1
|
Wei F, Luo L, Wang X, Luo W, Wu F, Tian S, Qin Y, Zeng L. The masking mechanism of catechin to the sweet taste of phloridzin. Food Chem 2025; 464:141756. [PMID: 39461313 DOI: 10.1016/j.foodchem.2024.141756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Our previous study speculated that decreased levels of catechin were associated with heightened sweetness in Camellia nanchuanica black tea (NCBT). In this study, we found that catechin has the capacity to obscure the sweet taste of phloridzin and verified the above speculation. To delve deeper into this masking effect, we examined various concentrations of catechin (cat-10cat) and phloridzin (phl-10phl), and revealed catechin (cat-10cat) significantly reduced the sweetness of 10phl. Therefore, catechin (cat-10cat) and 10phl combinations were selected to investigate the impact on sweet taste receptor cells. The results showed increasing concentrations of catechin inhibited the calcium signal of the phloridzin-catechin solution, attributing to lower stability of phloridzin and Taste 1 Receptor Member 3 (one subunit of sweet taste receptor proteins) after addition catechin. Finally, 10phl/10cat significantly activated the central and prefrontal regions generating more bitter tastes and negative emotions which also probably contributed to mask sweet tastes of phloridzin.
Collapse
Affiliation(s)
- Fang Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, Chongqing, China
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, Chongqing, China
| | - Xi Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, Chongqing, China
| | - Wei Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, Chongqing, China
| | - Fan Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, Chongqing, China
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yumei Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Chongqing Tea Technology and Innovation Center, Chongqing, China.
| |
Collapse
|
2
|
Vignando M, Ffytche D, Mazibuko N, Palma G, Montagnese M, Dave S, Nutt DJ, Gabay AS, Tai YF, Batzu L, Leta V, Williams Gray CH, Chaudhuri KR, Mehta MA. Visual mismatch negativity in Parkinson's psychosis and potential for testing treatment mechanisms. Brain Commun 2024; 6:fcae291. [PMID: 39355002 PMCID: PMC11443450 DOI: 10.1093/braincomms/fcae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Psychosis and visual hallucinations are a prevalent non-motor symptom of Parkinson's disease, negatively affecting patients' quality of life and constituting a greater risk for dementia. Understanding neural mechanisms associated to these symptoms is instrumental for treatment development. The mismatch negativity is an event-related potential evoked by a violation in a sequence of sensory events. It is widely considered an index of sensory change-detection. Reduced mismatch negativity response is one of the most replicated results in schizophrenia and has been suggested to be a superior psychosis marker. To understand whether this event-related potential component could be a similarly robust marker for Parkinson's psychosis, we used electroencephalography with a change-detection task to study the mismatch negativity in the visual modality in 20 participants with Parkinson's and visual hallucinations and 18 matched Parkinson's participants without hallucinations. We find that visual mismatch negativity is clearly present in participants with Parkinson's disease without hallucinations at both parieto-occipital and frontal sites, whereas participants with Parkinson's and visual hallucinations show reduced or no differences in the two waveforms, confirming the sensitivity of mismatch negativity to psychosis, even within the same diagnostic group. We also explored the relationship between hallucination severity and visual mismatch negativity amplitude, finding a negative correlation between visual hallucinations severity scores and visual mismatch negativity amplitude at a central frontal and a parieto-occipital electrodes, whereby the more severe or complex (illusions, formed visual hallucinations) the symptoms the smaller the amplitude. We have also tested the potential role of the serotonergic 5-HT2A cascade in visual hallucinations in Parkinson's with these symptoms, following the receptor trafficking hypothesis. We did so with a pilot study in healthy controls (N = 18) providing support for the role of the Gi/o-dependent pathway in the psychedelic effect and a case series in participants with Parkinson's and visual hallucinations (N = 5) using a double-blind crossover design. Positive results on psychosis scores and mismatch amplitude add further to the potential role of serotonergic modulation of visual hallucinations in Parkinson's disease.
Collapse
Affiliation(s)
- Miriam Vignando
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dominic Ffytche
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ndabezinhle Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Giulio Palma
- Department of Psychology, University of Southampton, Southampton, SO17 1PS, UK
| | - Marcella Montagnese
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 2PY, UK
| | - Sonali Dave
- Department of Optometry and Visual Sciences, City, University of London, London, EC1V 0HB, UK
| | - David J Nutt
- Imperial College London, Faculty of Medicine, Department of Brain Sciences, Burlington Danes, The Hammersmith Hospital, London W12 0NN, UK
| | | | - Yen F Tai
- Imperial College London, Faculty of Medicine, Department of Brain Sciences, Charing Cross Hospital, London W6 8RF, UK
| | - Lucia Batzu
- Parkinson Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, SW9 8R, London, UK
| | - Valentina Leta
- Parkinson Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, SW9 8R, London, UK
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Caroline H Williams Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge/Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0PY, UK
| | - K Ray Chaudhuri
- Parkinson Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, SW9 8R, London, UK
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| |
Collapse
|
3
|
Kida T, Kaneda T, Nishihira Y. ERP evidence of attentional somatosensory processing and stimulus-response coupling under different hand and arm postures. Front Hum Neurosci 2023; 17:1252686. [PMID: 38021238 PMCID: PMC10676239 DOI: 10.3389/fnhum.2023.1252686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
We investigated (1) the effects of divided and focused attention on event-related brain potentials (ERPs) elicited by somatosensory stimulation under different response modes, (2) the effects of hand position (closely-placed vs. separated hands) and arm posture (crossed vs. uncrossed forearms) on the attentional modulation of somatosensory ERPs, and (3) changes in the coupling of stimulus- and response-related processes by somatosensory attention using a single-trial analysis of P300 latency and reaction times. Electrocutaneous stimulation was presented randomly to the thumb or middle finger of the left or right hand at random interstimulus intervals (700-900 ms). Subjects attended unilaterally or bilaterally to stimuli in order to detect target stimuli by a motor response or counting. The effects of unilaterally-focused attention were also tested under different hand and arm positions. The amplitude of N140 in the divided attention condition was intermediate between unilaterally attended and unattended stimuli in the unilaterally-focused attention condition in both the mental counting and motor response tasks. Attended infrequent (target) stimuli elicited greater P300 in the unilaterally attention condition than in the divided attention condition. P300 latency was longer in the divided attention condition than in the unilaterally-focused attention condition in the motor response task, but remained unchanged in the counting task. Closely locating the hands had no impact, whereas crossing the forearms decreased the attentional enhancement in N140 amplitude. In contrast, these two manipulations uniformly decreased P300 amplitude and increased P300 latency. The correlation between single-trial P300 latency and RT was decreased by crossed forearms, but not by divided attention or closely-placed hands. Therefore, the present results indicate that focused and divided attention differently affected middle latency and late processing, and that hand position and arm posture also differently affected attentional processes and stimulus-response coupling.
Collapse
Affiliation(s)
- Tetsuo Kida
- Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | | | - Yoshiaki Nishihira
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Peters A, Brockhoff L, Bruchmann M, Dellert T, Moeck R, Schlossmacher I, Straube T. Visual perceptual load and processing of somatosensory stimuli in primary and secondary somatosensory cortices. Sci Rep 2023; 13:7005. [PMID: 37117254 PMCID: PMC10147921 DOI: 10.1038/s41598-023-34225-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
Load theory assumes that neural activation to distractors in early sensory cortices is modulated by the perceptual load of a main task, regardless of whether task and distractor share the same sensory modality or not. While several studies have investigated the question of load effects on distractor processing in early sensory areas, there is no functional magnetic resonance imaging (fMRI) study regarding load effects on somatosensory stimuli. Here, we used fMRI to investigate effects of visual perceptual load on neural responses to somatosensory stimuli applied to the wrist in a study with 44 participants. Perceptual load was manipulated by an established sustained visual detection task, which avoided simultaneous target and distractor presentations. Load was operationalized by detection difficulty of subtle or clear color changes of one of 12 rotating dots. While all somatosensory stimuli led to activation in somatosensory areas SI and SII, we found no statistically significant difference in brain activation to these stimuli under high compared to low sustained visual load. Moreover, exploratory Bayesian analyses supported the absence of differences. Thus, our findings suggest a resistance of somatosensory processing to at least some forms of visual perceptual load, possibly due to behavioural relevance of discrete somatosensory stimuli and separable attentional resources for the somatosensory and visual modality.
Collapse
Affiliation(s)
- Antje Peters
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany.
| | - Laura Brockhoff
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Torge Dellert
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Robert Moeck
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
| | - Insa Schlossmacher
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| |
Collapse
|
5
|
Wang L, Li C, Han Z, Wu Q, Sun L, Zhang X, Go R, Wu J, Yan T. Spatiotemporal and sensory modality attention processing with domain-specific representations in frontoparietal areas. Cereb Cortex 2022; 32:5489-5502. [PMID: 35136999 DOI: 10.1093/cercor/bhac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 01/25/2023] Open
Abstract
The frontoparietal network (FPN), including bilateral frontal eye field, inferior parietal sulcus, and supplementary motor area, has been linked to attention processing, including spatiotemporal and sensory modality domains. However, it is unclear whether FPN encodes representations of these domains that are generalizable across subdomains. We decomposed multivariate patterns of functional magnetic resonance imaging activity from 20 participants into domain-specific components and identified latent multivariate representations that generalized across subdomains. The 30 experimental conditions were organized into unimodal-bimodal and spatial-temporal models. We found that brain areas in the FPN, form the primary network that modulated during attention across domains. However, the activation patterns of areas within the FPN were reorganized according to the specific attentional demand, especially when pay attention to different sensory, suggesting distinct regional neural representations associated with specific attentional processes within FPN. In addition, there were also other domain-specific areas outside the FPN, such as the dorsolateral prefrontal cortex. Our conclusion is that, according to the results of the analysis of representation similarity, 2 types of activated brain regions, related to attention domain detailed information processing and general information processing, can be revealed.
Collapse
Affiliation(s)
- Luyao Wang
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Ziteng Han
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiong Wu
- Department of Psychology, Suzhou University of Science and Technology, Suzhou 215009, China.,Cognitive Neuroscience Lab, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-0084, Japan
| | - Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Ritsu Go
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinglong Wu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.,Cognitive Neuroscience Lab, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-0084, Japan
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Oddball-irrelevant visual stimuli cross-modally attenuate auditory mismatch negativity in rats. Neuroreport 2022; 33:363-368. [DOI: 10.1097/wnr.0000000000001793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Yang L, Liu Q, Zhang Z, Gan L, Zhang Y, Wu J. Materials for Dry Electrodes for the Electroencephalography: Advances, Challenges, Perspectives. ADVANCED MATERIALS TECHNOLOGIES 2022; 7. [DOI: 10.1002/admt.202100612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 11/28/2024]
Abstract
AbstractElectroencephalography (EEG) is extensively applied in brain cognition, clinical diagnosis, and artificial intelligence through detecting and analyzing the human brain biopotential. The Ag/AgCl combined with a conductive gel is the most widely used electrode in EEG. However, pre‐preparation before testing is time‐consuming and complicated. The dried gel has to be cleaned from hair after testing, otherwise discomforting the subjects. Therefore, it is strongly desired to develop a dry electrode to ease the test process and comfort the subjects. However, the high electrode–skin contact impedance weakens the intensity of biopotential signals. The materials with the features of high conductivity, good biocompatibility, and ease to obtain are more favorable for the dry EEG electrodes. This review provides state‐of‐the‐art materials for the dry electrode for the EEG with respect to the material preparation, and their electrical and electroencephalographical properties. Challenges and perspectives related to the material preparation, cost, and applications are also discussed.
Collapse
Affiliation(s)
- Liangtao Yang
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Qing Liu
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Lu Gan
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Yi Zhang
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence Shenzhen Institute of Advanced Technology Chinese Academy of Sciences No. 1068 Xueyuan Avenue Shenzhen 518055 China
| |
Collapse
|
8
|
Brockhoff L, Schindler S, Bruchmann M, Straube T. Effects of perceptual and working memory load on brain responses to task-irrelevant stimuli: Review and implications for future research. Neurosci Biobehav Rev 2022; 135:104580. [DOI: 10.1016/j.neubiorev.2022.104580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
|