of programmed flexor-extensor alternating electrical acupoint stimulation on upper limb motor functional reconstruction after stroke: study protocol for a double-blind, randomized controlled trial. Trials 2023; 24:324. [PMID: 37170159 PMCID: PMC10174617 DOI: 10.1186/s13063-023-07283-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Stroke's prevalence and morbidity are increasing (Guano, et al. Neuro 89:53-61, 2017), and limb motor dysfunction is left in most patients (Gittler, et al. JAMA 319:820-821, 2018). Particularly, the rehabilitation of upper limbs is more difficult and time-consuming (Borges, et al. The Cochrane database of systematic reviews 10:CD011887, 2018). METHODS A double-blind randomized controlled trial (RCT) will be conducted to investigate whether a new functional electrical stimulation (FES) combined with acupoint therapy is more effective in the rehabilitation of upper limb motor dysfunction after stroke. Patients who meet the inclusion criteria will be randomly divided into two groups: programmed flexor-extensor alternating electrical acupoint stimulation group (PES group) and conventional flexor-extensor alternating electrical acupoint stimulation group (CES group), which will be treated for 3 weeks. The primary outcome measures are electroencephalogram (EEG) and surface electromyogram (sEMG). The secondary outcome variables include MBI (modified Barthel index), China Stroke Scale (CSS), FMA-U (Fugl-Meyer assessment upper limb), MMT (manual muscle testing), and Brunnstrom. DISCUSSION The results of this study are expected to verify the efficacy of PES therapy in the rehabilitation of upper limb motor function after stroke. This may promote the widespread use of the therapy in hospitals, communities, and homes for early and continuous treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT05333497. Registered on April 11, 2022.
Collapse
Affiliation(s)
- Yang Liu
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Xu Dong
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Hong Huo
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Liyuan Feng
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China
| | - Dan Tong
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Jiahui Liu
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Hongyan Zhang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Yingkang Zheng
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Shuai Wang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China
| | - Dongyan Wang
- Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Xiangfang District, Harbin, People's Republic of China.
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Nangang District, No. 105 AshiheRoad, Harbin, People's Republic of China.
| |
Collapse
|
16
|
Zhang Y, Ke L, Ma X, Di Q. Impact of ground-level ozone exposure on sleep quality and electroencephalogram patterns at different time scales. ENVIRONMENTAL RESEARCH 2023; 218:115025. [PMID: 36502906 DOI: 10.1016/j.envres.2022.115025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Ozone exposure is associated with various adverse health outcomes, but its impact on sleep quality is uncertain. Here we assessed the causal effect of long-term (yearly and monthly) exposure to ozone on nocturnal workday sleep time in a national representative sample from the China Family Panel Study, using a difference-in-differences approach. We further followed ninety healthy Chinese young adults four times in four seasons from September 2020 to June 2021, measured their daily sleep architecture using accelerometers, ascertained daily ozone exposure, recorded 5-min eye-closed resting-state electroencephalogram (EEG) signals at the last day of each one-week-long measurement session, and explored the effect of ozone exposure on objectively-measured sleep architecture. In the national sample, we found that every 1 interquartile range (IQR) μg/m3 increase in yearly and monthly ozone exposure was causally associated with 7.31 (p = 0.0039) and 4.19 (p = 0.040) minutes decline in nocturnal workday sleep time; the dose-response curve represented a quasi-linear pattern with no safety threshold, and plateaued at higher concentrations. In the small-scale study with objectively-measured sleep architecture, we found that every 1 IQR μg/m3 increase in the weekly ozone exposure was associated with 5.33 min decrease in night-time total sleep time (p = 0.031), 1.63 percentage points decrease in sleep efficiency (p < 0.001), 1.99 min increase in sleep latency (p = 0.0070), and 5.34 min increase in wake after sleep onset time (p = 0.0016) in a quasi-linear pattern. Notably, we found the accumulating trend of ozone exposure on sleep quality during both the short-term and long-term periods. We also found that short-term ozone exposure was associated with altered EEG patterns, mediated by sleep quality. This study indicates that long-term and short-term ozone exposures have negative and accumulating impacts on sleep quality and might impair brain functioning. More hidden health burdens of ozone are worth exploring.
Collapse
Affiliation(s)
- Yao Zhang
- Soochow College, Soochow University, Suzhou, 215006, China; Division of Sports Science & Physical Education, Tsinghua University, Beijing, 100084, China.
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing, 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China; Institute for Healthy China, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Domingos C, Marôco JL, Miranda M, Silva C, Melo X, Borrego C. Repeatability of Brain Activity as Measured by a 32-Channel EEG System during Resistance Exercise in Healthy Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1992. [PMID: 36767358 PMCID: PMC9914944 DOI: 10.3390/ijerph20031992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Electroencephalography (EEG) is attracting increasing attention in the sports and exercise fields, as it provides insights into brain behavior during specific tasks. However, it remains unclear if the promising wireless EEG caps provide reliable results despite the artifacts associated with head movement. The present study aims to evaluate the repeatability of brain activity as measured by a wireless 32-channel EEG system (EMOTIV flex cap) during resistance exercises in 18 apparently healthy but physically inactive young adults (10 men and 8 women). Moderate-intensity leg press exercises are performed with two evaluations with 48 h. between. This intensity allows enough time for data analysis while reducing unnecessary but involuntary head movements. Repeated measurements of EEG during the resistance exercise show high repeatability in all frequency bands, with excellent ICCs (>0.90) and bias close to zero, regardless of sex. These results suggest that a 32-channel wireless EEG system can be used to collect data on controlled resistance exercise tasks performed at moderate intensities. Future studies should replicate these results with a bigger sample size and different resistance exercises and intensities.
Collapse
Affiliation(s)
- Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| | - João Luís Marôco
- Exercise and Health Sciences Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Marco Miranda
- Department of Physics, Instituto Superior Técnico, University of Lisbon, 1749-016 Lisbon, Portugal
- Department of Bioengineering, LaSEEB-Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Carlos Silva
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| | - Xavier Melo
- Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, 1496-751 Oeiras, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Caparica, 2829-511 Almada, Portugal
| | - Carla Borrego
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413 Rio Maior, Portugal
| |
Collapse
|
18
|
Jia D, Xu Y. Effects of an 8-week Baduanjin intervention combined with low-carbohydrates diet among overweight people who struggle with drug addiction. Front Public Health 2022; 10:989519. [PMID: 36339240 PMCID: PMC9633992 DOI: 10.3389/fpubh.2022.989519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Background Prior studies have consistently revealed that a combination of physical activity with caloric restriction results in a reduction in body weight in the general population. Both overweight and drug abuse are risk factors for poor physiological health, and poor mental health has been associated with drug abuse and unhealthy body mass index (BMI). However, the effects of low-carbohydrates diet (LC) combined with mind-body exercise intervention on improving anthropometric characteristics, lipid metabolism, quality of life, and craving among overweight people who struggle with drug addiction have yet to be clarified. Methods Fifty-four eligible male patients were randomly assigned to the control group (CON; n = 18), the Baduanjin intervention group (BA, 60 min × 5 times/week, 8 weeks; n = 18), and the Baduanjin combined with LC intervention group (LC; n = 18). We compared the anthropometric characteristics, blood biochemical parameters, quality of life, and drug craving responses between the three groups at baseline (week 0), week 4, and week 8. Results After repeated measurements in the general linear model, both the BA and LC groups exerted significant effects on decreasing waist circumference, BMI, body weight, hip circumference, body fat percentage, total cholesterol level, and triglyceride level (P < 0.05). There was no significant difference in the HDL-C level observed among the BA and LC groups at 8 weeks (P > 0.05); however, there was an overall upwards trend. A significant change in trends in the quality of life scale score was determined in the three groups (P < 0.001). The three groups showed reductions in visual analog scale score distribution over time (P < 0.05). Conclusions Either Baduanjin or an 8-week Baduanjin combined with LC can significantly reduce anthropometric characteristics and body composition, enhance the quality of life, and reduce craving in overweight/obese patients. Baduanjin combined with LC is particularly effective in improving lipid metabolism.
Collapse
Affiliation(s)
- Dongming Jia
- School of Public Health, Hangzhou Normal University, Hangzhou, China,Zhejiang Police Vocational College, Hangzhou, China
| | - Yuming Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou, China,*Correspondence: Yuming Xu
| |
Collapse
|
19
|
Liou JW, Wang PS, Wu YT, Lee SK, Chang SD, Liou M. ECG Approximate Entropy in the Elderly during Cycling Exercise. SENSORS (BASEL, SWITZERLAND) 2022; 22:5255. [PMID: 35890935 PMCID: PMC9324578 DOI: 10.3390/s22145255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Approximate entropy (ApEn) is used as a nonlinear measure of heart-rate variability (HRV) in the analysis of ECG time-series recordings. Previous studies have reported that HRV can differentiate between frail and pre-frail people. In this study, EEGs and ECGs were recorded from 38 elderly adults while performing a three-stage cycling routine. Before and after cycling stages, 5-min resting-state EEGs (rs-EEGs) and ECGs were also recorded under the eyes-open condition. Applying the K-mean classifier to pre-exercise rs-ECG ApEn values and body weights revealed nine females with EEG power which was far higher than that of the other subjects in all cycling stages. The breathing of those females was more rapid than that of other subjects and their average heart rate was faster. Those females also presented higher degrees of asymmetry in the alpha and theta bands (stronger power levels in the right frontal electrode), indicating stressful responses during the experiment. It appears that EEG delta activity could be used in conjunction with a very low ECG frequency power as a predictor of bursts in the heart rate to facilitate the monitoring of elderly adults at risk of heart failure. A resting ECG ApEn index in conjunction with the subject's weight or BMI is recommended for screening high-risk candidates prior to exercise interventions.
Collapse
Affiliation(s)
- Jiun-Wei Liou
- Department of Electrical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan;
| | - Po-Shan Wang
- Department of Neurology, Municipal Gandau Hospital, Taipei 112, Taiwan;
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Sheng-Kai Lee
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng-Kung University & Academia Sinica, Taipei 701, Taiwan;
| | - Shen-Da Chang
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan;
| | - Michelle Liou
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
20
|
Sato G, Osumi M, Mikami R, Morioka S. Long-term physical therapy for neuropathic pain after cervical spinal cord injury and resting state electroencephalography: a case report. Spinal Cord Ser Cases 2022; 8:41. [PMID: 35397633 PMCID: PMC8994752 DOI: 10.1038/s41394-022-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Neuropathic pain after spinal cord injury is difficult to treat, and it is associated with abnormalities in the function of the thalamus-to-cortex neural circuitry. Aerobic exercise provides immediate improvement in neuropathic pain and is associated with abnormal resting electroencephalography (EEG) findings in patients with spinal cord injury. This study aimed to investigate whether physical therapy, including walking, can improve neuropathic pain and EEG peak alpha frequency (PAF) in the long term in a patient with cervical spinal cord injury. CASE PRESENTATION A 50-year-old man was admitted with a cervical spinal cord insufficiency injury sustained one week prior. The residual height was C5. Neuropathic pain was observed in the fingers bilaterally. A numerical rating scale (NRS) was evaluated to measure the weekly mean and maximum intensities of pain. Resting EEG was measured, and the PAF was calculated. Each time point was evaluated in 2-week intervals from the time of admission, and the rate of change (Δ) of PAF was calculated based on the initial evaluation. Interventions included 18 weeks of standard physical therapy focusing on gait, with additional intensive gait training (4-10 weeks). The NRS scores for the mean and maximum intensities of pain decreased significantly after 6 weeks, and ΔPAF increased significantly after 4 weeks. Improvement in PAF coincided with the start of intensive gait training. DISCUSSION PAF shifts to a high frequency during intensive gait training, suggesting the effectiveness of aerobic exercise. Furthermore, there is a close relationship between PAF, pain, and the quantification of pain changes.
Collapse
Affiliation(s)
- Gosuke Sato
- Neurorehabilitation Research Center, Kio University, Nara, Japan. .,Department of Rehabilitation, Nara Prefecture General Medical Center, Nara, Japan.
| | - Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Ryo Mikami
- Department of Rehabilitation, Nara Prefecture General Rehabilitation Center, Nara, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| |
Collapse
|
21
|
Su WC, Amonkar N, Cleffi C, Srinivasan S, Bhat A. Neural Effects of Physical Activity and Movement Interventions in Individuals With Developmental Disabilities-A Systematic Review. Front Psychiatry 2022; 13:794652. [PMID: 35242063 PMCID: PMC8886122 DOI: 10.3389/fpsyt.2022.794652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023] Open
Abstract
Individuals with developmental disabilities present with perceptuo-motor, social communication, and cognitive impairments that often relate to underlying atypical brain structure and functioning. Physical activity/movement interventions improve behavioral performance of individuals with and without developmental disabilities. Majority of the evidence on potential neural mechanisms explaining the impact of physical activity/movement interventions is based on studies in individuals with typical development; there is a dearth of systematic reviews synthesizing the neural effects of physical activity/movement interventions in individuals with developmental disabilities. In this systematic review, we have gathered evidence on the neural effects of physical activity/movement interventions from 32 papers reporting substantial neural effects and behavioral improvements in individuals with developmental disabilities. Chronic intervention effects (multiple sessions) were greater than acute intervention effects (single session). Specifically, using electroencephalogram, functional magnetic resonance imaging, diffusion tensor imaging, and functional near-infrared spectroscopy, studies found physical activity/movement intervention-related changes in neural activity, indicating normalization of cortical arousal in individuals with attention-deficit /hyperactivity disorder (ADHD), increased social brain connectivity in individuals with autism spectrum disorder (ASD), and more efficient executive functioning processes in individuals with a wide range of other developmental disabilities. Despite promising results, more research is clearly needed in this area with larger sample sizes, using standardized neuroimaging tools/variables, and across multiple diagnoses to further explore the neural mechanisms underlying physical activity/movement interventions and to replicate findings from the present review.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States
| | - Nidhi Amonkar
- Physical Therapy Program, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Corina Cleffi
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States
| | - Sudha Srinivasan
- Physical Therapy Program, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Institute for Health, Intervention, and Policy (InCHIP), University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), University of Connecticut, Storrs, CT, United States
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, United States
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
22
|
Zhang Y, Ke L, Fu Y, Di Q, Ma X. Physical activity attenuates negative effects of short-term exposure to ambient air pollution on cognitive function. ENVIRONMENT INTERNATIONAL 2022; 160:107070. [PMID: 34973588 DOI: 10.1016/j.envint.2021.107070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/02/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND As physical activity benefits brain health whereas air pollution damages it, the cognitive response to these exposures may interact. PURPOSE This study aimed to assess the short-term joint effect of physical activity and air pollution on cognitive function in a panel of healthy young adults. METHODS We followed ninety healthy subjects aged around 22 years from September 2020 to June 2021 and measured their personal exposure to fine particulate matter (PM2.5) (μg/m3) and daily accelerometer-based moderate-to-vigorous physical activity (MVPA) (min/day) in 4 one-week-long sessions over the study period. At the end of each measurement session, we assessed executive function using Stroop color-word test and collected resting-state electroencephalogram (EEG) signals. RESULTS We found short-term PM2.5 exposure damaged executive function (βPM25 = 0.0064, p = 0.039) but physical activity could counterbalance it (βMVPA = -0.0047, p = 0.048), whereby beta-3 wave played as a potential mediating role. MVPA-induced improvement on executive function was larger in polluted air (βMVPA = -0.010, p = 0.035) than that in clean air (βMVPA = -0.003, p = 0.45). To offset the negative effect of air pollution on cognitive function, individuals should do extra 13.6 min MVPA every day for every 10 μg/m3 increase in daily PM2.5. CONCLUSION This study implies that physical activity could be used as a preventive approach to compensate the cognitive damages of air pollution.
Collapse
Affiliation(s)
- Yao Zhang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yingyao Fu
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
EEG as a marker of brain plasticity in clinical applications. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:91-104. [PMID: 35034760 DOI: 10.1016/b978-0-12-819410-2.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neural networks are dynamic, and the brain has the capacity to reorganize itself. This capacity is named neuroplasticity and is fundamental for many processes ranging from learning and adaptation to new environments to the response to brain injuries. Measures of brain plasticity involve several techniques, including neuroimaging and neurophysiology. Electroencephalography, often used together with other techniques, is a common tool for prognostic and diagnostic purposes, and cortical reorganization is reflected by EEG measurements. Changes of power bands in different cortical areas occur with fatigue and in response to training stimuli leading to learning processes. Sleep has a fundamental role in brain plasticity, restoring EEG bands alterations and promoting consolidation of learning. Exercise and physical inactivity have been extensively studied as both strongly impact brain plasticity. Indeed, EEG studies showed the importance of the physical activity to promote learning and the effects of inactivity or microgravity on cortical reorganization to cope with absent or altered sensorimotor stimuli. Finally, this chapter will describe some of the EEG changes as markers of neural plasticity in neurologic conditions, focusing on cerebrovascular and neurodegenerative diseases. In conclusion, neuroplasticity is the fundamental mechanism necessary to ensure adaptation to new stimuli and situations, as part of the dynamicity of life.
Collapse
|
24
|
Musaeus CS, Johansen LB, Hasselbalch S, Beyer N, Høgh P, Siebner HR, Frederiksen KS. Sixteen Weeks of Aerobic Exercise does not Alter Resting-state Connectivity of the Precuneus in Patients with Alzheimer's Disease. Curr Alzheimer Res 2022; 19:171-177. [PMID: 35249488 DOI: 10.2174/1567205019666220304091241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In healthy elderly persons and patients with mild cognitive impairment, physical exercise can increase functional brain connectivity in the default mode network (DMN) measured by restingstate functional magnetic resonance imaging (rs-fMRI). However, no studies have so far investigated the effect of physical exercise on functional resting-state connectivity in the DMN in patients with Alzheimer's disease (AD). OBJECTIVE In a single-blinded randomized controlled trial, we assessed the effects of an aerobic exercise intervention of 16 weeks of physical exercise on DMN connectivity using rs-fMRI in patients with AD. METHODS Forty-five patients were randomly assigned to either a control or exercise group. The exercise group performed 60-min of aerobic exercise three times per week for 16 weeks. All the patients underwent whole-brain rs-fMRI at 3 T, at baseline, and after 16 weeks. Since the posterior cingulate cortex (PCC) and adjacent precuneus constitute a central hub of the DMN, this parietal region was defined as region-ofinterest and used as the seed region for functional connectivity analysis of the rs-fMRI data treating age and gender as covariates. RESULTS Neither seed-based analysis, seeded in the PCC/precuneus region nor ICA-based analyses, focusing on components of the DMN network, showed any exercise-induced changes in functional resting-state connectivity from baseline to follow-up. CONCLUSION 16 weeks of aerobic exercise does not modify functional connectivity of the PCC/precuneus region in patients with AD. A longer intervention may be needed to show the effect of exercise on brain connectivity.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Louise Baruël Johansen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Steen Hasselbalch
- Department of Neurology, Danish Dementia Research Centre (DDRC), University of Copenhagen, Rigshospitalet, Denmark
| | - Nina Beyer
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Høgh
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, Roskilde, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University, Hospital Bispebjerg, Copenhagen, Denmark
| | - Kristian Steen Frederiksen
- Department of Neurology, Danish Dementia Research Centre (DDRC), University of Copenhagen, Rigshospitalet, Denmark
| |
Collapse
|
25
|
Robertson CV, Skein M, Wingfield G, Hunter JR, Miller TD, Hartmann TE. Acute electroencephalography responses during incremental exercise in those with mental illness. Front Psychiatry 2022; 13:1049700. [PMID: 36713924 PMCID: PMC9878313 DOI: 10.3389/fpsyt.2022.1049700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Depression is a mental illness (MI) characterized by a process of behavioral withdrawal whereby people experience symptoms including sadness, anhedonia, demotivation, sleep and appetite change, and cognitive disturbances. Frontal alpha asymmetry (FAA) differs in depressive populations and may signify affective responses, with left FAA corresponding to such aversive or withdrawal type behavior. On an acute basis, exercise is known to positively alter affect and improve depressive symptoms and this has been measured in conjunction with left FAA as a post-exercise measure. It is not yet known if these affective electroencephalography (EEG) responses to exercise occur during exercise or only after completion of an exercise bout. This study therefore aimed to measure EEG responses during exercise in those with MI. MATERIALS AND METHODS Thirty one participants were allocated into one of two groups; those undergoing management of a mental health disorder (MI; N = 19); or reporting as apparently healthy (AH; N = 12). EEG responses at rest and during incremental exercise were measured at the prefrontal cortex (PFC) and the motor cortex (MC). EEG data at PFC left side (F3, F7, FP1), PFC right side (F4, F8, FP2), and MC (C3, Cz, and C4) were analyzed in line with oxygen uptake at rest, 50% of ventilatory threshold (VT) (50% VT) and at VT. RESULTS EEG responses increased with exercise across intensity from rest to 50% VT and to VT in all bandwidths (P < 0.05) for both groups. There were no significant differences in alpha activity responses between groups. Gamma responses in the PFC were significantly higher in MI on the left side compared to AH (P < 0.05). CONCLUSION Alpha activity responses were no different between groups at rest or any exercise intensity. Therefore the alpha activity response previously shown post-exercise was not found during exercise. However, increased PFC gamma activity in the MI group adds to the body of evidence showing increased gamma can differentiate between those with and without MI.
Collapse
Affiliation(s)
- C V Robertson
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - M Skein
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - G Wingfield
- Western NSW Local Health District, Dubbo, NSW, Australia
| | - J R Hunter
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia.,Holsworth Research Initiative, La Trobe University, Bendigo, VIC, Australia
| | - T D Miller
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| | - T E Hartmann
- School of Exercise Science, Sport and Health, Charles Sturt University, Bathurst, NSW, Australia
| |
Collapse
|
26
|
Büchel D, Lehmann T, Sandbakk Ø, Baumeister J. EEG-derived brain graphs are reliable measures for exploring exercise-induced changes in brain networks. Sci Rep 2021; 11:20803. [PMID: 34675312 PMCID: PMC8531386 DOI: 10.1038/s41598-021-00371-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The interaction of acute exercise and the central nervous system evokes increasing interest in interdisciplinary research fields of neuroscience. Novel approaches allow to monitor large-scale brain networks from mobile electroencephalography (EEG) applying graph theory, but it is yet uncertain whether brain graphs extracted after exercise are reliable. We therefore aimed to investigate brain graph reliability extracted from resting state EEG data before and after submaximal exercise twice within one week in male participants. To obtain graph measures, we extracted global small-world-index (SWI), clustering coefficient (CC) and characteristic path length (PL) based on weighted phase leg index (wPLI) and spectral coherence (Coh) calculation. For reliability analysis, Intraclass-Correlation-Coefficient (ICC) and Coefficient of Variation (CoV) were computed for graph measures before (REST) and after POST) exercise. Overall results revealed poor to excellent measures at PRE and good to excellent ICCs at POST in the theta, alpha-1 and alpha-2, beta-1 and beta-2 frequency band. Based on bootstrap-analysis, a positive effect of exercise on reliability of wPLI based measures was observed, while exercise induced a negative effect on reliability of Coh-based graph measures. Findings indicate that brain graphs are a reliable tool to analyze brain networks in exercise contexts, which might be related to the neuroregulating effect of exercise inducing functional connections within the connectome. Relative and absolute reliability demonstrated good to excellent reliability after exercise. Chosen graph measures may not only allow analysis of acute, but also longitudinal studies in exercise-scientific contexts.
Collapse
Affiliation(s)
- Daniel Büchel
- Department Sport & Health, Exercise Science & Neuroscience Unit, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany.
| | - Tim Lehmann
- Department Sport & Health, Exercise Science & Neuroscience Unit, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jochen Baumeister
- Department Sport & Health, Exercise Science & Neuroscience Unit, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
27
|
Büchel D, Sandbakk Ø, Baumeister J. Exploring intensity-dependent modulations in EEG resting-state network efficiency induced by exercise. Eur J Appl Physiol 2021; 121:2423-2435. [PMID: 34003363 PMCID: PMC8357751 DOI: 10.1007/s00421-021-04712-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Exhaustive cardiovascular load can affect neural processing and is associated with decreases in sensorimotor performance. The purpose of this study was to explore intensity-dependent modulations in brain network efficiency in response to treadmill running assessed from resting-state electroencephalography (EEG) measures. METHODS Sixteen trained participants were tested for individual peak oxygen uptake (VO2 peak) and performed an incremental treadmill exercise at 50% (10 min), 70% (10 min) and 90% speed VO2 peak (all-out) followed by cool-down running and active recovery. Before the experiment and after each stage, borg scale (BS), blood lactate concentration (BLa), resting heartrate (HRrest) and 64-channel EEG resting state were assessed. To analyze network efficiency, graph theory was applied to derive small world index (SWI) from EEG data in theta, alpha-1 and alpha-2 frequency bands. RESULTS Analysis of variance for repeated measures revealed significant main effects for intensity on BS, BLa, HRrest and SWI. While BS, BLa and HRrest indicated maxima after all-out, SWI showed a reduction in the theta network after all-out. CONCLUSION Our explorative approach suggests intensity-dependent modulations of resting-state brain networks, since exhaustive exercise temporarily reduces brain network efficiency. Resting-state network assessment may prospectively play a role in training monitoring by displaying the readiness and efficiency of the central nervous system in different training situations.
Collapse
Affiliation(s)
- Daniel Büchel
- Exercise Science and Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany.
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| |
Collapse
|
28
|
Acute aerobic exercise enhances cortical connectivity between structures involved in shaping mood and improves self-reported mood: An EEG effective-connectivity study in young male adults. Int J Psychophysiol 2021; 162:22-33. [PMID: 33508334 DOI: 10.1016/j.ijpsycho.2021.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
There seems to be a general consensus among researchers that acute aerobic exercise (exercise hereafter) improves mood, but the neural mechanisms which drive these effects are far from being clear. The current study investigated the cortical connectivity patterns that underlie changes in mood after exercise. Twenty male adults underwent three different experimental protocols that were carefully controlled in terms of underlying metabolism and were administered in a randomized order: moderate-intensity continuous exercise, high-intensity interval exercise, and seated rest condition. Before and after each experimental protocol, we collected data on the participants' mood using the UMACL questionnaire and recorded their resting-state EEG. We focused on the effective connectivity patterns exerted by the dorso-lateral prefrontal cortex (dlPFC) over the temporal region (TMP), as these are important cortical structures involved in shaping mood. The cortical connectivity patterns in the resting-state EEG were evaluated using the directed transfer function (DTF), which is an autoregressive effective connectivity method. The results showed that both moderate-intensity exercise and high-intensity interval exercise improved participants' self-reported mood. Crucially, this improvement was accompanied by stronger influences of dlPFC over TMP. The observed changes in the effective connectivity patterns between dlPFC and TMP might help to better understand the effects of exercise on mood.
Collapse
|