1
|
Pellegrini F, Pozzi NG, Palmisano C, Marotta G, Buck A, Haufe S, Isaias IU. Cortical networks of parkinsonian gait: a metabolic and functional connectivity study. Ann Clin Transl Neurol 2024; 11:2597-2608. [PMID: 39186320 PMCID: PMC11514930 DOI: 10.1002/acn3.52173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Locomotion is an automated voluntary movement sustained by coordinated neural synchronization across a distributed brain network. The cerebral cortex is central for adapting the locomotion pattern to the environment and alterations of cortical network dynamics can lead to gait impairments. Gait problems are a common symptom with a still unclear pathophysiology and represent an unmet therapeutical need in Parkinson's disease. Little is known about the cortical network dynamics of locomotor control in these patients. METHODS We studied the cortical basis of parkinsonian gait by combining metabolic brain imaging with high-density EEG recordings and kinematic measurements performed at rest and during unperturbed overground walking. RESULTS We found significant changes in functional connectivity between frontal, sensorimotor, and visuomotor cortical areas during walking as compared to resting. Specifically, hypokinetic gait was associated with poor information flow from the supplementary motor area (SMA) to precuneus and from calcarine to lingual gyrus, as well as high information flow from calcarine to cuneus. INTERPRETATION Our findings support a role for visuomotor integration processes in PD-related hypokinetic gait and suggest that reinforcing visual information may act as a compensatory strategy to allow SMA-mediated feedforward locomotor control in PD.
Collapse
Affiliation(s)
- Franziska Pellegrini
- Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlin Center for Advanced Neuroimaging (BCAN)BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Nicoló G. Pozzi
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
| | - Chiara Palmisano
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
- Parkinson Institute of MilanASST G. Pini‐CTOMilanoItaly
| | - Giorgio Marotta
- Department of Nuclear MedicineFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | - Andreas Buck
- Department of Nuclear MedicineUniversity Hospital of WürzburgWürzburgGermany
| | - Stefan Haufe
- Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlin Center for Advanced Neuroimaging (BCAN)BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
- Uncertainty, Inverse Modeling and Machine Learning Group, Faculty IV Electrical Engineering and Computer ScienceTechnische Universität BerlinBerlinGermany
- Physikalisch‐Technische Bundesanstalt Braunschweig und BerlinBerlinGermany
| | - Ioannis U. Isaias
- Department of NeurologyUniversity Hospital of Würzburg and The Julius Maximilian University of WürzburgWürzburgGermany
- Parkinson Institute of MilanASST G. Pini‐CTOMilanoItaly
| |
Collapse
|
2
|
Isaias IU, Caffi L, Borellini L, Ampollini AM, Locatelli M, Pezzoli G, Mazzoni A, Palmisano C. Case report: Improvement of gait with adaptive deep brain stimulation in a patient with Parkinson's disease. Front Bioeng Biotechnol 2024; 12:1428189. [PMID: 39323762 PMCID: PMC11423205 DOI: 10.3389/fbioe.2024.1428189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024] Open
Abstract
Gait disturbance is a common and severe symptom of Parkinson's disease that severely impairs quality of life. Current treatments provide only partial benefits with wide variability in outcomes. Also, deep brain stimulation of the subthalamic nucleus (STN-DBS), a mainstay treatment for bradykinetic-rigid symptoms and parkinsonian tremor, is poorly effective on gait. We applied a novel DBS paradigm, adjusting the current amplitude linearly with respect to subthalamic beta power (adaptive DBS), in one parkinsonian patient with gait impairment and chronically stimulated with conventional DBS. We studied the kinematics of gait and gait initiation (anticipatory postural adjustments) as well as subthalamic beta oscillations with both conventional and adaptive DBS. With adaptive DBS, the patient showed a consistent and long-lasting improvement in walking while retaining benefits on other disease-related symptoms. We suggest that adaptive DBS can benefit gait in Parkinson's disease possibly by avoiding overstimulation and dysfunctional entrainment of the supraspinal locomotor network.
Collapse
Affiliation(s)
- Ioannis U. Isaias
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Laura Caffi
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Linda Borellini
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | - Marco Locatelli
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Gianni Pezzoli
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, Pisa, Italy
- Department of Excellence in Robotics and AI, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Chiara Palmisano
- Parkinson Institute of Milan, ASST G.Pini-CTO, Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Gurr C, Splittgerber M, Puonti O, Siemann J, Luckhardt C, Pereira HC, Amaral J, Crisóstomo J, Sayal A, Ribeiro M, Sousa D, Dempfle A, Krauel K, Borzikowsky C, Brauer H, Prehn-Kristensen A, Breitling-Ziegler C, Castelo-Branco M, Salvador R, Damiani G, Ruffini G, Siniatchkin M, Thielscher A, Freitag CM, Moliadze V, Ecker C. Neuroanatomical Predictors of Transcranial Direct Current Stimulation (tDCS)-Induced Modifications in Neurocognitive Task Performance in Typically Developing Individuals. J Neurosci 2024; 44:e1372232024. [PMID: 38548336 PMCID: PMC11140687 DOI: 10.1523/jneurosci.1372-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 05/31/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typically developing (TD) individuals that may be used for the prediction of individual responses to tDCS. Fifty-seven male and female children received 2 mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporoparietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, flanker, Mooney faces detection, attentional emotional recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3 Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using general linear models (GLM). Machine learning (ML) algorithms were employed to predict responses to tDCS. Vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioral variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioral measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.
Collapse
Affiliation(s)
- Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Maike Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24105, Germany
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark
| | - Julia Siemann
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Bielefeld 33617, Germany
| | - Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Helena C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Amaral
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Mário Ribeiro
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Daniela Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg 39130, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena- Magdeburg, Magdeburg 39120, Germany
| | - Christoph Borzikowsky
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Hannah Brauer
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry, Center for Integrative Psychiatry Kiel, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Carolin Breitling-Ziegler
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg 39130, Germany
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences applied to Health (ICNAS), Faculty of Medicine, Academic Clinical Centre, University of Coimbra, Coimbra 3000-548, Portugal
| | | | | | | | - Michael Siniatchkin
- Clinic for Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital Bethel, University of Bielefeld, Bielefeld 33617, Germany
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24105, Germany
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main 60528, Germany
| |
Collapse
|
4
|
Hirschhorn R, Biderman D, Biderman N, Yaron I, Bennet R, Plotnik M, Mudrik L. Using virtual reality to induce multi-trial inattentional blindness despite trial-by-trial measures of awareness. Behav Res Methods 2024; 56:3452-3468. [PMID: 38594442 PMCID: PMC11133062 DOI: 10.3758/s13428-024-02401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Unconscious processing has been widely examined using diverse and well-controlled methodologies. However, the extent to which these findings are relevant to real-life instances of information processing without awareness is limited. Here, we present a novel inattentional blindness (IB) paradigm in virtual reality (VR). In three experiments, we managed to repeatedly induce IB while participants foveally viewed salient stimuli for prolonged durations. The effectiveness of this paradigm demonstrates the close relationship between top-down attention and subjective experience. Thus, this method provides an ecologically valid setup to examine processing without awareness.
Collapse
Affiliation(s)
- Rony Hirschhorn
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, POB 39040, 6997801, Tel Aviv, Israel.
| | - Dan Biderman
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
| | - Natalie Biderman
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
- Department of Psychology, Columbia University, New York, NY, USA
| | - Itay Yaron
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, POB 39040, 6997801, Tel Aviv, Israel
| | - Rotem Bennet
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Meir Plotnik
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, POB 39040, 6997801, Tel Aviv, Israel
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liad Mudrik
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, POB 39040, 6997801, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Farokhniaee A, Palmisano C, Del Vecchio Del Vecchio J, Pezzoli G, Volkmann J, Isaias IU. Gait-related beta-gamma phase amplitude coupling in the subthalamic nucleus of parkinsonian patients. Sci Rep 2024; 14:6674. [PMID: 38509158 PMCID: PMC10954750 DOI: 10.1038/s41598-024-57252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Analysis of coupling between the phases and amplitudes of neural oscillations has gained increasing attention as an important mechanism for large-scale brain network dynamics. In Parkinson's disease (PD), preliminary evidence indicates abnormal beta-phase coupling to gamma-amplitude in different brain areas, including the subthalamic nucleus (STN). We analyzed bilateral STN local field potentials (LFPs) in eight subjects with PD chronically implanted with deep brain stimulation electrodes during upright quiet standing and unperturbed walking. Phase-amplitude coupling (PAC) was computed using the Kullback-Liebler method, based on the modulation index. Neurophysiological recordings were correlated with clinical and kinematic measurements and individual molecular brain imaging studies ([123I]FP-CIT and single-photon emission computed tomography). We showed a dopamine-related increase in subthalamic beta-gamma PAC from standing to walking. Patients with poor PAC modulation and low PAC during walking spent significantly more time in the stance and double support phase of the gait cycle. Our results provide new insights into the subthalamic contribution to human gait and suggest cross-frequency coupling as a gateway mechanism to convey patient-specific information of motor control for human locomotion.
Collapse
Affiliation(s)
- AmirAli Farokhniaee
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy.
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy.
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Jasmin Del Vecchio Del Vecchio
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Gianni Pezzoli
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Ioannis U Isaias
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| |
Collapse
|
6
|
Palmisano C, Farinelli V, Camuncoli F, Favata A, Pezzoli G, Frigo CA, Isaias IU. Dynamic evaluation of spine kinematics in individuals with Parkinson's disease and freezing of gait. Gait Posture 2024; 108:199-207. [PMID: 37993298 DOI: 10.1016/j.gaitpost.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Freezing of gait (FoG) is an episodic failure of gait exposing people with Parkinson's disease (PD) to a high risk of falling. Despite growing evidence of the interconnection between impaired trunk control and FoG, a detailed description of spinal kinematics during walking is still lacking in this population. RESEARCH QUESTION Do spinal alterations impact gait performance in individuals with PD and FoG? METHODS We analyzed kinematic data of 47 PD participants suffering (PD-FOG, N = 24) or not suffering from FoG (PD-NFOG, N = 23) and 15 healthy controls (HCO) during quiet standing and unperturbed walking. We estimated the main spinal variables (i.e., spinal length, lordosis and kyphosis angles, trunk inclination), the pelvis angles, and the shoulder-pelvis angles during gait and standing. We studied differences across conditions and groups and the relationships between postural and gait parameters using linear regression methods. RESULTS During standing and walking, both PD groups showed increased trunk inclination and decreased lordosis angle with respect to HCO, as well as a decreased range in variation of kyphosis angle, pelvic obliquity, and shoulder-pelvis angles. Only PD-FOG participants showed reduced range of lordosis angle and spinal length compared to HCO. PD-FOG individuals were also not able to straighten their spine during walking compared to standing. Stride length and velocity were decreased in both patient groups compared to HCO, while swing duration was reduced only in the PD-FOG group. In individuals with FoG, trunk inclination and lordosis angle showed moderate but significant positive correlations with all gait alterations. SIGNIFICANCE Spine alterations impacted gait performance in individuals with PD suffering from FoG. Excessive trunk inclination and poor mastering of the lordosis spinal region may create an unfavourable postural precondition for forward walking. Physical therapy should target combined spinal and stepping alterations in these individuals.
Collapse
Affiliation(s)
- C Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany.
| | - V Farinelli
- Human Physiology Section of the DePT, Università degli Studi di Milano, Milano, Italy
| | - F Camuncoli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - A Favata
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - G Pezzoli
- Parkinson Institute Milan, ASST G. Pini-CTO, Milano, Italy
| | - C A Frigo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - I U Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, Milano, Italy
| |
Collapse
|
7
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
8
|
Gröble S, van Hedel HJA, Keller JW, Ammann-Reiffer C. Differences in gait parameters when crossing real versus projected everyday life obstacles in healthy children and adolescents. Sci Rep 2023; 13:7848. [PMID: 37188711 DOI: 10.1038/s41598-023-34276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Practicing complex everyday life walking activities is challenging in paediatric neurorehabilitation, although it would prepare patients more comprehensively for the requirements of daily life. Floor projections allow simulation and training of such situations in therapy. Twenty healthy youths aged 6-18 years stepped over a tree trunk and balanced over kerbstones in a real and projected condition. Spatiotemporal and kinematic parameters of the two conditions were compared by equivalence analysis, using the medians of the differences between the two conditions with their bootstrapped 95% confidence intervals. Velocity, step and stride length, step width, and single support time were generally equivalent between the two conditions. Knee and hip joint angles and toe clearance decreased substantially during the execution phase of the projected tree trunk condition. The largest differences were found at the end of the execution phase in both tasks for the ankle joints. As spatiotemporal parameters were equivalent between the conditions, floor projections seem suitable to train precise foot placement. However, differences in knee and hip joint kinematics and toe clearance revealed that floor projections are not applicable for obstacles with a vertical extension. Therefore, exercises aiming at knee and hip flexion improvement should favourably be trained with real objects.
Collapse
Affiliation(s)
- Sabrina Gröble
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
- Department of Health Professions, Applied Research & Development in Nursing, Bern University of Applied Sciences, Murtenstrasse 10, 3008, Bern, Switzerland.
| | - Hubertus J A van Hedel
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Jeffrey W Keller
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- Federal Office of Public Health FOPH, Schwarzenburgstrasse 157, 3003, Bern, Switzerland
| | - Corinne Ammann-Reiffer
- Swiss Children's Rehab, University Children's Hospital Zurich, Mühlebergstrasse 104, 8910, Affoltern am Albis, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| |
Collapse
|
9
|
Gait Event Prediction Using Surface Electromyography in Parkinsonian Patients. Bioengineering (Basel) 2023; 10:bioengineering10020212. [PMID: 36829706 PMCID: PMC9951979 DOI: 10.3390/bioengineering10020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Gait disturbances are common manifestations of Parkinson's disease (PD), with unmet therapeutic needs. Inertial measurement units (IMUs) are capable of monitoring gait, but they lack neurophysiological information that may be crucial for studying gait disturbances in these patients. Here, we present a machine learning approach to approximate IMU angular velocity profiles and subsequently gait events using electromyographic (EMG) channels during overground walking in patients with PD. We recorded six parkinsonian patients while they walked for at least three minutes. Patient-agnostic regression models were trained on temporally embedded EMG time series of different combinations of up to five leg muscles bilaterally (i.e., tibialis anterior, soleus, gastrocnemius medialis, gastrocnemius lateralis, and vastus lateralis). Gait events could be detected with high temporal precision (median displacement of <50 ms), low numbers of missed events (<2%), and next to no false-positive event detections (<0.1%). Swing and stance phases could thus be determined with high fidelity (median F1-score of ~0.9). Interestingly, the best performance was obtained using as few as two EMG probes placed on the left and right vastus lateralis. Our results demonstrate the practical utility of the proposed EMG-based system for gait event prediction, which allows the simultaneous acquisition of an electromyographic signal to be performed. This gait analysis approach has the potential to make additional measurement devices such as IMUs and force plates less essential, thereby reducing financial and preparation overheads and discomfort factors in gait studies.
Collapse
|