1
|
Özkahraman A, Ölmez T, Dokur Z. Performance Improvement with Reduced Number of Channels in Motor Imagery BCI System. SENSORS (BASEL, SWITZERLAND) 2024; 25:120. [PMID: 39796911 PMCID: PMC11723053 DOI: 10.3390/s25010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone. EOG channels provide useful information for MI signal classification, countering the notion that they only introduce eye-related noise. The study uses advanced deep learning techniques, including multiple 1D convolution blocks and depthwise-separable convolutions, to optimize classification accuracy. The findings in this study are tested on two datasets: dataset 1, the BCI Competition IV Dataset IIa (4-class MI), and dataset 2, the Weibo dataset (7-class MI). The performance for dataset 1, utilizing 3 EEG and 3 EOG channels (6 channels total), is of 83% accuracy, while dataset 2, with 3 EEG and 2 EOG channels (5 channels total), achieves an accuracy of 61%, demonstrating the effectiveness of the proposed channel reduction method and deep learning model.
Collapse
Affiliation(s)
- Ali Özkahraman
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey
- Department of Electrical and Electronics Engineering, Iskenderun Technical University, 31200 Iskenderun, Hatay, Turkey
| | - Tamer Ölmez
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey
| | - Zümray Dokur
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey
| |
Collapse
|
2
|
Carrasco CD, Bahle B, Simmons AM, Luck SJ. Using multivariate pattern analysis to increase effect sizes for event-related potential analyses. Psychophysiology 2024; 61:e14570. [PMID: 38516957 DOI: 10.1111/psyp.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Multivariate pattern analysis (MVPA) approaches can be applied to the topographic distribution of event-related potential (ERP) signals to "decode" subtly different stimulus classes, such as different faces or different orientations. These approaches are extremely sensitive, and it seems possible that they could also be used to increase effect sizes and statistical power in traditional paradigms that ask whether an ERP component differs in amplitude across conditions. To assess this possibility, we leveraged the open-source ERP CORE data set and compared the effect sizes resulting from conventional univariate analyses of mean amplitude with two MVPA approaches (support vector machine decoding and the cross-validated Mahalanobis distance, both of which are easy to compute using open-source software). We assessed these approaches across seven widely studied ERP components (N170, N400, N2pc, P3b, lateral readiness potential, error related negativity, and mismatch negativity). Across all components, we found that multivariate approaches yielded effect sizes that were as large or larger than the effect sizes produced by univariate approaches. These results indicate that researchers could obtain larger effect sizes, and therefore greater statistical power, by using multivariate analysis of topographic voltage patterns instead of traditional univariate analyses in many ERP studies.
Collapse
Affiliation(s)
| | - Brett Bahle
- Center for Mind and Brain, University of California, Davis, California, USA
| | | | - Steven J Luck
- Center for Mind and Brain, University of California, Davis, California, USA
| |
Collapse
|
3
|
AL-Quraishi MS, Tan WH, Elamvazuthi I, Ooi CP, Saad NM, Al-Hiyali MI, Karim H, Azhar Ali SS. Cortical signals analysis to recognize intralimb mobility using modified RNN and various EEG quantities. Heliyon 2024; 10:e30406. [PMID: 38726180 PMCID: PMC11079093 DOI: 10.1016/j.heliyon.2024.e30406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Electroencephalogram (EEG) signals are critical in interpreting sensorimotor activities for predicting body movements. However, their efficacy in identifying intralimb movements, such as the dorsiflexion and plantar flexion of the foot, remains suboptimal. This study aims to explore whether various EEG signal quantities can effectively recognize intralimb movements to facilitate the development of Brain-Computer Interface (BCI) devices for foot rehabilitation. This research involved twenty-two healthy, right-handed participants. EEG data were collected using 21 electrodes positioned over the motor cortex, while two electromyography (EMG) electrodes recorded the onset of ankle joint movements. The study focused on analyzing slow cortical potential (SCP) and sensorimotor rhythms (SMR) in alpha and beta bands from the EEG. Five key features-fourth-order Autoregressive feature, variance, waveform length, standard deviation, and permutation entropy-were extracted. A modified Recurrent Neural Network (RNN) including Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms was developed for movement recognition. These were compared against conventional machine learning algorithms, including nonlinear Support Vector Machine (SVM) and k Nearest Neighbourhood (kNN) classifiers. The performance of the proposed models was assessed using two data schemes: within-subject and across-subjects. The findings demonstrated that the GRU and LSTM models significantly outperformed traditional machine learning algorithms in recognizing different EEG signal quantities for intralimb movement. The study indicates that deep learning models, particularly GRU and LSTM, hold superior potential over standard machine learning techniques in identifying intralimb movements using EEG signals. Where the accuracies of LSTM for within and across subjects were 98.87 ± 1.80 % and 87.38 ± 0.86 % respectively. Whereas the accuracy of GRU within and across subjects were 99.18 ± 1.28 % and 86.44 ± 0.69 % respectively. This advancement could significantly benefit the development of BCI devices aimed at foot rehabilitation, suggesting a new avenue for enhancing physical therapy outcomes.
Collapse
Affiliation(s)
- Maged S. AL-Quraishi
- Interdisciplinary Research Center for Smart Mobility and Logistics (IRC-SML), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Wooi Haw Tan
- Center of Digital Home, Faculty of Engineering, Multimedia University, 63100, Cyberjaya, Selangor, Malaysia
| | - Irraivan Elamvazuthi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 36210, Perak, Malaysia
| | - Chee Pun Ooi
- Center of Digital Home, Faculty of Engineering, Multimedia University, 63100, Cyberjaya, Selangor, Malaysia
| | - Naufal M. Saad
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 36210, Perak, Malaysia
| | - Mohammed Isam Al-Hiyali
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 36210, Perak, Malaysia
| | - H.A. Karim
- Center of Digital Home, Faculty of Engineering, Multimedia University, 63100, Cyberjaya, Selangor, Malaysia
| | - Syed Saad Azhar Ali
- Interdisciplinary Research Center for Smart Mobility and Logistics (IRC-SML), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Aerospace Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Carrasco CD, Bahle B, Simmons AM, Luck SJ. Using Multivariate Pattern Analysis to Increase Effect Sizes for Event-Related Potential Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566051. [PMID: 37986854 PMCID: PMC10659264 DOI: 10.1101/2023.11.07.566051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Multivariate pattern analysis approaches can be applied to the topographic distribution of event-related potential (ERP) signals to 'decode' subtly different stimulus classes, such as different faces or different orientations. These approaches are extremely sensitive, and it seems possible that they could also be used to increase effect sizes and statistical power in traditional paradigms that ask whether an ERP component differs in amplitude across conditions. To assess this possibility, we leveraged the open-source ERP CORE dataset and compared the effect sizes resulting from conventional univariate analyses of mean amplitude with two multivariate pattern analysis approaches (support vector machine decoding and the cross-validated Mahalanobis distance, both of which are easy to compute using open-source software). We assessed these approaches across seven widely studied ERP components (N170, N400, N2pc, P3b, lateral readiness potential, error related negativity, and mismatch negativity). Across all components, we found that multivariate approaches yielded effect sizes that were as large or larger than the effect sizes produced by univariate approaches. These results indicate that researchers could obtain larger effect sizes, and therefore greater statistical power, by using multivariate analysis of topographic voltage patterns instead of traditional univariate analyses in many ERP studies.
Collapse
Affiliation(s)
| | - Brett Bahle
- Center for Mind & Brain, University of California, Davis
| | | | - Steven J Luck
- Center for Mind & Brain, University of California, Davis
| |
Collapse
|
5
|
Akbarnia Y, Daliri MR. EEG-based identification system using deep neural networks with frequency features. Heliyon 2024; 10:e25999. [PMID: 38380013 PMCID: PMC10877352 DOI: 10.1016/j.heliyon.2024.e25999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Improving system security can be achieved through people identification. Among various methods, electroencephalography-based (EEG-based) identification is a dependable way to prevent identity theft and impersonation. Due to the distractions present in the identification environment, such as lack of focus, mental engagement, small body movements, blinking, and other noises, it is essential to analyze data that reflects these conditions. The present research aims to advance practical EEG-based identification by studying data with mental preoccupation and developing a suitable algorithm. In this article, data from a study conducted on a group of 109 individuals has been analyzed. The data is categorized into two groups: focused data and waiting data. The article describes preprocessing the data and extracting three types of features, including Statistical, Frequency, and Wavelet. Then, a deep neural network (DNN) is used to classify the data. The DNN utilizes a multilayer, fully-connected neural network, with the number of layers and neurons varying based on the data type. Optimization and regularization methods are employed to improve the accuracy of the results. The DNN achieved an average accuracy of 99.19% for frequency features over all subjects in the focused data category, while the waiting data category showed an accuracy of 97.81%.
Collapse
Affiliation(s)
- Yasaman Akbarnia
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
6
|
Siviero I, Menegaz G, Storti SF. Functional Connectivity and Feature Fusion Enhance Multiclass Motor-Imagery Brain-Computer Interface Performance. SENSORS (BASEL, SWITZERLAND) 2023; 23:7520. [PMID: 37687976 PMCID: PMC10490741 DOI: 10.3390/s23177520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
(1) Background: in the field of motor-imagery brain-computer interfaces (MI-BCIs), obtaining discriminative features among multiple MI tasks poses a significant challenge. Typically, features are extracted from single electroencephalography (EEG) channels, neglecting their interconnections, which leads to limited results. To address this limitation, there has been growing interest in leveraging functional brain connectivity (FC) as a feature in MI-BCIs. However, the high inter- and intra-subject variability has so far limited its effectiveness in this domain. (2) Methods: we propose a novel signal processing framework that addresses this challenge. We extracted translation-invariant features (TIFs) obtained from a scattering convolution network (SCN) and brain connectivity features (BCFs). Through a feature fusion approach, we combined features extracted from selected channels and functional connectivity features, capitalizing on the strength of each component. Moreover, we employed a multiclass support vector machine (SVM) model to classify the extracted features. (3) Results: using a public dataset (IIa of the BCI Competition IV), we demonstrated that the feature fusion approach outperformed existing state-of-the-art methods. Notably, we found that the best results were achieved by merging TIFs with BCFs, rather than considering TIFs alone. (4) Conclusions: our proposed framework could be the key for improving the performance of a multiclass MI-BCI system.
Collapse
Affiliation(s)
- Ilaria Siviero
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Silvia Francesca Storti
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| |
Collapse
|
7
|
Craik A, González-España JJ, Alamir A, Edquilang D, Wong S, Sánchez Rodríguez L, Feng J, Francisco GE, Contreras-Vidal JL. Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface. SENSORS (BASEL, SWITZERLAND) 2023; 23:5930. [PMID: 37447780 DOI: 10.3390/s23135930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Objective: We designed and validated a wireless, low-cost, easy-to-use, mobile, dry-electrode headset for scalp electroencephalography (EEG) recordings for closed-loop brain-computer (BCI) interface and internet-of-things (IoT) applications. Approach: The EEG-based BCI headset was designed from commercial off-the-shelf (COTS) components using a multi-pronged approach that balanced interoperability, cost, portability, usability, form factor, reliability, and closed-loop operation. Main Results: The adjustable headset was designed to accommodate 90% of the population. A patent-pending self-positioning dry electrode bracket allowed for vertical self-positioning while parting the user's hair to ensure contact of the electrode with the scalp. In the current prototype, five EEG electrodes were incorporated in the electrode bracket spanning the sensorimotor cortices bilaterally, and three skin sensors were included to measure eye movement and blinks. An inertial measurement unit (IMU) provides monitoring of head movements. The EEG amplifier operates with 24-bit resolution up to 500 Hz sampling frequency and can communicate with other devices using 802.11 b/g/n WiFi. It has high signal-to-noise ratio (SNR) and common-mode rejection ratio (CMRR) (121 dB and 110 dB, respectively) and low input noise. In closed-loop BCI mode, the system can operate at 40 Hz, including real-time adaptive noise cancellation and 512 MB of processor memory. It supports LabVIEW as a backend coding language and JavaScript (JS), Cascading Style Sheets (CSS), and HyperText Markup Language (HTML) as front-end coding languages and includes training and optimization of support vector machine (SVM) neural classifiers. Extensive bench testing supports the technical specifications and human-subject pilot testing of a closed-loop BCI application to support upper-limb rehabilitation and provides proof-of-concept validation for the device's use at both the clinic and at home. Significance: The usability, interoperability, portability, reliability, and programmability of the proposed wireless closed-loop BCI system provides a low-cost solution for BCI and neurorehabilitation research and IoT applications.
Collapse
Affiliation(s)
- Alexander Craik
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
| | - Juan José González-España
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
| | - Ayman Alamir
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
- Department of Electrical Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - David Edquilang
- Department of Industrial Design, University of Houston, Houston, TX 77004, USA
| | - Sarah Wong
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
- Department of Industrial Design, University of Houston, Houston, TX 77004, USA
| | - Lianne Sánchez Rodríguez
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
| | - Jeff Feng
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
- Department of Industrial Design, University of Houston, Houston, TX 77004, USA
| | - Gerard E Francisco
- Department of Physical Medicine & Rehabilitation, University of Texas Health McGovern Medical School, Houston, TX 77030, USA
- The Institute for Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Jose L Contreras-Vidal
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77004, USA
- Noninvasive Brain-Machine Interface Systems Laboratory, NSF Industry-University Cooperative Research Center for Building Reliable Advances and Innovations in Neurotechnology (IUCRC BRAIN) Center, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
8
|
Duan T, Wang Z, Liu S, Yin Y, Srihari SN. UNCER: A Framework for Uncertainty Estimation and Reduction in Neural Decoding of EEG Signals. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2023.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
9
|
Li MA, Ruan ZW. Decoding motor imagery with a simplified distributed dipoles model at source level. Cogn Neurodyn 2023; 17:445-457. [PMID: 37007206 PMCID: PMC10050617 DOI: 10.1007/s11571-022-09826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Motor imagery (MI) based brain computer interface significantly oriented the development of neuro-rehabilitation, and the crucial issue is how to accurately detect the changes of cerebral cortex for MI decoding. The brain activity can be calculated based on the head model and observed scalp EEG, providing insights regarding cortical dynamics by using equivalent current dipoles with high spatial and temporal resolution. Now, all the dipoles within entire cortex or partial regions of interest are directly applied to data representation, this may make the key information weakened or lost, and it is worth studying how to choose the most important from numerous dipoles. In this paper, we devote to building a simplified distributed dipoles model (SDDM), which is combined with convolutional neural network (CNN), generating a MI decoding method at source level (called SDDM-CNN). First, all channels of raw MI-EEG signals are subdivided by a series of bandpass filters with width of 1 Hz, the average energies associated with any sub-band signals are calculated and ranked in a descending order to screen the top n sub-bands; then, the MI-EEG signals over each selected sub-band are mapped into source space by using EEG source imaging technology, and for each scout of neuroanatomical Desikan-Killiany partition, a centered dipole is selected as the most relevant dipole and put together to build a SDDM to reflect the neuroelectric activity of entire cerebral cortex; finally, the 4 dimensional (4D) magnitude matrix is constructed for each SDDM and fused into a novel data representation, which is further input to a well-designed 3DCNN with n parallel branches (nB3DCNN) to extract and classify the comprehensive features from time-frequency-space dimensions. Experiments are carried out on three public datasets, and the average ten-fold CV decoding accuracies achieve 95.09%, 97.98% and 94.53% respectively, and the statistical analysis is fulfilled by standard deviation, kappa value and confusion matrix. Experiment results suggest that it is beneficial to pick out the most sensitive sub-bands in sensor domain, and SDDM can sufficiently describe the dynamic changing of entire cortex, improving decoding performance while greatly reducing number of source signals. Also, nB3DCNN is capable of exploring spatial-temporal features from multi sub-bands.
Collapse
Affiliation(s)
- Ming-ai Li
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124 China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing, 100124 China
- Engineering Research Center of Digital Community, Ministry of Education, Beijing, 100124 China
| | - Zi-wei Ruan
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124 China
| |
Collapse
|
10
|
Parallel genetic algorithm based common spatial patterns selection on time–frequency decomposed EEG signals for motor imagery brain-computer interface. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Syrov N, Yakovlev L, Miroshnikov A, Kaplan A. Beyond passive observation: feedback anticipation and observation activate the mirror system in virtual finger movement control via P300-BCI. Front Hum Neurosci 2023; 17:1180056. [PMID: 37213933 PMCID: PMC10192585 DOI: 10.3389/fnhum.2023.1180056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023] Open
Abstract
Action observation (AO) is widely used as a post-stroke therapy to activate sensorimotor circuits through the mirror neuron system. However, passive observation is often considered to be less effective and less interactive than goal-directed movement observation, leading to the suggestion that observation of goal-directed actions may have stronger therapeutic potential, as goal-directed AO has been shown to activate mechanisms for monitoring action errors. Some studies have also suggested the use of AO as a form of Brain-computer interface (BCI) feedback. In this study, we investigated the potential for observation of virtual hand movements within a P300-based BCI as a feedback system to activate the mirror neuron system. We also explored the role of feedback anticipation and estimation mechanisms during movement observation. Twenty healthy subjects participated in the study. We analyzed event-related desynchronization and synchronization (ERD/S) of sensorimotor EEG rhythms and Error-related potentials (ErrPs) during observation of virtual hand finger flexion presented as feedback in the P300-BCI loop and compared the dynamics of ERD/S and ErrPs during observation of correct feedback and errors. We also analyzed these EEG markers during passive AO under two conditions: when subjects anticipated the action demonstration and when the action was unexpected. A pre-action mu-ERD was found both before passive AO and during action anticipation within the BCI loop. Furthermore, a significant increase in beta-ERS was found during AO within incorrect BCI feedback trials. We suggest that the BCI feedback may exaggerate the passive-AO effect, as it engages feedback anticipation and estimation mechanisms as well as movement error monitoring simultaneously. The results of this study provide insights into the potential of P300-BCI with AO-feedback as a tool for neurorehabilitation.
Collapse
Affiliation(s)
- Nikolay Syrov
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- *Correspondence: Nikolay Syrov,
| | - Lev Yakovlev
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Andrei Miroshnikov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Kaplan
- V. Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Department of Human and Animal Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Shi B, Yue Z, Yin S, Wang W, Yu H, Huang Z, Wang J. Adaptive binary multi-objective harmony search algorithm for channel selection and cross-subject generalization in motor imagery-based BCI. J Neural Eng 2022; 19. [PMID: 35772393 DOI: 10.1088/1741-2552/ac7d73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Multi-channel EEG data containing redundant information and noise may result in low classification accuracy and high computational complexity, which limits the practicality of motor imagery-based BCI systems. Therefore, channel selection can improve BCI performance and contribute to user convenience. Additionally, cross-subject generalization is a key topic in the channel selection of motor imagery-based BCI. APPROACH In this study, an adaptive binary multi-objective harmony search (ABMOHS) algorithm is proposed to select the optimal set of channels. Furthermore, a new adaptive crosssubject generalization model (ACGM) is proposed. Three public motor imagery datasets were used to validate the effectiveness of the proposed method. MAIN RESULTS The Wilcoxon signed-rank test was performed on the test accuracies, and the results indicated that the ABMOHS method significantly outperformed all channels (p<0.001), the C3-Cz-C4 channels (p<0.001), and 20 channels (p<0.001) in the sensorimotor cortex. The ABMOHS algorithm based on Fisher's linear discriminant analysis (FLDA) and support vector machine (SVM) classifiers greatly reduces the number of selected channels, especially for larger channel sizes (Dataset 2), and obtains a comparative classification performance. Although there was no significant difference in test classification performance between ABMOHS and non-dominated sorting genetic algorithm II (NSGA-II) when FLDA and SVM were used, ABMOHS required less computational time than NSGA-II. Furthermore, the number of channels obtained by ABMOHS algorithm were significantly smaller than those obtained by CSP-Rank and correlation-based channel selection algorithm (CCS). Additionally, the generalization of ACGM to untrained subjects shows that the mean test classification accuracy of ACGM created by a small sample of trained subjects is significantly better than that of Special-16 and Special-32. SIGNIFICANCE The proposed method can reduce the calibration time in the training phase and improve the practicability of MI-BCI.
Collapse
Affiliation(s)
- Bin Shi
- School of Mechanical Engineering, Xi'an Jiaotong University, Institute of Robotics and Intelligent System, Xi'an, 710049, CHINA
| | - Zan Yue
- Xi'an Jiaotong University, Institute of Robotics and Intelligent System, Xi'an, Shaanxi, 710049, CHINA
| | - Shuai Yin
- Xi'an Jiaotong University, Institute of Robotics and Intelligent System, Xi'an, Shaanxi, 710049, CHINA
| | - Weizhen Wang
- Institute of Robotics and Intelligent Systems, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, CHINA
| | - Haoyong Yu
- Department of Bioengineering Faculty of Engineering, National University of Singapore, 5 Engineering Drive 1, E6, National University of Singapore, Singapore, 117608, SINGAPORE
| | - Zhen Huang
- Panyu Center Hospital, Department of Rehabilitation Medicine, Guangzhou, 511400, CHINA
| | - Jing Wang
- Xian Jiaotong University, Institute of Robotics and Intelligent Systems, Xi'an, Shaanxi, 710049, CHINA
| |
Collapse
|
13
|
Gupta A, Kumar D, Verma H, Tanveer M, Javier AP, Lin CT, Prasad M. Recognition of multi-cognitive tasks from EEG signals using EMD methods. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractMental task classification (MTC), based on the electroencephalography (EEG) signals is a demanding brain–computer interface (BCI). It is independent of all types of muscular activity. MTC-based BCI systems are capable to identify cognitive activity of human. The success of BCI system depends upon the efficient feature representation from raw EEG signals for classification of mental activities. This paper mainly presents on a novel feature representation (formation of most informative features) of the EEG signal for the both, binary as well as multi MTC, using a combination of some statistical, uncertainty and memory- based coefficient. In this work, the feature formation is carried out in the two stages. In the first stage, the signal is split into different oscillatory functions with the help of three well-known empirical mode decomposition (EMD) algorithms, and a new set of eight parameters (features) are calculated from the oscillatory function in the second stage of feature vector construction. Support vector machine (SVM) is used to classify the feature vectors obtained corresponding to the different mental tasks. This study consists the problem formulation of two variants of MTC; two-class and multi-class MTC. The suggested scheme outperforms the existing work for the both types of mental tasks classification.
Collapse
|
14
|
Rithwik P, Benzy V, Vinod A. High accuracy decoding of motor imagery directions from EEG-based brain computer interface using filter bank spatially regularised common spatial pattern method. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Brain Activity Recognition Method Based on Attention-Based RNN Mode. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain activity recognition based on electroencephalography (EEG) marks a major research orientation in intelligent medicine, especially in human intention prediction, human–computer control and neurological diagnosis. The literature research mainly focuses on the recognition of single-person binary brain activity, which is limited in the more extensive and complex scenarios. Therefore, brain activity recognition in multiperson and multi-objective scenarios has aroused increasingly more attention. Another challenge is the reduction of recognition accuracy caused by the interface of external noise as well as EEG’s low signal-to-noise ratio. In addition, traditional EEG feature analysis proves to be time-intensive and it relies heavily on mature experience. The paper proposes a novel EEG recognition method to address the above issues. The basic feature of EEG is first analyzed according to the band of EEG. The attention-based RNN model is then adopted to eliminate the interference to achieve the purpose of automatic recognition of the original EEG signal. Finally, we evaluate the proposed method with public and local data sets of EEG and perform lots of tests to investigate how factors affect the results of recognition. As shown by the test results, compared with some typical EEG recognition methods, the proposed method owns better recognition accuracy and suitability in multi-objective task scenarios.
Collapse
|
16
|
Meng M, Dai L, She Q, Ma Y, Kong W. Crossing time windows optimization based on mutual information for hybrid BCI. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7919-7935. [PMID: 34814281 DOI: 10.3934/mbe.2021392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid EEG-fNIRS brain-computer interface (HBCI) is widely employed to enhance BCI performance. EEG and fNIRS signals are combined to increase the dimensionality of the information. Time windows are used to select EEG and fNIRS singles synchronously. However, it ignores that specific modal signals have their own characteristics, when the task is stimulated, the information between the modalities will mismatch at the moment, which has a significant impact on the classification performance. Here we propose a novel crossing time windows optimization for mental arithmetic (MA) based BCI. The EEG and fNIRS signals were segmented separately by sliding time windows. Then crossing time windows (CTW) were combined with each one segment from EEG and fNIRS selected independently. Furthermore, EEG and fNIRS features were extracted using Filter Bank Common Spatial Pattern (FBCSP) and statistical methods from each sample. Mutual information was calculated for FBCSP and statistical features to characterize the discrimination of crossing time windows, and the optimal window would be selected based on the largest mutual information. Finally, a sparse structured framework of Fisher Lasso feature selection (FLFS) was designed to select the joint features, and conventional Linear Discriminant Analysis (LDA) was employed to perform classification. We used proposed method for a MA dataset. The classification accuracy of the proposed method is 92.52 ± 5.38% and higher than other methods, which shows the rationality and superiority of the proposed method.
Collapse
Affiliation(s)
- Ming Meng
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Luyang Dai
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qingshan She
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Yuliang Ma
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| | - Wanzeng Kong
- Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
17
|
Single upper limb functional movements decoding from motor imagery EEG signals using wavelet neural network. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Liu C, Jin J, Xu R, Li S, Zuo C, Sun H, Wang X, Cichocki A. Distinguishable spatial-spectral feature learning neural network framework for motor imagery-based brain-computer interface. J Neural Eng 2021; 18. [PMID: 34384059 DOI: 10.1088/1741-2552/ac1d36] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 11/11/2022]
Abstract
Objective.Spatial and spectral features extracted from electroencephalogram (EEG) are critical for the classification of motor imagery (MI) tasks. As prevalently used methods, the common spatial pattern (CSP) and filter bank CSP (FBCSP) can effectively extract spatial-spectral features from MI-related EEG. To further improve the separability of the CSP features, we proposed a distinguishable spatial-spectral feature learning neural network (DSSFLNN) framework for MI-based brain-computer interfaces (BCIs) in this study.Approach.The first step of the DSSFLNN framework was to extract FBCSP features from raw EEG signals. Then two squeeze-and-excitation modules were used to re-calibrate CSP features along the band-wise axis and the class-wise axis, respectively. Next, we used a parallel convolutional neural network module to learn distinguishable spatial-spectral features. Finally, the distinguishable spatial-spectral features were fed to a fully connected layer for classification. To verify the effectiveness of the proposed framework, we compared it with the state-of-the-art methods on BCI competition IV datasets 2a and 2b.Main results.The results showed that the DSSFLNN framework can achieve a mean Cohen's kappa value of 0.7 on two datasets, which outperformed the state-of-the-art methods. Moreover, two additional experiments were conducted and they proved that the combination of band-wise feature learning and class-wise feature learning can achieve significantly better performance than only using either one of them.Significance.The proposed DSSFLNN can effectively improve the decoding performance of MI-based BCIs.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ren Xu
- Guger Technologies OG, Herbersteinstraße 60, 8020 Graz, Austria
| | - Shurui Li
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cili Zuo
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hao Sun
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xingyu Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology (Skoltech), 121205 Moscow, Russia.,Department of Applied Computer Science, Nicolaus Copernicus University (UMK), 87-100 Torun, Poland
| |
Collapse
|
19
|
Mridha MF, Das SC, Kabir MM, Lima AA, Islam MR, Watanobe Y. Brain-Computer Interface: Advancement and Challenges. SENSORS 2021; 21:s21175746. [PMID: 34502636 PMCID: PMC8433803 DOI: 10.3390/s21175746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 02/04/2023]
Abstract
Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last decades, several groundbreaking research has been conducted in this domain. Still, no comprehensive review that covers the BCI domain completely has been conducted yet. Hence, a comprehensive overview of the BCI domain is presented in this study. This study covers several applications of BCI and upholds the significance of this domain. Then, each element of BCI systems, including techniques, datasets, feature extraction methods, evaluation measurement matrices, existing BCI algorithms, and classifiers, are explained concisely. In addition, a brief overview of the technologies or hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates several unsolved challenges of the BCI and explains them with possible solutions.
Collapse
Affiliation(s)
- M. F. Mridha
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Sujoy Chandra Das
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
- Correspondence:
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan;
| |
Collapse
|
20
|
A Neurophysiological Pattern as a Precursor of Work-Related Musculoskeletal Disorders Using EEG Combined with EMG. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042001. [PMID: 33669544 PMCID: PMC7921951 DOI: 10.3390/ijerph18042001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
We aimed to determine the neurophysiological pattern that is associated with the development of musculoskeletal pain that is induced by biomechanical constraints. Twelve (12) young healthy volunteers (two females) performed two experimental realistic manual tasks for 30 min each: (1) with the high risk of musculoskeletal pain development and (2) with low risk for pain development. During the tasks, synchronized electroencephalographic (EEG) and electromyography (EMG) signals data were collected, as well as pain scores. Subsequently, two main variables were computed from neurophysiological signals: (1) cortical inhibition as Task-Related Power Increase (TRPI) in beta EEG frequency band (β.TRPI) and (2) muscle variability as Coefficient of Variation (CoV) from EMG signals. A strong effect size was observed for pain measurement under the high risk condition during the last 5 min of the task execution; with muscle fatigue, because the CoV has decreased below 18%. An increase in cortical inhibition (β.TRPI >50%) was observed after the 5th min of the task in both experimental conditions. These results suggest the following neurophysiological pattern—β.TRPI ≥ 50% and CoV ≤ 18%—as a possible indicator to monitor the development of musculoskeletal pain in the shoulder in the context of repeated and prolonged exposure to manual tasks.
Collapse
|
21
|
Abstract
This study describes a method for classifying electrocorticograms (ECoGs) based on motor imagery (MI) on the brain–computer interface (BCI) system. This method is different from the traditional feature extraction and classification method. In this paper, the proposed method employs the deep learning algorithm for extracting features and the traditional algorithm for classification. Specifically, we mainly use the convolution neural network (CNN) to extract the features from the training data and then classify those features by combing with the gradient boosting (GB) algorithm. The comprehensive study with CNN and GB algorithms will profoundly help us to obtain more feature information from brain activities, enabling us to obtain the classification results from human body actions. The performance of the proposed framework has been evaluated on the dataset I of BCI Competition III. Furthermore, the combination of deep learning and traditional algorithms provides some ideas for future research with the BCI systems.
Collapse
|
22
|
Rammy SA, Abbas W, Mahmood SS, Riaz H, Rehman HU, Abideen RZU, Aqeel M, Zhang W. Sequence-to-sequence deep neural network with spatio-spectro and temporal features for motor imagery classification. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Belkhiria C, Peysakhovich V. Electro-Encephalography and Electro-Oculography in Aeronautics: A Review Over the Last Decade (2010-2020). FRONTIERS IN NEUROERGONOMICS 2020; 1:606719. [PMID: 38234309 PMCID: PMC10790927 DOI: 10.3389/fnrgo.2020.606719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2024]
Abstract
Electro-encephalography (EEG) and electro-oculography (EOG) are methods of electrophysiological monitoring that have potentially fruitful applications in neuroscience, clinical exploration, the aeronautical industry, and other sectors. These methods are often the most straightforward way of evaluating brain oscillations and eye movements, as they use standard laboratory or mobile techniques. This review describes the potential of EEG and EOG systems and the application of these methods in aeronautics. For example, EEG and EOG signals can be used to design brain-computer interfaces (BCI) and to interpret brain activity, such as monitoring the mental state of a pilot in determining their workload. The main objectives of this review are to, (i) offer an in-depth review of literature on the basics of EEG and EOG and their application in aeronautics; (ii) to explore the methodology and trends of research in combined EEG-EOG studies over the last decade; and (iii) to provide methodological guidelines for beginners and experts when applying these methods in environments outside the laboratory, with a particular focus on human factors and aeronautics. The study used databases from scientific, clinical, and neural engineering fields. The review first introduces the characteristics and the application of both EEG and EOG in aeronautics, undertaking a large review of relevant literature, from early to more recent studies. We then built a novel taxonomy model that includes 150 combined EEG-EOG papers published in peer-reviewed scientific journals and conferences from January 2010 to March 2020. Several data elements were reviewed for each study (e.g., pre-processing, extracted features and performance metrics), which were then examined to uncover trends in aeronautics and summarize interesting methods from this important body of literature. Finally, the review considers the advantages and limitations of these methods as well as future challenges.
Collapse
|
24
|
|
25
|
Wang J, Feng Z, Ren X, Lu N, Luo J, Sun L. Feature subset and time segment selection for the classification of EEG data based motor imagery. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.102026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Gupta A, Agrawal R, Kirar JS, Kaur B, Ding W, Lin CT, Andreu-Perez J, Prasad M. A hierarchical meta-model for multi-class mental task based brain-computer interfaces. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2018.07.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Gu L, Yu Z, Ma T, Wang H, Li Z, Fan H. EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis. Neuroscience 2020; 436:93-109. [PMID: 32283182 DOI: 10.1016/j.neuroscience.2020.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
This study aims to investigate the difference in cortical signal characteristics between the left and right foot imaginary movements and to improve the classification accuracy of the experimental tasks. Raw signals were gathered from 64-channel scalp electroencephalograms of 11 healthy participants. Firstly, the cortical source model was defined with 62 regions of interest over the sensorimotor cortex (nine Brodmann areas). Secondly, functional connectivity was calculated by phase lock value for α and β rhythm networks. Thirdly, network-based statistics were applied to identify whether there existed stable and significant subnetworks that formed between the two types of motor imagery tasks. Meanwhile, ten graph theory indices were investigated for each network by t-test to determine statistical significance between tasks. Finally, sparse multinomial logistic regression (SMLR)-support vector machine (SVM), as a feature selection and classification model, was used to analyze the graph theory features. The specific time-frequency (α event-related desynchronization and β event-related synchronization) difference network between the two tasks was congregated at the midline and demonstrated significant connections in the premotor areas and primary somatosensory cortex. A few of statistically significant differences in the network properties were observed between tasks in the α and β rhythm. The SMLR-SVM classification model achieved fair discrimination accuracy between imaginary movements of the two feet (maximum 75% accuracy rate in single-trial analyses). This study reveals the network mechanism of the discrimination of the left and right foot motor imagery, which can provide a novel avenue for the BCI system by unilateral lower limb motor imagery.
Collapse
Affiliation(s)
- Lingyun Gu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Zhenhua Yu
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China
| | - Tian Ma
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China.
| | - Zhanli Li
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China.
| | - Hui Fan
- Co-innovation Center of Shandong Colleges and Universities: Future Intelligent Computing, Shandong Technology and Business University, Yantai 264005, Shandong, PR China
| |
Collapse
|
28
|
Brain–machine interfaces using functional near-infrared spectroscopy: a review. ARTIFICIAL LIFE AND ROBOTICS 2020. [DOI: 10.1007/s10015-020-00592-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Zhang R, Zong Q, Dou L, Zhao X. A novel hybrid deep learning scheme for four-class motor imagery classification. J Neural Eng 2019; 16:066004. [PMID: 31341093 DOI: 10.1088/1741-2552/ab3471] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Learning the structures and unknown correlations of a motor imagery electroencephalogram (MI-EEG) signal is important for its classification. It is also a major challenge to obtain good classification accuracy from the increased number of classes and increased variability from different people. In this study, a four-class MI task is investigated. APPROACH An end-to-end novel hybrid deep learning scheme is developed to decode the MI task from EEG data. The proposed algorithm consists of two parts: a. A one-versus-rest filter bank common spatial pattern is adopted to preprocess and pre-extract the features of the four-class MI signal. b. A hybrid deep network based on the convolutional neural network and long-term short-term memory network is proposed to extract and learn the spatial and temporal features of the MI signal simultaneously. MAIN RESULTS The main contribution of this paper is to propose a hybrid deep network framework to improve the classification accuracy of the four-class MI-EEG signal. The hybrid deep network is a subject-independent shared neural network, which means it can be trained by using the training data from all subjects to form one model. SIGNIFICANCE The classification performance obtained by the proposed algorithm on brain-computer interface (BCI) competition IV dataset 2a in terms of accuracy is 83% and Cohen's kappa value is 0.80. Finally, the shared hybrid deep network is evaluated by every subject respectively, and the experimental results illustrate that the shared neural network has satisfactory accuracy. Thus, the proposed algorithm could be of great interest for real-life BCIs.
Collapse
Affiliation(s)
- Ruilong Zhang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | | | | | | |
Collapse
|
30
|
G-Causality Brain Connectivity Differences of Finger Movements between Motor Execution and Motor Imagery. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:5068283. [PMID: 31662834 PMCID: PMC6791225 DOI: 10.1155/2019/5068283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023]
Abstract
Motor imagery is one of the classical paradigms which have been used in brain-computer interface and motor function recovery. Finger movement-based motor execution is a complex biomechanical architecture and a crucial task for establishing most complicated and natural activities in daily life. Some patients may suffer from alternating hemiplegia after brain stroke and lose their ability of motor execution. Fortunately, the ability of motor imagery might be preserved independently and worked as a backdoor for motor function recovery. The efficacy of motor imagery for achieving significant recovery for the motor cortex after brain stroke is still an open question. In this study, we designed a new paradigm to investigate the neural mechanism of thirty finger movements in two scenarios: motor execution and motor imagery. Eleven healthy participants performed or imagined thirty hand gestures twice based on left and right finger movements. The electroencephalogram (EEG) signal for each subject during sixty trials left and right finger motor execution and imagery were recorded during our proposed experimental paradigm. The Granger causality (G-causality) analysis method was employed to analyze the brain connectivity and its strength between contralateral premotor, motor, and sensorimotor areas. Highest numbers for G-causality trials of 37 ± 7.3, 35.5 ± 8.8, 36.3 ± 10.3, and 39.2 ± 9.0 and lowest Granger causality coefficients of 9.1 ± 3.2, 10.9 ± 3.7, 13.2 ± 0.6, and 13.4 ± 0.6 were achieved from the premotor to motor area during execution/imagination tasks of right and left finger movements, respectively. These results provided a new insight into motor execution and motor imagery based on hand gestures, which might be useful to build a new biomarker of finger motor recovery for partially or even completely plegic patients. Furthermore, a significant difference of the G-causality trial number was observed during left finger execution/imagery and right finger imagery, but it was not observed during the right finger execution phase. Significant difference of the G-causality coefficient was observed during left finger execution and imagery, but it was not observed during right finger execution and imagery phases. These results suggested that different MI-based brain motor function recovery strategies should be taken for right-hand and left-hand patients after brain stroke.
Collapse
|
31
|
Gurve D, Delisle-Rodriguez D, Bastos T, Krishnan S. Motor Imagery Classification with Covariance Matrices and Non-Negative Matrix Factorization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:3083-3086. [PMID: 31946539 DOI: 10.1109/embc.2019.8856677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we aim at finding the smallest set of EEG channels that can ensure highly accurate classification of motor imagery (MI) dataset and maintain the optimum Kappa score. Non-negative matrix factorization (NMF) is used for important and discriminant EEG channel selection. Further, the theory of Riemannian geometry in the manifold of covariance matrices is used for feature extraction. At last, the neighborhood component feature selection (NCFS) algorithm is used to select the small subset of important features from the given set of features. The significance of the proposed work is two-fold: 1) it greatly reduces the time complexity and the amount of overfitting by reducing the unnecessary EEG channels and redundant features. 2) it increases the classification accuracy of the model by selecting only subject-specific EEG channels. The proposed algorithm is tested on BCI Competition IV,2a dataset to validate the performance. The proposed approach has achieved 77.91% average classification accuracy and 0.626 mean Kappa score.
Collapse
|
32
|
Al-Faiz MZ, Al-hamadani AA. IMPLEMENTATION OF EEG SIGNAL PROCESSING AND DECODING FOR TWO-CLASS MOTOR IMAGERY DATA. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2019. [DOI: 10.4015/s1016237219500285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work decodes two-class motor imagery (MI) based on four main processing steps: (i) Raw electroencephalographic (EEG) signal is decomposed to single trials and spatial filters are estimated for each trial by common spatial filtering (CSP) method; (ii) features are extracted by taking the log transformation (normal distribution) of the spatially filtered EEG signal; (iii) optimal channel selection algorithm is proposed to reduce the number of EEG channels, such approach is regarded as key technological advantage in the implementation of brain–computer interface (BCI) to reduce the system processing time; (iv) finally, support vector machine (SVM) is employed to discriminate two classes of left and right hand MI. Two variations of SVM were proposed: polynomial function kernel and radial-based function RBF kernel. The results revealed that CSP succeeded in removing the strong correlation bound between the EEG samples by maximizing the variance of class 2 samples while minimizing the variance of class 1 samples. The channel selection algorithm achieved its goal to reduce the data dimension by selecting two channels out of three having the lowest variance entropies of 0.239 and 0.261 for channel 1 and channel 2, respectively. The features vector was divided into 80% train and 20% test with five-fold cross validation. The classification performance of SVM-polynomial kernel was 87.86% while it is 95.72% for SVM-RBF kernel as average accuracy of five-folds for both. Thus SVM-RBF is superior to SVM-Poly in the proposed framework.
Collapse
|
33
|
Razi S, Karami Mollaei MR, Ghasemi J. A novel method for classification of BCI multi-class motor imagery task based on Dempster–Shafer theory. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2019.01.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Ai Q, Chen A, Chen K, Liu Q, Zhou T, Xin S, Ji Z. Feature extraction of four-class motor imagery EEG signals based on functional brain network. J Neural Eng 2019; 16:026032. [PMID: 30699389 DOI: 10.1088/1741-2552/ab0328] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A motor-imagery-based brain-computer interface (MI-BCI) provides an alternative way for people to interface with the outside world. However, the classification accuracy of MI signals remains challenging, especially with an increased number of classes and the presence of high variations with data from multiple individual people. This work investigates electroencephalogram (EEG) signal processing techniques, aiming to enhance the classification performance of multiple MI tasks in terms of tackling the challenges caused by the vast variety of subjects. APPROACH This work introduces a novel method to extract discriminative features by combining the features of functional brain networks with two other feature extraction algorithms: common spatial pattern (CSP) and local characteristic-scale decomposition (LCD). After functional brain networks are established from the MI EEG signals of the subjects, the measures of degree in the binary networks are extracted as additional features and fused with features in the frequency and spatial domains extracted by the CSP and LCD algorithms. A real-time BCI robot control system is designed and implemented with the proposed method. Subjects can control the movement of the robot through four classes of MI tasks. Both the BCI competition IV dataset 2a and real-time data acquired in our designed system are used to validate the performance of the proposed method. MAIN RESULTS As for the offline data experiment results, the average classification accuracy of the proposed method reaches 79.7%, outperforming the majority of popular algorithms. Experimental results with real-time data also prove the proposed method to be highly promising in its real-time performance. SIGNIFICANCE The experimental results show that our proposed method is robust in extracting discriminative brain activity features when performing different MI tasks, hence improving the classification accuracy in four-class MI tasks. The high classification accuracy and low computational demand show a considerable practicality for real-time rehabilitation systems.
Collapse
Affiliation(s)
- Qingsong Ai
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Qureshi MNI. EEG classification for motor imagery BCI using phase-only features extracted by independent component analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:2097-2100. [PMID: 29060310 DOI: 10.1109/embc.2017.8037267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The accurate classification of the electroencephalography (EEG) signals is the most important task towards the development of a reliable motor imagery brain-computer interface (MI-BCI) system. In this study, we utilized a publically available BCI Competition-IV 2008 dataset IIa. This study address to the binary classification problem of the motor imagery EEG data by using a sigmoid activation function-based extreme learning machines (ELM). We proposed a novel method of extracting the features from the EEG signals by first applying the independent component analysis (ICA) on the time series data and transforming the ICA time series data into Fourier domain and then extract the phase information from the Fourier spectrum. This phase information was further used to calculate the maximized cross-correlation connectivity matrix. The upper diagonal of this matrix was then vectorized and it serves as the basic feature for the ELM classification framework. By using the phase-only features we achieved 97.80% (p <; 0.0022) nested cross-validated classification accuracy. In addition, this process is relatively computationally inexpensive. Thus, it can be an excellent candidate for the motor imagery BCI applications.
Collapse
|
36
|
Bera S, Roy R, Sikdar D, Kar A, Mukhopadhyay R, Mahadevappal M. A Randomised Ensemble Learning Approach for Multiclass Motor Imagery Classification Using Error Correcting Output Coding. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5081-5084. [PMID: 30441483 DOI: 10.1109/embc.2018.8513421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Common Spectral Pattern (CSP) algorithm remains predominant for feature extraction from multichannel EEG motor imagery data. However, multiclass classification of from this featureset has been a challenging job. Different approaches have been proposed to be applied on featureset of different EEG subbands to achieve significant classification accuracy. Ensemble learning is very effective in this context to achieve higher accuracy in Brain-Computer Interface (BCI) domain. In this study, we have proposed enhanced classification algorithms to achieve higher classification accuracies. The methods were evaluated against the motor imagery data from Dataset 2a of the publicly available BCI Competition IV (2008). This dataset consists of 22 channels EEG data of 9 subjects for four different movements. A tree based ensemble approach for supervised classification, Extra-Trees algorithm, has been proposed in this paper and also evaluated for its efficacy on this dataset to classify between left hand and right hand movement imaginations. Moreover, this classifier has its inherent capability to select optimum features. Furthermore, in this paper an extension of the binary classification into multiclass domain is also implemented with error correcting output codes (ECOC) approach using the same dataset. Subject-specific frequency bands $\alpha$ (8-12Hz) and $\beta$ (12-30Hz) along with $HG$ (70-100Hz) were considered to extract CSP features. We have achieved an individual peak accuracy of 98ȥ and 84ȥ in binary class and multiclass classification respectively. Furthermore, the results yielded a mean kappa value of 0.58 across all the subjects. This kappa value is higher than of the winner of competition and also from the most of the other approaches applied in this dataset.
Collapse
|
37
|
Kar A, Bera S, Karri SPK, Ghosh S, Mahadevappa M, Sheet D. A Deep Convolutional Neural Network Based Classification Of Multi-Class Motor Imagery With Improved Generalization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5085-5088. [PMID: 30441484 DOI: 10.1109/embc.2018.8513451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Motor imagery (MI) based brain-computer interface (BCI) plays a crucial role in various scenarios ranging from post-traumatic rehabilitation to control prosthetics. Computer-aided interpretation of MI has augmented prior mentioned scenarios since decades but failed to address interpersonal variability. Such variability further escalates in case of multi-class MI, which is currently a common practice. The failures due to interpersonal variability can be attributed to handcrafted features as they failed to extract more generalized features. The proposed approach employs convolution neural network (CNN) based model with both filtering (through axis shuffling) and feature extraction to avail end-to-end training. Axis shuffling is performed adopted in initial blocks of the model for 1D preprocessing and reduce the parameters required. Such practice has avoided the overfitting which resulted in an improved generalized model. Publicly available BCI Competition-IV 2a dataset is considered to evaluate the proposed model. The proposed model has demonstrated the capability to identify subject-specific frequency band with an average and highest accuracy of 70.5% and S3.6% respectively. Proposed CNN model can classify in real time without relying on accelerated computing device like GPU.
Collapse
|
38
|
Hong KS, Khan MJ, Hong MJ. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces. Front Hum Neurosci 2018; 12:246. [PMID: 30002623 PMCID: PMC6032997 DOI: 10.3389/fnhum.2018.00246] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/29/2018] [Indexed: 11/13/2022] Open
Abstract
In this study, a brain-computer interface (BCI) framework for hybrid functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) for locked-in syndrome (LIS) patients is investigated. Brain tasks, channel selection methods, and feature extraction and classification algorithms available in the literature are reviewed. First, we categorize various types of patients with cognitive and motor impairments to assess the suitability of BCI for each of them. The prefrontal cortex is identified as a suitable brain region for imaging. Second, the brain activity that contributes to the generation of hemodynamic signals is reviewed. Mental arithmetic and word formation tasks are found to be suitable for use with LIS patients. Third, since a specific targeted brain region is needed for BCI, methods for determining the region of interest are reviewed. The combination of a bundled-optode configuration and threshold-integrated vector phase analysis turns out to be a promising solution. Fourth, the usable fNIRS features and EEG features are reviewed. For hybrid BCI, a combination of the signal peak and mean fNIRS signals and the highest band powers of EEG signals is promising. For classification, linear discriminant analysis has been most widely used. However, further research on vector phase analysis as a classifier for multiple commands is desirable. Overall, proper brain region identification and proper selection of features will improve classification accuracy. In conclusion, five future research issues are identified, and a new BCI scheme, including brain therapy for LIS patients and using the framework of hybrid fNIRS-EEG BCI, is provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea.,School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - M Jawad Khan
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Melissa J Hong
- Early Learning, FIRST 5 Santa Clara County, San Jose, CA, United States
| |
Collapse
|
39
|
Luo TJ, Lv J, Chao F, Zhou C. Effect of Different Movement Speed Modes on Human Action Observation: An EEG Study. Front Neurosci 2018; 12:219. [PMID: 29674949 PMCID: PMC5895728 DOI: 10.3389/fnins.2018.00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/19/2018] [Indexed: 11/26/2022] Open
Abstract
Action observation (AO) generates event-related desynchronization (ERD) suppressions in the human brain by activating partial regions of the human mirror neuron system (hMNS). The activation of the hMNS response to AO remains controversial for several reasons. Therefore, this study investigated the activation of the hMNS response to a speed factor of AO by controlling the movement speed modes of a humanoid robot's arm movements. Since hMNS activation is reflected by ERD suppressions, electroencephalography (EEG) with BCI analysis methods for ERD suppressions were used as the recording and analysis modalities. Six healthy individuals were asked to participate in experiments comprising five different conditions. Four incremental-speed AO tasks and a motor imagery (MI) task involving imaging of the same movement were presented to the individuals. Occipital and sensorimotor regions were selected for BCI analyses. The experimental results showed that hMNS activation was higher in the occipital region but more robust in the sensorimotor region. Since the attended information impacts the activations of the hMNS during AO, the pattern of hMNS activations first rises and subsequently falls to a stable level during incremental-speed modes of AO. The discipline curves suggested that a moderate speed within a decent inter-stimulus interval (ISI) range produced the highest hMNS activations. Since a brain computer/machine interface (BCI) builds a path-way between human and computer/mahcine, the discipline curves will help to construct BCIs made by patterns of action observation (AO-BCI). Furthermore, a new method for constructing non-invasive brain machine brain interfaces (BMBIs) with moderate AO-BCI and motor imagery BCI (MI-BCI) was inspired by this paper.
Collapse
Affiliation(s)
- Tian-Jian Luo
- Fujian Provincal Key Lab of Brain-Inspired Computing, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, China
| | - Jitu Lv
- Fujian Provincal Key Lab of Brain-Inspired Computing, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, China
| | - Fei Chao
- Fujian Provincal Key Lab of Brain-Inspired Computing, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, China
| | - Changle Zhou
- Fujian Provincal Key Lab of Brain-Inspired Computing, Department of Cognitive Science, School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Gao Z, Lu G, Yan P, Lyu C, Li X, Shang W, Xie Z, Zhang W. Automatic Change Detection for Real-Time Monitoring of EEG Signals. Front Physiol 2018; 9:325. [PMID: 29670541 PMCID: PMC5893758 DOI: 10.3389/fphys.2018.00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 03/15/2018] [Indexed: 11/19/2022] Open
Abstract
In recent years, automatic change detection for real-time monitoring of electroencephalogram (EEG) signals has attracted widespread interest with a large number of clinical applications. However, it is still a challenging problem. This paper presents a novel framework for this task where joint time-domain features are firstly computed to extract temporal fluctuations of a given EEG data stream; and then, an auto-regressive (AR) linear model is adopted to model the data and temporal anomalies are subsequently calculated from that model to reflect the possibilities that a change occurs; a non-parametric statistical test based on Randomized Power Martingale (RPM) is last performed for making change decision from the resulting anomaly scores. We conducted experiments on the publicly-available Bern-Barcelona EEG database where promising results for terms of detection precision (96.97%), detection recall (97.66%) as well as computational efficiency have been achieved. Meanwhile, we also evaluated the proposed method for real detection of seizures occurrence for a monitoring epilepsy patient. The results of experiments by using both the testing database and real application demonstrated the effectiveness and feasibility of the method for the purpose of change detection in EEG signals. The proposed framework has two additional properties: (1) it uses a pre-defined AR model for modeling of the past observed data so that it can be operated in an unsupervised manner, and (2) it uses an adjustable threshold to achieve a scalable decision making so that a coarse-to-fine detection strategy can be developed for quick detection or further analysis purposes.
Collapse
Affiliation(s)
- Zhen Gao
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Guoliang Lu
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Peng Yan
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Chen Lyu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Xueyong Li
- Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of MOE, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Wei Shang
- Institute of Neurology, Shandong University, Jinan, China.,Department of Neurology, Second Hospital of Shandong University, Jinan, China
| | - Zhaohong Xie
- Institute of Neurology, Shandong University, Jinan, China.,Department of Neurology, Second Hospital of Shandong University, Jinan, China
| | - Wanming Zhang
- Medical Imaging Center, Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
41
|
Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata. SENSORS 2017; 17:s17112576. [PMID: 29117100 PMCID: PMC5713053 DOI: 10.3390/s17112576] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022]
Abstract
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.
Collapse
|
42
|
Zeng H, Wang Y, Wu C, Song A, Liu J, Ji P, Xu B, Zhu L, Li H, Wen P. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback. Front Neurorobot 2017; 11:60. [PMID: 29163123 PMCID: PMC5671634 DOI: 10.3389/fnbot.2017.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/18/2017] [Indexed: 01/25/2023] Open
Abstract
Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes.
Collapse
Affiliation(s)
- Hong Zeng
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Yanxin Wang
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Changcheng Wu
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Jia Liu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Sciences and Technology, Nanjing, China
| | - Peng Ji
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Baoguo Xu
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Lifeng Zhu
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Huijun Li
- School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Pengcheng Wen
- AVIC Aeronautics Computing Technique Research Institute, Xi'an, China
| |
Collapse
|
43
|
Hong KS, Khan MJ. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review. Front Neurorobot 2017; 11:35. [PMID: 28790910 PMCID: PMC5522881 DOI: 10.3389/fnbot.2017.00035] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.
Collapse
Affiliation(s)
- Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - Muhammad Jawad Khan
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
44
|
Qureshi MNI, Oh J, Min B, Jo HJ, Lee B. Multi-modal, Multi-measure, and Multi-class Discrimination of ADHD with Hierarchical Feature Extraction and Extreme Learning Machine Using Structural and Functional Brain MRI. Front Hum Neurosci 2017; 11:157. [PMID: 28420972 PMCID: PMC5378777 DOI: 10.3389/fnhum.2017.00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Structural and functional MRI unveil many hidden properties of the human brain. We performed this multi-class classification study on selected subjects from the publically available attention deficit hyperactivity disorder ADHD-200 dataset of patients and healthy children. The dataset has three groups, namely, ADHD inattentive, ADHD combined, and typically developing. We calculated the global averaged functional connectivity maps across the whole cortex to extract anatomical atlas parcellation based features from the resting-state fMRI (rs-fMRI) data and cortical parcellation based features from the structural MRI (sMRI) data. In addition, the preprocessed image volumes from both of these modalities followed an ANOVA analysis separately using all the voxels. This study utilized the average measure from the most significant regions acquired from ANOVA as features for classification in addition to the multi-modal and multi-measure features of structural and functional MRI data. We extracted most discriminative features by hierarchical sparse feature elimination and selection algorithm. These features include cortical thickness, image intensity, volume, cortical thickness standard deviation, surface area, and ANOVA based features respectively. An extreme learning machine performed both the binary and multi-class classifications in comparison with support vector machines. This article reports prediction accuracy of both unimodal and multi-modal features from test data. We achieved 76.190% (p < 0.0001) classification accuracy in multi-class settings as well as 92.857% (p < 0.0001) classification accuracy in binary settings. In addition, we found ANOVA-based significant regions of the brain that also play a vital role in the classification of ADHD. Thus, from a clinical perspective, this multi-modal group analysis approach with multi-measure features may improve the accuracy of the ADHD differential diagnosis.
Collapse
Affiliation(s)
- Muhammad Naveed Iqbal Qureshi
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Jooyoung Oh
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Beomjun Min
- Department of Neuropsychiatry, Seoul National University HospitalSeoul, South Korea
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, USA
| | - Boreom Lee
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| |
Collapse
|
45
|
Vasilyev A, Liburkina S, Yakovlev L, Perepelkina O, Kaplan A. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates. Neuropsychologia 2017; 97:56-65. [PMID: 28167121 DOI: 10.1016/j.neuropsychologia.2017.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training. In this study, we are trying to establish whether the proficiency in BCI control is associated with any of the neurophysiological or psychological correlates of motor imagery, as well as to determine possible interrelations among them. For that purpose, we studied motor imagery in a group of 19 healthy BCI-trained volunteers and performed a correlation analysis across various quantitative assessment metrics. We examined subjects' sensorimotor event-related EEG events, corticospinal excitability changes estimated with single-pulse transcranial magnetic stimulation (TMS), BCI accuracy and self-assessment reports obtained with specially designed questionnaires and interview routine. Our results showed, expectedly, that BCI performance is dependent on the subject's capability to suppress EEG sensorimotor rhythms, which in turn is correlated with the idle state amplitude of those oscillations. Neither BCI accuracy nor the EEG features associated with MI were found to correlate with the level of corticospinal excitability increase during motor imagery, and with assessed imagery vividness. Finally, a significant correlation was found between the level of corticospinal excitability increase and kinesthetic vividness of imagery (KVIQ-20 questionnaire). Our results suggest that two distinct neurophysiological mechanisms might mediate possible effects of motor imagery: the non-specific cortical sensorimotor disinhibition and the focal corticospinal excitability increase. Acquired data suggests that BCI-based approach is unreliable in assessing motor imagery due to its high dependence on subject's innate EEG features (e.g. resting mu-rhythm amplitude). Therefore, employment of additional assessment protocols, such as TMS and psychological testing, is required for more comprehensive evaluation of the subject's motor imagery training efficiency.
Collapse
Affiliation(s)
| | - Sofya Liburkina
- Lomonosov Moscow State University, Moscow, Russian Federation
| | - Lev Yakovlev
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Alexander Kaplan
- Lomonosov Moscow State University, Moscow, Russian Federation; Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russian Federation
| |
Collapse
|
46
|
Three-Class EEG-Based Motor Imagery Classification Using Phase-Space Reconstruction Technique. Brain Sci 2016; 6:brainsci6030036. [PMID: 27563927 PMCID: PMC5039465 DOI: 10.3390/brainsci6030036] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
Over the last few decades, brain signals have been significantly exploited for brain-computer interface (BCI) applications. In this paper, we study the extraction of features using event-related desynchronization/synchronization techniques to improve the classification accuracy for three-class motor imagery (MI) BCI. The classification approach is based on combining the features of the phase and amplitude of the brain signals using fast Fourier transform (FFT) and autoregressive (AR) modeling of the reconstructed phase space as well as the modification of the BCI parameters (trial length, trial frequency band, classification method). We report interesting results compared with those present in the literature by utilizing sequential forward floating selection (SFFS) and a multi-class linear discriminant analysis (LDA), our findings showed superior classification results, a classification accuracy of 86.06% and 93% for two BCI competition datasets, with respect to results from previous studies.
Collapse
|
47
|
Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study. PLoS One 2016; 11:e0160697. [PMID: 27500640 PMCID: PMC4976974 DOI: 10.1371/journal.pone.0160697] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/22/2016] [Indexed: 12/28/2022] Open
Abstract
The classification of neuroimaging data for the diagnosis of certain brain diseases is one of the main research goals of the neuroscience and clinical communities. In this study, we performed multiclass classification using a hierarchical extreme learning machine (H-ELM) classifier. We compared the performance of this classifier with that of a support vector machine (SVM) and basic extreme learning machine (ELM) for cortical MRI data from attention deficit/hyperactivity disorder (ADHD) patients. We used 159 structural MRI images of children from the publicly available ADHD-200 MRI dataset. The data consisted of three types, namely, typically developing (TDC), ADHD-inattentive (ADHD-I), and ADHD-combined (ADHD-C). We carried out feature selection by using standard SVM-based recursive feature elimination (RFE-SVM) that enabled us to achieve good classification accuracy (60.78%). In this study, we found the RFE-SVM feature selection approach in combination with H-ELM to effectively enable the acquisition of high multiclass classification accuracy rates for structural neuroimaging data. In addition, we found that the most important features for classification were the surface area of the superior frontal lobe, and the cortical thickness, volume, and mean surface area of the whole cortex.
Collapse
|
48
|
Chin ZY, Ang KK, Wang C, Guan C. Discriminative channel addition and reduction for filter bank common spatial pattern in motor imagery BCI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:1310-3. [PMID: 25570207 DOI: 10.1109/embc.2014.6943839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An electroencephalography (EEG)-based Motor Imagery Brain-Computer Interface (MI-BCI) requires a long setup time if a large number of channels is used, and EEG from noisy or irrelevant channels may adversely affect the classification performance. To address this issue, this paper proposed 2 approaches to systematically select discriminative channels for EEG-based MI-BCI. The proposed Discriminative Channel Addition (DCA) approach and the Discriminative Channel Reduction (DCR) approach selects subject-specific discriminative channels by iteratively adding or removing channels based on the cross-validation classification accuracies obtained using the Filter Bank Common Spatial Pattern algorithm. The performances of the proposed approaches were evaluated on the BCI Competition IV Dataset 2a. The results on 2-class and 4-class MI data showed that DCA, which iteratively adds channels, selected 13~14 channels that consistently yielded better cross-validation accuracies on the training data and session-to-session transfer accuracies on the evaluation data compared to the use of a full 22-channel setup. Hence, this results in a reduced channel setup that could improve the classification accuracy of the MI-BCI after removing less discriminative channels.
Collapse
|
49
|
Hamedi M, Salleh SH, Noor AM. Electroencephalographic Motor Imagery Brain Connectivity Analysis for BCI: A Review. Neural Comput 2016; 28:999-1041. [PMID: 27137671 DOI: 10.1162/neco_a_00838] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent research has reached a consensus on the feasibility of motor imagery brain-computer interface (MI-BCI) for different applications, especially in stroke rehabilitation. Most MI-BCI systems rely on temporal, spectral, and spatial features of single channels to distinguish different MI patterns. However, no successful communication has been established for a completely locked-in subject. To provide more useful and informative features, it has been recommended to take into account the relationships among electroencephalographic (EEG) sensor/source signals in the form of brain connectivity as an efficient tool of neuroscience. In this review, we briefly report the challenges and limitations of conventional MI-BCIs. Brain connectivity analysis, particularly functional and effective, has been described as one of the most promising approaches for improving MI-BCI performance. An extensive literature on EEG-based MI brain connectivity analysis of healthy subjects is reviewed. We subsequently discuss the brain connectomes during left and right hand, feet, and tongue MI movements. Moreover, key components involved in brain connectivity analysis that considerably affect the results are explained. Finally, possible technical shortcomings that may have influenced the results in previous research are addressed and suggestions are provided.
Collapse
Affiliation(s)
- Mahyar Hamedi
- Center for Biomedical Engineering and Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia
| | - Sh-Hussain Salleh
- Center for Biomedical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia
| | - Alias Mohd Noor
- Center for Biomedical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia
| |
Collapse
|
50
|
PSO-based feature selection and neighborhood rough set-based classification for BCI multiclass motor imagery task. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2236-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|