1
|
Giurgiu M, Benedyk A, Reichert M, Berhe O, Braun U, Ebner‐Priemer U, Tost H, Meyer‐Lindenberg A. Associations of Accelerometer-Measured Sedentary Behavior and Gray Matter Volume in Healthy Young Adults. Eur J Sport Sci 2025; 25:e12310. [PMID: 40293437 PMCID: PMC12036345 DOI: 10.1002/ejsc.12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Sedentary lifestyles can be seen as one of the central risk factors for poor health in the 21st century. Previous studies indicated negative associations between sedentary behavior and brain health. However, the neurological link between sedentary behavior and gray matter volume remains unclear. This study aimed to assess the relationship between device-based measured sedentary time and gray matter volume in healthy young adults. A total of 181 participants wore a move-II hip-accelerometer to measure sedentary time and physical activity over seven consecutive days. Following the study week, participants underwent a structural magnetic resonance imaging (MRI) scan to assess gray matter volume. Whole-brain voxel-based morphometry analysis was conducted on the MRI data, and group comparisons focused on a region of interest to examine the potential association of moderate-to-vigorous intensity physical activity (MVPA). On a daily average, participants spent 6.04 h (SD = 2.2) in sedentary and 1.2 h (SD = 0.51) in MVPA. More sedentary time was associated with lower gray matter volume in the left superior frontal gyrus (pFWE = 0.007). Furthermore, participants with high levels of MVPA demonstrated higher gray matter volume in the left (pFWE = 0.028) and right (pFWE = 0.022) superior frontal gyrus compared to the sedentary group with low MVPA engagement. Sedentary behavior may be linked to smaller gray matter volume in brain structure, particularly in the superior frontal gyrus, which plays an important role in motor and cognitive brain networks. Intriguingly, people with high sedentary behavior but concurrently high levels of MVPA did not exhibit this negative gray matter association.
Collapse
Affiliation(s)
- Marco Giurgiu
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
- Mental mHealth LabInstitute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Anastasia Benedyk
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
- Mental mHealth LabInstitute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Markus Reichert
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
- Mental mHealth LabInstitute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
- Department of eHealth and Sports AnalyticsRuhr‐University BochumBochumGermany
| | - Oksana Berhe
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Urs Braun
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Ulrich Ebner‐Priemer
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
- Mental mHealth LabInstitute of Sports and Sports ScienceKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Heike Tost
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| | - Andreas Meyer‐Lindenberg
- Department of Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
| |
Collapse
|
2
|
Leroux E, Tréhout M, Reboursiere E, de Flores R, Morello R, Guillin O, Quarck G, Dollfus S. Effects of web-based adapted physical activity on hippocampal plasticity, cardiorespiratory fitness, symptoms, and cardiometabolic markers in patients with schizophrenia: a randomized, controlled study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1245-1263. [PMID: 38740618 DOI: 10.1007/s00406-024-01818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Among the lifestyle interventions, the physical activity (PA) has emerged as an adjuvant non-pharmacological treatment improving mental and physical health in patients with schizophrenia (SZPs) and increasing the hippocampus (HCP) volume. Previously investigated PA programs have been face-to-face, and not necessary adapted to patients' physiological fitness. We propose an innovative 16-week adapted PA program delivered by real-time videoconferencing (e-APA), allowing SZPs to interact with a coach and to manage their physical condition. The primary goal was to demonstrate a greater increase of total HCP volumes in SZPs receiving e-APA compared to that observed in a controlled group. The secondary objectives were to demonstrate the greater effects of e-APA compared to a controlled group on HCP subfields, cardiorespiratory fitness, clinical symptoms, cognitive functions, and lipidic profile. Thirty-five SZPs were randomized to either e-APA or a controlled group receiving a health education program under the same conditions (e-HE). Variables were assessed at pre- and post-intervention time-points. The dropout rate was 11.4%. Compared to the e-HE group, the e-APA group did not have any effect on the HCP total volumes but increased the left subiculum volume. Also, the e-APA group significantly increased cardiorespiratory fitness (VO2max), improved lipidic profile and negative symptoms but not cognitive functions. This study demonstrated the high feasibility and multiple benefits of a remote e-APA program for SZPs. e-APA may increase brain plasticity and improve health outcomes in SZPs, supporting that PA should be an add-on therapeutic intervention. ClinicalTrial.gov on 25 august 2017 (NCT03261817).
Collapse
Affiliation(s)
- E Leroux
- PhIND "Physiopathology and Imaging of Neurological Disorders", UMR-S U1237, GIP CYCERON, INSERM, CYCERON, CHU de Caen Normandie, Normandie Univ, Université de Caen Normandie, Campus Jules Horowitz, Bd Henri Becquerel, BP 5229, 14074, Caen, France.
| | - M Tréhout
- PhIND "Physiopathology and Imaging of Neurological Disorders", UMR-S U1237, GIP CYCERON, INSERM, CYCERON, CHU de Caen Normandie, Normandie Univ, Université de Caen Normandie, Campus Jules Horowitz, Bd Henri Becquerel, BP 5229, 14074, Caen, France
- Centre Esquirol, Service de Psychiatrie Adulte, CHU de Caen Normandie, 14000, Caen, France
| | - E Reboursiere
- Service de Médecine du Sport, CHU de Caen Normandie, 14000, Caen, France
| | - R de Flores
- PhIND "Physiopathology and Imaging of Neurological Disorders", UMR-S U1237, GIP CYCERON, INSERM, CYCERON, CHU de Caen Normandie, Normandie Univ, Université de Caen Normandie, Campus Jules Horowitz, Bd Henri Becquerel, BP 5229, 14074, Caen, France
| | - R Morello
- Unité de Biostatistiques et Recherche Clinique, CHU de Caen Normandie, 14000, Caen, France
| | - O Guillin
- SHU du Rouvray, 76300, Sotteville-lès-Rouen, France
- Normandie Univ, UFR de Médecine, 76000, Rouen, France
- CHU de Rouen, 76000, Rouen, France
| | - G Quarck
- COMETE U1075, INSERM, CYCERON, CHU de Caen, Normandie Univ, Université de Caen Normandie, 14000, Caen, France
| | - S Dollfus
- PhIND "Physiopathology and Imaging of Neurological Disorders", UMR-S U1237, GIP CYCERON, INSERM, CYCERON, CHU de Caen Normandie, Normandie Univ, Université de Caen Normandie, Campus Jules Horowitz, Bd Henri Becquerel, BP 5229, 14074, Caen, France
- Centre Esquirol, Service de Psychiatrie Adulte, CHU de Caen Normandie, 14000, Caen, France
- Université de Caen Normandie, Normandie Univ, UFR de Santé, 14000, Caen, France
| |
Collapse
|
3
|
AO YAWEN, LI YUSHUANG, ZHAO YILIN, ZHANG LIANG, YANG RENJIE, ZHA YUNFEI. Hippocampal Subfield Volumes in Amateur Marathon Runners. Med Sci Sports Exerc 2023; 55:1208-1217. [PMID: 36878015 PMCID: PMC10241426 DOI: 10.1249/mss.0000000000003144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE Numerous studies have implicated the involvement of structure and function of the hippocampus in physical exercise, and the larger hippocampal volume is one of the relevant benefits reported in exercise. It remains to be determined how the different subfields of hippocampus respond to physical exercise. METHODS A 3D T1-weighted magnetic resonance imaging was acquired in 73 amateur marathon runners (AMR) and 52 healthy controls (HC) matched with age, sex, and education. The Montreal Cognitive Assessment, the Pittsburgh Sleep Quality Index (PSQI), and the Fatigue Severity Scale were assessed in all participants. We obtained hippocampal subfield volumes using FreeSurfer 6.0. We compared the volumes of the hippocampal subfield between the two groups and ascertained correlation between the significant subfield metrics and the significant behavioral measure in AMR group. RESULTS The AMR had significantly better sleep than HC, manifested as with lower score of PSQI. Sleep duration in AMR and HC was not significantly different from each other. In the AMR group, the left and right hippocampus, cornu ammonis 1 (CA1), CA4, granule cell and molecular layers of the dentate gyrus, molecular layer, left CA2-3, and left hippocampal-amygdaloid transition area volumes were significantly larger compared with those in the HC group. In AMR group, the correlations between the PSQI and the hippocampal subfield volumes were not significant. No correlations were found between hippocampal subfield volumes and sleep duration in AMR group. CONCLUSIONS We reported larger volumes of specific hippocampal subfields in AMR, which may provide a hippocampal volumetric reserve that protects against age-related hippocampal deterioration. These findings should be further investigated in longitudinal studies.
Collapse
|
4
|
Palmer JA, Morris JK, Billinger SA, Lepping RJ, Martin L, Green Z, Vidoni ED. Hippocampal blood flow rapidly and preferentially increases after a bout of moderate-intensity exercise in older adults with poor cerebrovascular health. Cereb Cortex 2023; 33:5297-5306. [PMID: 36255379 PMCID: PMC10152056 DOI: 10.1093/cercor/bhac418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 11/14/2022] Open
Abstract
Over the course of aging, there is an early degradation of cerebrovascular health, which may be attenuated with aerobic exercise training. Yet, the acute cerebrovascular response to a single bout of exercise remains elusive, particularly within key brain regions most affected by age-related disease processes. We investigated the acute global and region-specific cerebral blood flow (CBF) response to 15 minutes of moderate-intensity aerobic exercise in older adults (≥65 years; n = 60) using arterial spin labeling magnetic resonance imaging. Within 0-6 min post-exercise, CBF decreased across all regions, an effect that was attenuated in the hippocampus. The exercise-induced CBF drop was followed by a rebound effect over the 24-minute postexercise assessment period, an effect that was most robust in the hippocampus. Individuals with low baseline perfusion demonstrated the greatest hippocampal-specific CBF effect post-exercise, showing no immediate drop and a rapid increase in CBF that exceeded baseline levels within 6-12 minutes postexercise. Gains in domain-specific cognitive performance postexercise were not associated with changes in regional CBF, suggesting dissociable effects of exercise on acute neural and vascular plasticity. Together, the present findings support a precision-medicine framework for the use of exercise to target brain health that carefully considers age-related changes in the cerebrovascular system.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Neurology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
| | - Jill K Morris
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Sandra A Billinger
- Department of Neurology, School of Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, United States
| | - Rebecca J Lepping
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
| | - Laura Martin
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Zachary Green
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, School of Health Professions, University of Kansas Medical Center, 3901 Rainbow Blvd. Kansas City, KS, 66160, United States
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| | - Eric D Vidoni
- University of Kansas Alzheimer’s Disease Research Center, 4350 Shawnee Mission Parkway, Fairway, KS, 66205, United States
| |
Collapse
|
5
|
Wang J, Fang J, Xu Y, Zhong H, Li J, Li H, Li G. Difference analysis of multidimensional electroencephalogram characteristics between young and old patients with generalized anxiety disorder. Front Hum Neurosci 2022; 16:1074587. [PMID: 36504623 PMCID: PMC9731337 DOI: 10.3389/fnhum.2022.1074587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Growing evidences indicate that age plays an important role in the development of mental disorders, but few studies focus on the neuro mechanisms of generalized anxiety disorder (GAD) in different age groups. Therefore, this study attempts to reveal the neurodynamics of Young_GAD (patients with GAD under the age of 50) and Old_GAD (patients with GAD over 50 years old) through statistical analysis of multidimensional electroencephalogram (EEG) features and machine learning models. In this study, 10-min resting-state EEG data were collected from 45 Old_GAD and 33 Young_GAD. And multidimensional EEG features were extracted, including absolute power (AP), fuzzy entropy (FE), and phase-lag-index (PLI), on which comparison and analyses were performed later. The results showed that Old_GAD exhibited higher power spectral density (PSD) value and FE value in beta rhythm compared to theta, alpha1, and alpha2 rhythms, and functional connectivity (FC) also demonstrated significant reorganization of brain function in beta rhythm. In addition, the accuracy of machine learning classification between Old_GAD and Young_GAD was 99.67%, further proving the feasibility of classifying GAD patients by age. The above findings provide an objective basis in the field of EEG for the age-specific diagnosis and treatment of GAD.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua, China,College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Jiaqi Fang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua, China,College of Engineering, Zhejiang Normal University, Jinhua, China
| | - Yanting Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua, China,College of Engineering, Zhejiang Normal University, Jinhua, China
| | - Hongyang Zhong
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua, China,College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Jing Li
- College of Foreign Language, Zhejiang Normal University, Jinhua, China
| | - Huayun Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China,Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China,*Correspondence: Gang Li,
| | - Gang Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, Zhejiang Normal University, Jinhua, China,College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China,Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China,Huayun Li,
| |
Collapse
|