1
|
Nittel C, Hohmann DM, Jansen A, Sommer J, Krauß R, Völk M, Kamp-Becker I, Weber S, Becker K, Stroth S. Test-retest reliability of functional near infrared spectroscopy during tasks of inhibitory control and working memory. Psychiatry Res Neuroimaging 2025:111993. [PMID: 40280855 DOI: 10.1016/j.pscychresns.2025.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Functional near-infrared spectroscopy (fNIRS) has become a well-established tool for neuroscience research and been suggested as a potential biomarker during clinical assessment in individuals with mental disorders. Biomarker need to be objective indications of biological processes which can be measured accurately and reproducibly. Despite various applications in clinical research, test-retest reliability of the fNIRS signal has not yet been evaluated sufficiently. To assess reliability of the fNIRS signal during tasks of executive functions, a group of 34 healthy subjects (13 male, 21 female) were tested twice for inhibitory control and working memory. On a group level results show a specific activation pattern throughout the two sessions, reflecting a task-related frontal network associated with the assessed cognitive functions. On the individual level the retest reliability of the activation patterns were considerably lower and differed strongly between participants. In conclusion, the interpretation of fNIRS signal on a single subject level is partially hampered by its low reliability. More studies are needed to optimize the retest reliability of fNIRS and to be applied on a routine basis in developmental research.
Collapse
Affiliation(s)
- Clara Nittel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany.
| | - Daniela Michelle Hohmann
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University Giessen, Marburg, Germany.
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Core-Facility Brainimaging, Faculty of Medicine, Philipps University of Marburg, Germany
| | - Jens Sommer
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University Giessen, Marburg, Germany; Core-Facility Brainimaging, Faculty of Medicine, Philipps University of Marburg, Germany
| | - Ricarda Krauß
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Max Völk
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Inge Kamp-Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Stefanie Weber
- Department of Pediatrics, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Katja Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Sanna Stroth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
2
|
Bayat M, Hernandez M, Curzon M, Garic D, Graziano P, Dick AS. Reduced recruitment of inhibitory control regions in very young children with ADHD during a modified Kiddie Continuous Performance Task: A fMRI study. Cortex 2025; 185:153-169. [PMID: 40058332 PMCID: PMC12013342 DOI: 10.1016/j.cortex.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/23/2024] [Accepted: 11/22/2024] [Indexed: 03/19/2025]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) symptom profiles are known to undergo changes throughout development, rendering the neurobiological assessment of ADHD challenging across different developmental stages. Particularly in young children (ages 4- to 7-years), measuring inhibitory control network activity in the brain has been a formidable task due to the lack of child-friendly functional Magnetic Resonance Imaging (fMRI) paradigms. This study aims to address these difficulties by focusing on measuring inhibitory control in very young children within the MRI environment. A total of 56 children diagnosed with ADHD and 78 typically developing (TD) 4-7-year-old children were successfully examined using a modified version of the Kiddie-Continuous Performance Test (K-CPT) during BOLD fMRI to assess inhibitory control. We also evaluated their performance on the standardized K-CPT outside the MRI scanner. Our findings suggest that the modified K-CPT effectively elicited robust and expected brain activity related to inhibitory control in both groups who were successfully scanned. Comparisons between the two groups revealed differences in brain activity, primarily observed in inferior frontal gyrus, anterior insula, dorsal striatum, medial pre-supplementary motor area (pre-SMA), and cingulate cortex (p < .005, corrected). Notably, for both groups increased activity in the right anterior insula was associated with improved response time (RT) and reduced RT variability on the K-CPT administered outside the MRI environment, although this did not survive statistical correction for multiple comparisons. The study also revealed continuing challenges for scanning this population-an additional 51 TD children and 78 children with ADHD were scanned, but failed to provide useable data due to movement. In summary, for a subsample of children, we successfully overcame some of the challenges of measuring inhibitory control in very young children within the MRI environment by using a modified K-CPT during BOLD fMRI, but further challenges remain for scanning in this population. The findings shed light on the neurobiological correlates of inhibitory control in ADHD and TD children, provide valuable insights for understanding ADHD across development, and potentially inform ADHD diagnosis and intervention strategies. The research also highlights remaining challenges with task fMRI in very young clinical samples.
Collapse
Affiliation(s)
- Mohammadreza Bayat
- Department of Psychology and the Center for Children and Families, Florida International University, Miami, FL, USA
| | - Melissa Hernandez
- Department of Psychology and the Center for Children and Families, Florida International University, Miami, FL, USA
| | - Madeline Curzon
- Department of Psychology and the Center for Children and Families, Florida International University, Miami, FL, USA
| | - Dea Garic
- Carolina Institute for Developmental Disabilities and Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo Graziano
- Department of Psychology and the Center for Children and Families, Florida International University, Miami, FL, USA
| | - Anthony Steven Dick
- Department of Psychology and the Center for Children and Families, Florida International University, Miami, FL, USA.
| |
Collapse
|
3
|
Fiske A, Mortimer A, Collins-Jones L, de Klerk CCJM, Gattas SU, Dvergsdal H, Scerif G, Holmboe K. Inhibitory control development from infancy to early childhood: A longitudinal fNIRS study. Dev Cogn Neurosci 2025; 73:101557. [PMID: 40158324 PMCID: PMC11997363 DOI: 10.1016/j.dcn.2025.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/14/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The developmental period from infancy to early childhood is one of substantial change - in advancements in cognitive skills, such as early executive functions, but also in the maturation of the prefrontal and parietal cortices that parallel such advances. The current study aims to investigate the emergence and development of inhibitory control, a core executive function, from infancy to early childhood. We collected longitudinal functional near-infrared spectroscopy (fNIRS) data from the same sample of participants at 10-months, 16-months, and 3½ years of age whilst they completed the Early Childhood Inhibitory Touchscreen Task. In our previous publications, we reported that 10-month-old infants recruited right lateralised regions of the prefrontal and parietal cortex when inhibition was required. Despite no change in response inhibition performance, 16-month-olds recruited broader and bilateral regions of the prefrontal and parietal cortex. Results of the current study found that 3½-year-olds activated regions of the right inferior parietal cortex and the right inferior frontal gyrus when inhibition was required. Response inhibition performance was significantly improved by early childhood, yet there was commonality in the brain regions recruited at 16-months and 3½ years. This could suggest that these brain regions are fundamental neural indices of inhibitory control, even from toddlerhood.
Collapse
Affiliation(s)
- Abigail Fiske
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Department of Psychology, Lancaster University, Lancaster, United Kingdom
| | - Alicia Mortimer
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| | - Liam Collins-Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Carina C J M de Klerk
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| | - Sylvia Ulieta Gattas
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom; Department of Psychology and Human Development, Institute of Education, Faculty of Education and Society, University College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, United Kingdom
| | - Henrik Dvergsdal
- Nord University Business School, Department of Entrepreneurship, Innovation and Organisation, Bodø, Norway
| | - Gaia Scerif
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Karla Holmboe
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
4
|
McCraw A, Sullivan J, Lowery K, Eddings R, Heim HR, Buss AT. Dynamic Field Theory of Executive Function: Identifying Early Neurocognitive Markers. Monogr Soc Res Child Dev 2024; 89:7-109. [PMID: 39628288 PMCID: PMC11615565 DOI: 10.1111/mono.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 12/08/2024]
Abstract
In this Monograph, we explored neurocognitive predictors of executive function (EF) development in a cohort of children followed longitudinally from 30 to 54 months of age. We tested predictions of a dynamic field model that explains development in a benchmark measure of EF development, the dimensional change card sort (DCCS) task. This is a rule-use task that measures children's ability to switch between sorting cards by shape or color rules. A key developmental mechanism in the model is that dimensional label learning drives EF development. Data collection began in February 2019 and was completed in April 2022 on the Knoxville campus of the University of Tennessee. Our cohort included 20 children (13 female) all of whom were White (not Hispanic/Latinx) from an urban area in southern United States, and the sample annual family income distribution ranged from low to high (most families falling between $40,000 and 59,000 per year (note that we address issues of generalizability and the small sample size throughout the monograph)). We tested the influence of dimensional label learning on DCCS performance by longitudinally assessing neurocognitive function across multiple domains at 30 and 54 months of age. We measured dimensional label learning with comprehension and production tasks for shape and color labels. Simple EF was measured with the Simon task which required children to respond to images of a cat or dog with a lateralized (left/right) button press. Response conflict was manipulated in this task based on the spatial location of the stimulus which could be neutral (central), congruent, or incongruent with the spatial lateralization of the response. Dimensional understanding was measured with an object matching task requiring children to generalize similarity between objects that matched within the dimensions of color or shape. We first identified neural measures associated with performance and development on each of these tasks. We then examined which of these measures predicted performance on the DCCS task at 54 months. We measured neural activity with functional near-infrared spectroscopy across bilateral frontal, temporal, and parietal cortices. Our results identified an array of neurocognitive mechanisms associated with development within each domain we assessed. Importantly, our results suggest that dimensional label learning impacts the development of EF. Neural activation in left frontal cortex during dimensional label production at 30 months of age predicted EF performance at 54 months of age. We discussed these results in the context of efforts to train EF with broad transfer. We also discussed a new autonomy-centered EF framework. The dynamic field model on which we have motivated the current research makes decisions autonomously and various factors can influence the types of decisions that the model makes. In this way, EF is a property of neurocognitive dynamics, which can be influenced by individual factors and contextual effects. We also discuss how this conceptual framework can generalize beyond the specific example of dimensional label learning and DCCS performance to other aspects of EF and how this framework can help to understand how EF unfolds in unique individual, cultural, and contextual factors. Measures of EF during early childhood are associated with a wide range of development outcomes, including academic skills and quality of life. The hope is that broad aspects of development can be improved by implementing interventions aimed at facilitating EF development. However, this promise has been largely unrealized. Previous work on EF development has been limited by a focus on EF components, such as inhibition, working memory, and switching. Similarly, intervention research has focused on practicing EF tasks that target these specific components of EF. While performance typically improves on the practiced task, improvement rarely generalizes to other EF tasks or other developmental outcomes. The current work is unique because we looked beyond EF itself to identify the lower-level learning processes that predict EF development. Indeed, the results of this study identify the first learning mechanism involved in the development of EF. Although the work here provides new targets for interventions in future work, there are also important limitations. First, our sample is not representative of the underlying population of children in the United States under the age of 5. This is a problem in much of the existing developmental cognitive neuroscience research. We discussed challenges to the generalizability of our findings to the population at large. This is particularly important given that our theory is largely contextual, suggesting that children's unique experiences with learning labels for visual dimensions will impact EF development. Second, we identified a learning mechanism to target in future intervention research; however, it is not clear whether such interventions would benefit all children or how to identify children who would benefit most from such interventions. We also discuss prospective lines of research that can address these limitations, such as targeting families that are typically underrepresented in research, expanding longitudinal studies to examine longer term outcomes such as school-readiness and academic skills, and using the dynamic field (DF) model to systematically explore how exposure to objects and labels can optimize the neural representations underlying dimensional label learning. Future work remains to understand how such learning processes come to define the contextually and culturally specific skills that emerge over development and how these skills lay the foundation for broad developmental trajectories.
Collapse
Affiliation(s)
- Alexis McCraw
- Department of PsychologyUniversity of TennesseeKnoxville
| | | | - Kara Lowery
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Rachel Eddings
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Hollis R. Heim
- Department of PsychologyUniversity of TennesseeKnoxville
| | - Aaron T. Buss
- Department of PsychologyUniversity of TennesseeKnoxville
| |
Collapse
|
5
|
Keating J, Hashmi S, Vanderwert RE, Davies RM, Jones CRG, Gerson SA. Embracing neurodiversity in doll play: Investigating neural and language correlates of doll play in a neurodiverse sample. Eur J Neurosci 2024; 60:4097-4114. [PMID: 37731194 DOI: 10.1111/ejn.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
Doll play may provide opportunities for children to rehearse social interactions, even when playing alone. Previous research has found that the posterior superior temporal sulcus (pSTS) was more engaged when children played with dolls alone, compared to playing with tablet games alone. Children's use of internal state language (ISL) about others was also associated with pSTS activity. As differences in social cognition are frequently observed in autistic people, we were interested in the brain and language correlates of doll play in children with varying levels of autistic traits. We investigated children's (N = 57, mean age = 6.72, SD = 1.53) use of ISL and their pSTS brain activity using functional near-infrared spectroscopy (fNIRS) as they played with dolls and tablet games, both alone and with a social partner. We also investigated whether there were any effects of autistic traits using the parent-report Autism Spectrum Quotient-Children's Version (AQ-Child). We found that the left pSTS was engaged more as children played with dolls or a tablet with a partner, and when playing with dolls alone, compared to when playing with a tablet alone. Relations between language and neural correlates of social processing were distinct based on the degree of autistic traits. For children with fewer autistic traits, greater pSTS activity was associated with using ISL about others. For children with more autistic traits, greater pSTS activity was associated with experimenter talk during solo play. These divergent pathways highlight the importance of embracing neurodiversity in children's play patterns to best support their development through play.
Collapse
Affiliation(s)
- Jennifer Keating
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Salim Hashmi
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ross E Vanderwert
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Rhys M Davies
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Catherine R G Jones
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Sarah A Gerson
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Zhou X, Hong X, Wong PCM. Autistic Traits Modulate Social Synchronizations Between School-Aged Children: Insights From Three fNIRS Hyperscanning Experiments. Psychol Sci 2024; 35:840-857. [PMID: 38743614 DOI: 10.1177/09567976241237699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The current study investigated how autistic traits modulate peer interactions using functional near-infrared spectroscopy (fNIRS) hyperscanning. Across three experiments, we tested the effect of copresence, joint activity, and a tangible goal during cooperative interactions on interbrain coherence (IBC) in school-aged children between 9 and 11 years old. Twenty-three dyads of children watched a video alone or together in Experiment 1, engaged in joint or self-paced book reading in Experiment 2, and pretended to play a Jenga game or played for real in Experiment 3. We found that all three formats of social interactions increased IBC in the frontotemporoparietal networks, which have been reported to support social interaction. Further, our results revealed the shared and unique interbrain connections that were predictive of the lower and higher parent-reported autism-spectrum quotient scores, which indicated child autistic traits. Results from a convergence of three experiments provide the first evidence to date that IBC is modulated by child autistic traits.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
- Brain and Mind Institute, the Chinese University of Hong Kong
- National Acoustic Laboratories, Macquarie Park, Australia
| | - Xuancu Hong
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
- Brain and Mind Institute, the Chinese University of Hong Kong
| |
Collapse
|
7
|
Ramacciotti MC, Soares Junior RDS, Sato JR, Gualtieri M. Left OFC Activation in Functional Near-Infrared Spectroscopy during an Inhibitory Control Task in an Early Years Sample: Integrating Stress Responses with Cognitive Function and Brain Activation. Dev Neurosci 2024; 47:81-97. [PMID: 38663367 PMCID: PMC11965844 DOI: 10.1159/000539023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/18/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Previous functional near-infrared spectroscopy (fNIRS) studies using Go/No-Go (GNG) tasks have focused on brain activation in relation to cognitive processes, particularly inhibitory control (IC). The results of these studies commonly describe right hemispheric engagement of the dorsolateral, ventromedial, or inferior frontal regions of the prefrontal cortex. Considering that typical healthy cognitive development is negatively correlated with higher cortisol levels (which may alter brain development), the overarching aim of the current study was to investigate how elevated stress (due to unforeseeable events such as the pandemic) impacts early cognitive development. METHOD In this study, we examined fNIRS data collected from a sample of children (aged 2-4 years) during a GNG task relative to the response to stressors measured via hair cortisol concentrations. We acquired data in an ecological setting (Early Childhood Education and Care) during the coronavirus pandemic. RESULTS We found that children with higher stress levels and a less efficient IC recruited more neural terrain and our group-level analysis indicated activation in the left orbitofrontal area during IC performance. CONCLUSIONS A contextual stressor may disrupt accuracy in the executive function of IC early in development. More research efforts are needed to understand better how an orbitofrontal network subserves goal-directed behavior. INTRODUCTION Previous functional near-infrared spectroscopy (fNIRS) studies using Go/No-Go (GNG) tasks have focused on brain activation in relation to cognitive processes, particularly inhibitory control (IC). The results of these studies commonly describe right hemispheric engagement of the dorsolateral, ventromedial, or inferior frontal regions of the prefrontal cortex. Considering that typical healthy cognitive development is negatively correlated with higher cortisol levels (which may alter brain development), the overarching aim of the current study was to investigate how elevated stress (due to unforeseeable events such as the pandemic) impacts early cognitive development. METHOD In this study, we examined fNIRS data collected from a sample of children (aged 2-4 years) during a GNG task relative to the response to stressors measured via hair cortisol concentrations. We acquired data in an ecological setting (Early Childhood Education and Care) during the coronavirus pandemic. RESULTS We found that children with higher stress levels and a less efficient IC recruited more neural terrain and our group-level analysis indicated activation in the left orbitofrontal area during IC performance. CONCLUSIONS A contextual stressor may disrupt accuracy in the executive function of IC early in development. More research efforts are needed to understand better how an orbitofrontal network subserves goal-directed behavior.
Collapse
Affiliation(s)
| | | | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Mirella Gualtieri
- Graduate Program in Neuroscience and Behavior, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Bayat M, Hernandez M, Curzon M, Garic D, Graziano P, Dick AS. Reduced recruitment of inhibitory control regions in very young children with ADHD during a modified Kiddie Continuous Performance Task: a fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576033. [PMID: 38293209 PMCID: PMC10827162 DOI: 10.1101/2024.01.17.576033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) symptom profiles are known to undergo changes throughout development, rendering the neurobiological assessment of ADHD challenging across different developmental stages. Particularly in young children (ages 4 to 7 years), measuring inhibitory control network activity in the brain has been a formidable task due to the lack of child-friendly functional Magnetic Resonance Imaging (fMRI) paradigms. This study aims to address these difficulties by focusing on measuring inhibitory control in very young children within the MRI environment. A total of 56 children diagnosed with ADHD and 78 typically developing (TD) 4-7-year-old children were examined using a modified version of the Kiddie-Continuous Performance Test (K-CPT) during BOLD fMRI to assess inhibitory control. We concurrently evaluated their performance on the established and standardized K-CPT outside the MRI scanner. Our findings suggest that the modified K-CPT effectively elicited robust and expected brain activity related to inhibitory control in both groups. Comparisons between the two groups revealed subtle differences in brain activity, primarily observed in regions associated with inhibitory control, such as the inferior frontal gyrus, anterior insula, dorsal striatum, medial pre-supplementary motor area (pre-SMA), and cingulate cortex. Notably, increased activity in the right anterior insula was associated with improved response time (RT) and reduced RT variability on the K-CPT administered outside the MRI environment, although this did not survive statistical correction for multiple comparisons. In conclusion, our study successfully overcame the challenges of measuring inhibitory control in very young children within the MRI environment by utilizing a modified K-CPT during BOLD fMRI. These findings shed light on the neurobiological correlates of inhibitory control in ADHD and TD children, provide valuable insights for understanding ADHD across development, and potentially inform ADHD diagnosis and intervention strategies. The research also highlights remaining challenges with task fMRI in very young clinical samples.
Collapse
|
9
|
Zhou X, Wang L, Hong X, Wong PCM. Infant-directed speech facilitates word learning through attentional mechanisms: An fNIRS study of toddlers. Dev Sci 2024; 27:e13424. [PMID: 37322865 DOI: 10.1111/desc.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The speech register that adults especially caregivers use when interacting with infants and toddlers, that is, infant-directed speech (IDS) or baby talk, has been reported to facilitate language development throughout the early years. However, the neural mechanisms as well as why IDS results in such a developmental faciliatory effect remain to be investigated. The current study uses functional near-infrared spectroscopy (fNIRS) to evaluate two alternative hypotheses of such a facilitative effect, that IDS serves to enhance linguistic contrastiveness or to attract the child's attention. Behavioral and fNIRS data were acquired from twenty-seven Cantonese-learning toddlers 15-20 months of age when their parents spoke to them in either an IDS or adult-directed speech (ADS) register in a naturalistic task in which the child learned four disyllabic pseudowords. fNIRS results showed significantly greater neural responses to IDS than ADS register in the left dorsolateral prefrontal cortex (L-dlPFC), but opposite response patterns in the bilateral inferior frontal gyrus (IFG). The differences in fNIRS responses to IDS and to ADS in the L-dlPFC and the left parietal cortex (L-PC) showed significantly positive correlations with the differences in the behavioral word-learning performance of toddlers. The same fNIRS measures in the L-dlPFC and right PC (R-PC) of toddlers were significantly correlated with pitch range differences of parents between the two speech conditions. Together, our results suggest that the dynamic prosody in IDS increased toddlers' attention through greater involvement of the left frontoparietal network that facilitated word learning, compared to ADS. RESEARCH HIGHLIGHTS: This study for the first time examined the neural mechanisms of how infant-directed speech (IDS) facilitates word learning in toddlers. Using fNIRS, we identified the cortical regions that were directly involved in IDS processing. Our results suggest that IDS facilitates word learning by engaging a right-lateralized prosody processing and top-down attentional mechanisms in the left frontoparietal networks. The language network including the inferior frontal gyrus and temporal cortex was not directly involved in IDS processing to support word learning.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Luchang Wang
- Department of Applied Linguistics, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuancu Hong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
An fNIRS Study of Applicability of the Unity-Diversity Model of Executive Functions in Preschoolers. Brain Sci 2022; 12:brainsci12121722. [PMID: 36552181 PMCID: PMC9776044 DOI: 10.3390/brainsci12121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Executive function (EF) includes a set of higher-order abilities that control one's actions and thoughts consciously and has a protracted developmental trajectory that parallels the maturation of the frontal lobes, which develop speedily over the preschool period. To fully understand the development of EF in preschoolers, this study examined the relationship among the three domains of executive function (cognitive shifting, inhibitory control, and working memory) to test the applicability of the unity-diversity model in preschoolers using both behavioral and fNIRS approaches. Altogether, 58 Chinese preschoolers (34 boys, 24 girls, Mage = 5.86 years, SD = 0.53, age range = 4.83-6.67 years) were administered the Dimensional Card Change Sort (DCCS), go/no-go, and missing scan task. Their brain activations in the prefrontal cortex during the tasks were examined using fNIRS. First, the behavioral results indicated that the missing scan task scores (working memory) correlated with the DCCS (cognitive shifting) and go/no-go tasks (inhibitory control). However, the latter two did not correlate with each other. Second, the fNIRS results demonstrated that the prefrontal activations during the working memory task correlated with those in the same regions during the cognitive shifting and inhibitory control tasks. However, the latter two still did not correlate. The behavioral and neuroimaging evidence jointly indicates that the unity-diversity model of EF does apply to Chinese preschoolers.
Collapse
|
11
|
Fiske A, de Klerk C, Lui KYK, Collins-Jones L, Hendry A, Greenhalgh I, Hall A, Scerif G, Dvergsdal H, Holmboe K. The neural correlates of inhibitory control in 10-month-old infants: A functional near-infrared spectroscopy study. Neuroimage 2022; 257:119241. [PMID: 35537598 PMCID: PMC7616317 DOI: 10.1016/j.neuroimage.2022.119241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Inhibitory control, a core executive function, emerges in infancy and develops rapidly across childhood. Methodological limitations have meant that studies investigating the neural correlates underlying inhibitory control in infancy are rare. Employing functional near-infrared spectroscopy alongside a novel touchscreen task that measures response inhibition, this study aimed to uncover the neural underpinnings of inhibitory control in 10-month-old infants (N = 135). We found that when inhibition was required, the right prefrontal and parietal cortices were more activated than when there was no inhibitory demand. This demonstrates that inhibitory control in infants as young as 10 months of age is supported by similar brain areas as in older children and adults. With this study we have lowered the age-boundary for localising the neural substrates of response inhibition to the first year of life.
Collapse
Affiliation(s)
- Abigail Fiske
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| | - Carina de Klerk
- Department of Psychology, University of Essex, Essex, United Kingdom
| | - Katie Y K Lui
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Liam Collins-Jones
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Alexandra Hendry
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Isobel Greenhalgh
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Anna Hall
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Institute of Mental Health, University College London, London, United Kingdom
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Henrik Dvergsdal
- Nord University Business School, Department of Entrepreneurship, Innovation and Organisation, Bodø, Norway
| | - Karla Holmboe
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; School of Psychological Science, University of Bristol, Bristol, United Kingdom
| |
Collapse
|