1
|
Kariv S, Choi JW, Mirpour K, Gordon AM, Alijanpourotaghsara A, Benam M, Abdalla R, Chilukuri S, Gu JW, Bokil H, Nanivadekar S, Gittis AH, Pouratian N. Pilot Study of Acute Behavioral Effects of Pallidal Burst Stimulation in Parkinson's Disease. Mov Disord 2024; 39:1873-1877. [PMID: 39007445 PMCID: PMC11883832 DOI: 10.1002/mds.29928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Burst-patterned pallidal deep brain stimulation (DBS) in an animal model of Parkinson's disease (PD) yields significantly prolonged therapeutic benefit compared to conventional continuous DBS, but its value in patients remains unclear. OBJECTIVES The aims were to evaluate the safety and tolerability of acute (<2 hours) burst DBS in PD patients and to evaluate preliminary clinical effectiveness relative to conventional DBS. METHODS Six PD patients were studied with DBS OFF, conventional DBS, and burst DBS. Unified Parkinson's Disease Rating Scale III (UPDRS-III) and proactive inhibition (using stop-signal task) were evaluated for each condition. RESULTS Burst and conventional DBS were equally tolerated without significant adverse events. Both stimulation patterns provided equivalent significant UPDRS-III reduction and increased proactive inhibition relative to DBS OFF. CONCLUSIONS This pilot study supports the safety and tolerability of burst DBS, with acute effects similar to conventional DBS. Further larger-scale studies are warranted given the potential benefits of burst DBS due to decreased total energy delivery. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Saar Kariv
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Koorosh Mirpour
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ann M. Gordon
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Mohsen Benam
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ruwayd Abdalla
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sahil Chilukuri
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jianwen W. Gu
- Boston Scientific Neuromodulation, Valencia, Caliafornia, USA
| | - Hemant Bokil
- Boston Scientific Neuromodulation, Valencia, Caliafornia, USA
| | - Shruti Nanivadekar
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aryn H. Gittis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Gámez-Leyva G, Cubo E. Freezing of gait: pharmacological and surgical options. Curr Opin Neurol 2024; 37:394-399. [PMID: 38828625 DOI: 10.1097/wco.0000000000001278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
PURPOSE OF REVIEW The primary aim of this review is to describe and update the pathophysiological and relevant therapeutic strategies for freezing of gait (FoG) in patients with Parkinson's disease (PD). RECENT FINDINGS FoG presumably involves dysfunction of multiple cortical and subcortical components, including dopaminergic and nondopaminergic circuits. In this regard, levodopa and physical therapy represent the first-choice therapeutic options for PD patients with FoG. However, the relationship between FoG and levodopa is not fully predictable. For those patients with levodopa-resistant FoG, there is promising but still controversial data on the benefits of bilateral high-frequency transcranial magnetic stimulation and deep brain stimulation on the subthalamic nuclei, substantia nigra pars reticulata, pedunculopontine nucleus, and the Fields of Forel. On the other hand, general exercise, gait training with a treadmill, focus attention on gait training, and conventional physiotherapy have demonstrated moderate to large benefits in FoG. SUMMARY FOG requires different treatment strategies. The inclusion of adequate detection and prediction of FoG combined with double-blind, and statistically powered protocols are needed to improve patients' quality of life, the motor and nonmotor symptoms and societal burden associated with FoG.
Collapse
Affiliation(s)
| | - Esther Cubo
- Hospital Universitario Burgos
- Health Science Department, University of Burgos, Burgos, Spain
| |
Collapse
|
3
|
Sandoval-Pistorius SS, Hacker ML, Waters AC, Wang J, Provenza NR, de Hemptinne C, Johnson KA, Morrison MA, Cernera S. Advances in Deep Brain Stimulation: From Mechanisms to Applications. J Neurosci 2023; 43:7575-7586. [PMID: 37940596 PMCID: PMC10634582 DOI: 10.1523/jneurosci.1427-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 11/10/2023] Open
Abstract
Deep brain stimulation (DBS) is an effective therapy for various neurologic and neuropsychiatric disorders, involving chronic implantation of electrodes into target brain regions for electrical stimulation delivery. Despite its safety and efficacy, DBS remains an underutilized therapy. Advances in the field of DBS, including in technology, mechanistic understanding, and applications have the potential to expand access and use of DBS, while also improving clinical outcomes. Developments in DBS technology, such as MRI compatibility and bidirectional DBS systems capable of sensing neural activity while providing therapeutic stimulation, have enabled advances in our understanding of DBS mechanisms and its application. In this review, we summarize recent work exploring DBS modulation of target networks. We also cover current work focusing on improved programming and the development of novel stimulation paradigms that go beyond current standards of DBS, many of which are enabled by sensing-enabled DBS systems and have the potential to expand access to DBS.
Collapse
Affiliation(s)
| | - Mallory L Hacker
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Allison C Waters
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida 32608
| | - Kara A Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida 32608
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Stephanie Cernera
- Department of Neurological Surgery, University of California-San Francisco, San Francisco, California 94143
| |
Collapse
|
4
|
Najera RA, Mahavadi AK, Khan AU, Boddeti U, Del Bene VA, Walker HC, Bentley JN. Alternative patterns of deep brain stimulation in neurologic and neuropsychiatric disorders. Front Neuroinform 2023; 17:1156818. [PMID: 37415779 PMCID: PMC10320008 DOI: 10.3389/fninf.2023.1156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Deep brain stimulation (DBS) is a widely used clinical therapy that modulates neuronal firing in subcortical structures, eliciting downstream network effects. Its effectiveness is determined by electrode geometry and location as well as adjustable stimulation parameters including pulse width, interstimulus interval, frequency, and amplitude. These parameters are often determined empirically during clinical or intraoperative programming and can be altered to an almost unlimited number of combinations. Conventional high-frequency stimulation uses a continuous high-frequency square-wave pulse (typically 130-160 Hz), but other stimulation patterns may prove efficacious, such as continuous or bursting theta-frequencies, variable frequencies, and coordinated reset stimulation. Here we summarize the current landscape and potential clinical applications for novel stimulation patterns.
Collapse
Affiliation(s)
- Ricardo A. Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Mahavadi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U. Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor A. Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Wong JK, Lopes JMLJ, Hu W, Wang A, Au KLK, Stiep T, Frey J, Toledo JB, Raike RS, Okun MS, Almeida L. Double blind, nonrandomized crossover study of active recharge biphasic deep brain stimulation for primary dystonia. Parkinsonism Relat Disord 2023; 109:105328. [PMID: 36827951 DOI: 10.1016/j.parkreldis.2023.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is an effective therapy for select patients with primary dystonia. DBS programming for dystonia is often challenging due to variable time to symptomatic improvement or stimulation induced side effects (SISE) such as capsular or optic tract activation which can prolong device optimization. OBJECTIVE To characterize the safety and tolerability of active recharge biphasic DBS (bDBS) in primary dystonia and to compare it to conventional clinical DBS (clinDBS). METHODS Ten subjects with primary dystonia and GPi DBS underwent a single center, double blind, nonrandomized crossover study comparing clinDBS versus bDBS. The testing occurred over two-days. bDBS and clinDBS were administered on separate days and each was activated for 6 h. Rating scales were collected by video recording and scored by four blinded movement disorders trained neurologists. RESULTS The bDBS paradigm was safe and well-tolerated in all ten subjects. There were no persistent SISE reported. The mean change in the Unified Dystonia Rating Scale after 4 h of stimulation was greater in bDBS when compared to clinDBS (-6.5 vs 0.3, p < 0.04). CONCLUSION In this pilot study, we demonstrated that biphasic DBS is a novel stimulation paradigm which can be administered safely. The biphasic waveform revealed a greater immediate improvement. Further studies are needed to determine whether this immediate improvement persists with chronic stimulation or if clinDBS will eventually achieve similar levels of improvement to bDBS over time.
Collapse
Affiliation(s)
- Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States.
| | - Janine Melo Lobo Jofili Lopes
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Wei Hu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Anson Wang
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Ka Loong Kelvin Au
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Tamara Stiep
- Department of Neurology, UCSF Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California San Francisco, CA, United States
| | - Jessica Frey
- Department of Neurology, Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States
| | - Jon B Toledo
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| | - Robert S Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic Inc., Minneapolis, MN, United States
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Lowet E, Kondabolu K, Zhou S, Mount RA, Wang Y, Ravasio CR, Han X. Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus. Nat Commun 2022; 13:7709. [PMID: 36513664 PMCID: PMC9748039 DOI: 10.1038/s41467-022-35314-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Deep brain stimulation (DBS) is a promising neuromodulation therapy, but the neurophysiological mechanisms of DBS remain unclear. In awake mice, we performed high-speed membrane voltage fluorescence imaging of individual hippocampal CA1 neurons during DBS delivered at 40 Hz or 140 Hz, free of electrical interference. DBS powerfully depolarized somatic membrane potentials without suppressing spike rate, especially at 140 Hz. Further, DBS paced membrane voltage and spike timing at the stimulation frequency and reduced timed spiking output in response to hippocampal network theta-rhythmic (3-12 Hz) activity patterns. To determine whether DBS directly impacts cellular processing of inputs, we optogenetically evoked theta-rhythmic membrane depolarization at the soma. We found that DBS-evoked membrane depolarization was correlated with DBS-mediated suppression of neuronal responses to optogenetic inputs. These results demonstrate that DBS produces powerful membrane depolarization that interferes with the ability of individual neurons to respond to inputs, creating an informational lesion.
Collapse
Affiliation(s)
- Eric Lowet
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Krishnakanth Kondabolu
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Samuel Zhou
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Rebecca A. Mount
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Yangyang Wang
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Cara R. Ravasio
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
França C, Carra RB, Diniz JM, Munhoz RP, Cury RG. Deep brain stimulation in Parkinson's disease: state of the art and future perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:105-115. [PMID: 35976323 PMCID: PMC9491408 DOI: 10.1590/0004-282x-anp-2022-s133] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 05/14/2023]
Abstract
For more than 30 years, Deep Brain Stimulation (DBS) has been a therapeutic option for Parkinson's disease (PD) treatment. However, this therapy is still underutilized mainly due to misinformation regarding risks and clinical outcomes. DBS can ameliorate several motor and non-motor symptoms, improving patients' quality of life. Furthermore, most of the improvement after DBS is long-lasting and present even in advanced PD. Adequate patient selection, precise electric leads placement, and correct DBS programming are paramount for good surgical outcomes. Nonetheless, DBS still has many limitations: axial symptoms and signs, such as speech, balance and gait, do not improve to the same extent as appendicular symptoms and can even be worsened as a direct or indirect consequence of surgery and stimulation. In addition, there are still unanswered questions regarding patient's selection, surgical planning and programming techniques, such as the role of surgicogenomics, more precise imaging-based lead placement, new brain targets, advanced programming strategies and hardware features. The net effect of these innovations should not only be to refine the beneficial effect we currently observe on selected symptoms and signs but also to improve treatment resistant facets of PD, such as axial and non-motor features. In this review, we discuss the current state of the art regarding DBS selection, implant, and programming, and explore new advances in the DBS field.
Collapse
Affiliation(s)
- Carina França
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| | - Rafael Bernhart Carra
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| | - Juliete Melo Diniz
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Divisão de Neurocirurgia Funcional, São Paulo, SP, Brazil
| | - Renato Puppi Munhoz
- University of Toronto, Toronto Western Hospital, Movement Disorders Centre, Toronto, ON, Canada
| | - Rubens Gisbert Cury
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Centro de Distúrbios do Movimento, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR, Okun MS, de Hemptinne C. Past, Present, and Future of Deep Brain Stimulation: Hardware, Software, Imaging, Physiology and Novel Approaches. Front Neurol 2022; 13:825178. [PMID: 35356461 PMCID: PMC8959612 DOI: 10.3389/fneur.2022.825178] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jackson Cagle
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kara A. Johnson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Justin D. Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Christopher R. Butson
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Coralie de Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|