1
|
Wallace MN, Berger JI, Hockley A, Sumner CJ, Akeroyd MA, Palmer AR, McNaughton PA. Identifying tinnitus in mice by tracking the motion of body markers in response to an acoustic startle. Front Neurosci 2024; 18:1452450. [PMID: 39170684 PMCID: PMC11335616 DOI: 10.3389/fnins.2024.1452450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Rodent models of tinnitus are commonly used to study its mechanisms and potential treatments. Tinnitus can be identified by changes in the gap-induced prepulse inhibition of the acoustic startle (GPIAS), most commonly by using pressure detectors to measure the whole-body startle (WBS). Unfortunately, the WBS habituates quickly, the measuring system can introduce mechanical oscillations and the response shows considerable variability. We have instead used a motion tracking system to measure the localized motion of small reflective markers in response to an acoustic startle reflex in guinea pigs and mice. For guinea pigs, the pinna had the largest responses both in terms of displacement between pairs of markers and in terms of the speed of the reflex movement. Smaller, but still reliable responses were observed with markers on the thorax, abdomen and back. The peak speed of the pinna reflex was the most sensitive measure for calculating GPIAS in the guinea pig. Recording the pinna reflex in mice proved impractical due to removal of the markers during grooming. However, recordings from their back and tail allowed us to measure the peak speed and the twitch amplitude (area under curve) of reflex responses and both analysis methods showed robust GPIAS. When mice were administered high doses of sodium salicylate, which induces tinnitus in humans, there was a significant reduction in GPIAS, consistent with the presence of tinnitus. Thus, measurement of the peak speed or twitch amplitude of pinna, back and tail markers provides a reliable assessment of tinnitus in rodents.
Collapse
Affiliation(s)
- Mark N. Wallace
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Joel I. Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Adam Hockley
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, Salamanca, Spain
| | | | - Michael A. Akeroyd
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alan R. Palmer
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Peter A. McNaughton
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Corli G, Roda E, Tirri M, Bilel S, De Luca F, Strano-Rossi S, Gaudio RM, De-Giorgio F, Fattore L, Locatelli CA, Marti M. Sex-specific behavioural, metabolic, and immunohistochemical changes after repeated administration of the synthetic cannabinoid AKB48 in mice. Br J Pharmacol 2024; 181:1361-1382. [PMID: 38148741 DOI: 10.1111/bph.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND AND PURPOSE AKB48 is a synthetic cannabinoid illegally sold for its psychoactive cannabis-like effects that have been associated with acute intoxication and whose effects are poorly known. EXPERIMENTAL APPROACH Using a behavioural, neurochemical, and immunohistochemical approach, we investigated the pharmaco-toxicological effects, pharmacokinetics, and neuroplasticity at cannabinoid CB1 receptors in the cerebellum and cortex induced by repeated AKB48 administration in male and female mice. KEY RESULTS The effects of AKB48 varied significantly depending on sex and treatment duration. The first injection impaired sensorimotor responses and reduced body temperature, analgesia, and breath rate to a greater extent in females than in males; the second injection induced stronger effects in males while the third injection of AKB48 induced weaker responses in both sexes, suggesting emergence of tolerance. The CB1 receptor antagonist NESS-0327 prevented the effects induced by repeated AKB48, confirming a CB1 receptor-mediated action. Blood AKB48 levels were higher in females than in males and repeated administration caused a progressive rise of AKB48 levels in both sexes, suggesting an inhibitory effect on cytochrome activity. Finally, immunohistochemical analysis revealed higher expression of CB1 receptors in the cerebellum and cortex of females, and a rapid CB1 receptor down-regulation in cerebellar and cortical areas following repeated AKB48 injections, with neuroadaptation occurring generally more rapidly in females than in males. CONCLUSION AND IMPLICATIONS We have shown for the first time that AKB48 effects significantly vary with prolonged use and that sex affects the pharmacodynamic/pharmacokinetic responses to repeated administration, suggesting a sex-tailored approach in managing AKB48-induced intoxication.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabrizio De Luca
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Sabina Strano-Rossi
- Institute of Public Health, Section of Legal Medicine, Catholic University of Rome, Rome, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio De-Giorgio
- Department of Health Care Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Liana Fattore
- National Research Council, CNR Institute of Neuroscience-Cagliari, Cagliari, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Rome, Italy
| |
Collapse
|
3
|
Díaz-Rodríguez SM, Herrero-Turrión MJ, García-Peral C, Gómez-Nieto R. Delving into the significance of the His289Tyr single-nucleotide polymorphism in the glutamate ionotropic receptor kainate-1 ( Grik1) gene of a genetically audiogenic seizure model. Front Mol Neurosci 2024; 16:1322750. [PMID: 38249292 PMCID: PMC10797026 DOI: 10.3389/fnmol.2023.1322750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Genetic abnormalities affecting glutamate receptors are central to excitatory overload-driven neuronal mechanisms that culminate in seizures, making them pivotal targets in epilepsy research. Increasingly used to advance this field, the genetically audiogenic seizure hamster from Salamanca (GASH/Sal) exhibits generalized seizures triggered by high-intensity acoustic stimulation and harbors significant genetic variants recently identified through whole-exome sequencing. Here, we addressed the influence of the missense single-nucleotide polymorphism (C9586732T, p.His289Tyr) in the glutamate receptor ionotropic kainate-1 (Grik1) gene and its implications for the GASH/Sal seizure susceptibility. Using a protein 3D structure prediction, we showed a potential effect of this sequence variation, located in the amino-terminal domain, on the stability and/or conformation of the kainate receptor subunit-1 protein (GluK1). We further employed a multi-technique approach, encompassing gene expression analysis (RT-qPCR), Western blotting, and immunohistochemistry in bright-field and confocal fluorescence microscopy, to investigate critical seizure-associated brain regions in GASH/Sal animals under seizure-free conditions compared to matched wild-type controls. We detected disruptions in the transcriptional profile of the Grik1 gene within the audiogenic seizure-associated neuronal network. Alterations in GluK1 protein levels were also observed in various brain structures, accompanied by an unexpected lower molecular weight band in the inferior and superior colliculi. This correlated with substantial disparities in GluK1-immunolabeling distribution across multiple brain regions, including the cerebellum, hippocampus, subdivisions of the inferior and superior colliculi, and the prefrontal cortex. Notably, the diffuse immunolabeling accumulated within perikarya, axonal fibers and terminals, exhibiting a prominent concentration in proximity to the cell nucleus. This suggests potential disturbances in the GluK1-trafficking mechanism, which could subsequently affect glutamate synaptic transmission. Overall, our study sheds light on the genetic underpinnings of seizures and underscores the importance of investigating the molecular mechanisms behind synaptic dysfunction in epileptic neural networks, laying a crucial foundation for future research and therapeutic strategies targeting GluK1-containing kainate receptors.
Collapse
Affiliation(s)
- Sandra M. Díaz-Rodríguez
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | - M. Javier Herrero-Turrión
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Neurological Tissue Bank INCYL (BTN-INCYL), Salamanca, Spain
| | - Carlos García-Peral
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Corli G, Tirri M, Bilel S, Arfè R, Coccini T, Roda E, Marchetti B, Vincenzi F, Zauli G, Borea PA, Locatelli CA, Varani K, Marti M. MAM-2201 acute administration impairs motor, sensorimotor, prepulse inhibition, and memory functions in mice: a comparison with its analogue AM-2201. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06378-8. [PMID: 37233813 DOI: 10.1007/s00213-023-06378-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
RATIONALE 1-[(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl) methanone (MAM-2201) is a potent synthetic cannabinoid receptor agonist illegally marketed in "spice" products and as "synthacaine" for its psychoactive effects. It is a naphthoyl-indole derivative which differs from its analogue 1-[(5-Fluoropentyl)-1H-indol-3-yl](1-naphthylenyl) methanone (AM-2201) by the presence of a methyl substituent on carbon 4 (C-4) of the naphthoyl moiety. Multiple cases of intoxication and impaired driving have been linked to AM-2201 and MAM-2201 consumption. OBJECTIVES This study aims to investigate the in vitro (murine and human cannabinoid receptors) and in vivo (CD-1 male mice) pharmacodynamic activity of MAM-2201 and compare its effects with those induced by its desmethylated analogue, AM-2201. RESULTS In vitro competition binding studies confirmed that MAM-2201 and AM-2201 possess nanomolar affinity for both CD-1 murine and human CB1 and CB2 receptors, with preference for the CB1 receptor. In agreement with the in vitro binding data, in vivo studies showed that MAM-2201 induces visual, acoustic, and tactile impairments that were fully prevented by pretreatment with CB1 receptor antagonist/partial agonist AM-251, indicating a CB1 receptor mediated mechanism of action. Administration of MAM-2201 also altered locomotor activity and PPI responses of mice, pointing out its detrimental effect on motor and sensory gating functions and confirming its potential use liability. MAM-2201 and AM-2201 also caused deficits in short- and long-term working memory. CONCLUSION These findings point to the potential public health burden that these synthetic cannabinoids may pose, with particular emphasis on impaired driving and workplace performance.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Elisa Roda
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | | | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Via Fossato Di Mortara 17-19, 44121, Ferrara, Italy.
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
5
|
Comprehensive Behavioral Analysis of Opsin 3 (Encephalopsin)-Deficient Mice Identifies Role in Modulation of Acoustic Startle Reflex. eNeuro 2022; 9:ENEURO.0202-22.2022. [PMID: 36041828 PMCID: PMC9532019 DOI: 10.1523/eneuro.0202-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Opsin-3 (Opn3, encephalopsin) was the first nonvisual opsin gene discovered in mammals. Since then, several Opn3 functions have been described, and in two cases (adipose tissue, smooth muscle) light sensing activity is implicated. In addition to peripheral tissues, Opn3 is robustly expressed within the central nervous system, for which it derives its name. Despite this expression, no studies have investigated developmental or adult CNS consequences of Opn3 loss-of-function. Here, the behavioral consequences of mice deficient in Opn3 were investigated. Opn3-deficient mice perform comparably to wild-type mice in measures of motor coordination, socialization, anxiety-like behavior, and various aspects of learning and memory. However, Opn3-deficient mice have an attenuated acoustic startle reflex (ASR) relative to littermates. This deficit is not because of changes in hearing sensitivity, although Opn3 was shown to be expressed in auditory and vestibular structures, including cochlear outer hair cells. Interestingly, the ASR was not acutely light-dependent and did not vary between daytime and nighttime trials, despite known functions of Opn3 in photoreception and circadian gene amplitude. Together, these results demonstrate the first role of Opn3 on behavior, although the role of this opsin in the CNS remains largely elusive.
Collapse
|
6
|
Tirri M, Arfè R, Bilel S, Corli G, Marchetti B, Fantinati A, Vincenzi F, De-Giorgio F, Camuto C, Mazzarino M, Barbieri M, Gaudio RM, Varani K, Borea PA, Botrè F, Marti M. In Vivo Bio-Activation of JWH-175 to JWH-018: Pharmacodynamic and Pharmacokinetic Studies in Mice. Int J Mol Sci 2022; 23:ijms23148030. [PMID: 35887377 PMCID: PMC9318133 DOI: 10.3390/ijms23148030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
3-(1-Naphthalenylmethyl)-1-pentyl-1H-indole (JWH-175) is a synthetic cannabinoid illegally marketed for its psychoactive cannabis-like effects. This study aimed to investigate and compare in vitro and in vivo pharmacodynamic activity of JWH-175 with that of 1-naphthalenyl (1-pentyl-1H-indol-3-yl)-methanone (JWH-018), as well as evaluate the in vitro (human liver microsomes) and in vivo (urine and plasma of CD-1 male mice) metabolic profile of JWH-175. In vitro binding studies showed that JWH-175 is a cannabinoid receptor agonist less potent than JWH-018 on mouse and human CB1 and CB2 receptors. In agreement with in vitro data, JWH-175 reduced the fESPS in brain hippocampal slices of mice less effectively than JWH-018. Similarly, in vivo behavioral studies showed that JWH-175 impaired sensorimotor responses, reduced breath rate and motor activity, and increased pain threshold to mechanical stimuli less potently than JWH-018. Metabolic studies demonstrated that JWH-175 is rapidly bioactivated to JWH-018 in mice blood, suggesting that in vivo effects of JWH-175 are also due to JWH-018 formation. The pharmaco-toxicological profile of JWH-175 was characterized for the first time, proving its in vivo bio-activation to the more potent agonist JWH-018. Thus, it highlighted the great importance of investigating the in vivo metabolism of synthetic cannabinoids for both clinical toxicology and forensic purposes.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Sabrine Bilel
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Beatrice Marchetti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabrizio Vincenzi
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioetics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- A. Gemelli University Polyclinic Foundation IRCCS, 00168 Rome, Italy
| | - Cristian Camuto
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Monica Mazzarino
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
| | - Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Rosa Maria Gaudio
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Pier Andrea Borea
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
| | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, 00197 Rome, Italy; (C.C.); (M.M.); (F.B.)
- Institute of Sport Science, University of Lausanne (ISSUL), Synathlon, CH-1015 Lausanne, Switzerland
| | - Matteo Marti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (R.A.); (S.B.); (G.C.); (B.M.); (F.V.); (R.M.G.); (K.V.); (P.A.B.)
- University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
A specialized spinal circuit for command amplification and directionality during escape behavior. Proc Natl Acad Sci U S A 2021; 118:2106785118. [PMID: 34663699 PMCID: PMC8545473 DOI: 10.1073/pnas.2106785118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
We are constantly faced with a choice moving to the left or right; understanding how the brain solves the selection of action direction is of tremendous interest both from biological and clinical perspectives. In vertebrates, action selection is often considered to be the realm of higher cognitive processing. However, by combining electrophysiology, serial block-face electron microscopy, and behavioral analyses in zebrafish, we have revealed a pivotal role, as well as the full functional connectome of a specialized spinal circuit relying on strong axo-axonic synaptic connections. This includes identifying a class of cholinergic V2a interneurons and establishing that they act as a segmentally repeating hub that receives and amplifies escape commands from the brain to ensure the appropriate escape directionality. In vertebrates, action selection often involves higher cognition entailing an evaluative process. However, urgent tasks, such as defensive escape, require an immediate implementation of the directionality of escape trajectory, necessitating local circuits. Here we reveal a specialized spinal circuit for the execution of escape direction in adult zebrafish. A central component of this circuit is a unique class of segmentally repeating cholinergic V2a interneurons expressing the transcription factor Chx10. These interneurons amplify brainstem-initiated escape commands and rapidly deliver the excitation via a feedforward circuit to all fast motor neurons and commissural interneurons to direct the escape maneuver. The information transfer within this circuit relies on fast and reliable axo-axonic synaptic connections, bypassing soma and dendrites. Unilateral ablation of cholinergic V2a interneurons eliminated escape command propagation. Thus, in vertebrates, local spinal circuits can implement directionality of urgent motor actions vital for survival.
Collapse
|
8
|
Möhrle D, Wang W, Whitehead SN, Schmid S. GABA B Receptor Agonist R-Baclofen Reverses Altered Auditory Reactivity and Filtering in the Cntnap2 Knock-Out Rat. Front Integr Neurosci 2021; 15:710593. [PMID: 34489651 PMCID: PMC8417788 DOI: 10.3389/fnint.2021.710593] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022] Open
Abstract
Altered sensory information processing, and auditory processing, in particular, is a common impairment in individuals with autism spectrum disorder (ASD). One prominent hypothesis for the etiology of ASD is an imbalance between neuronal excitation and inhibition. The selective GABAB receptor agonist R-Baclofen has been shown previously to improve social deficits and repetitive behaviors in several mouse models for neurodevelopmental disorders including ASD, and its formulation Arbaclofen has been shown to ameliorate social avoidance symptoms in some individuals with ASD. The present study investigated whether R-Baclofen can remediate ASD-related altered sensory processing reliant on excitation/inhibition imbalance in the auditory brainstem. To assess a possible excitation/inhibition imbalance in the startle-mediating brainstem underlying ASD-like auditory-evoked behaviors, we detected and quantified brain amino acid levels in the nucleus reticularis pontis caudalis (PnC) of rats with a homozygous loss-of-function mutation in the ASD-linked gene Contactin-associated protein-like 2 (Cntnap2) and their wildtype (WT) littermates using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI MS). Abnormal behavioral read-outs of brainstem auditory signaling in Cntnap2 KO rats were accompanied by increased levels of GABA, glutamate, and glutamine in the PnC. We then compared the effect of R-Baclofen on behavioral read-outs of brainstem auditory signaling in Cntnap2 KO and WT rats. Auditory reactivity, sensory filtering, and sensorimotor gating were tested in form of acoustic startle response input-output functions, short-term habituation, and prepulse inhibition before and after acute administration of R-Baclofen (0.75, 1.5, and 3 mg/kg). Systemic R-Baclofen treatment improved disruptions in sensory filtering in Cntnap2 KO rats and suppressed exaggerated auditory startle responses, in particular to moderately loud sounds. Lower ASR thresholds in Cntnap2 KO rats were increased in a dose-dependent fashion, with the two higher doses bringing thresholds close to controls, whereas shorter ASR peak latencies at the threshold were further exacerbated. Impaired prepulse inhibition increased across various acoustic prepulse conditions after administration of R-Baclofen in Cntnap2 KO rats, whereas R-Baclofen did not affect prepulse inhibition in WT rats. Our findings suggest that GABAB receptor agonists may be useful for pharmacologically targeting multiple aspects of sensory processing disruptions involving neuronal excitation/inhibition imbalances in ASD.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Regan SL, Sugimoto C, Fritz AL, Vorhees CV, Williams MT. Effects of Permethrin or Deltamethrin Exposure in Adult Sprague Dawley Rats on Acoustic and Light Prepulse Inhibition of Acoustic or Tactile Startle. Neurotox Res 2021; 39:543-555. [PMID: 33608816 DOI: 10.1007/s12640-021-00339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/09/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The effects of permethrin (PRM) and deltamethrin (DLM) on acoustic or light prepulse inhibition of the acoustic startle response (ASR) and tactile startle response (TSR) were studied in adult male Sprague Dawley rats. Preliminary studies were conducted to optimize the parameters of light and acoustic prepulse inhibition of ASR and TSR. Once these parameters were set, a new group of rats was administered PRM (0 or 90 mg/kg) or DLM (0 or 25 mg/kg) by gavage in 5 mL/kg corn oil. ASR and TSR were assessed using acoustic or light prepulses 6, 8, and 12 h after PRM and 2, 4, and 6 h after DLM exposure. PRM increased ASR 6 h post-treatment with no interaction with acoustic prepulse levels and with no effect on TSR. When light was used as the prepulse, PRM increased ASR and TSR at 6 h with no interaction with prepulse levels. DLM decreased ASR and TSR on trials without prepulses but not on trials with acoustic prepulses. DLM also decreased ASR when light prepulses were present 4 h post-treatment. A final experiment assessed whether the house light in the test cabinet affected ASR and TSR after PRM or DLM exposure. Rats had increased ASR and TSR when house lights were on compared with when they were off, but lighting did not differentially interact with PRM or DLM. Light and acoustic prepulses of ASR and TSR have different effects depending on the test agent and the test parameters.
Collapse
Affiliation(s)
- Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Adam L Fritz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA. .,Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| |
Collapse
|
10
|
Whole brain proton irradiation in adult Sprague Dawley rats produces dose dependent and non-dependent cognitive, behavioral, and dopaminergic effects. Sci Rep 2020; 10:21584. [PMID: 33299021 PMCID: PMC7726106 DOI: 10.1038/s41598-020-78128-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Proton radiotherapy causes less off-target effects than X-rays but is not without effect. To reduce adverse effects of proton radiotherapy, a model of cognitive deficits from conventional proton exposure is needed. We developed a model emphasizing multiple cognitive outcomes. Adult male rats (10/group) received a single dose of 0, 11, 14, 17, or 20 Gy irradiation (the 20 Gy group was not used because 50% died). Rats were tested once/week for 5 weeks post-irradiation for activity, coordination, and startle. Cognitive assessment began 6-weeks post-irradiation with novel object recognition (NOR), egocentric learning, allocentric learning, reference memory, and proximal cue learning. Proton exposure had the largest effect on activity and prepulse inhibition of startle 1-week post-irradiation that dissipated each week. 6-weeks post-irradiation, there were no effects on NOR, however proton exposure impaired egocentric (Cincinnati water maze) and allocentric learning and caused reference memory deficits (Morris water maze), but did not affect proximal cue learning or swimming performance. Proton groups also had reduced striatal levels of the dopamine transporter, tyrosine hydroxylase, and the dopamine receptor D1, effects consistent with egocentric learning deficits. This new model will facilitate investigations of different proton dose rates and drugs to ameliorate the cognitive sequelae of proton radiotherapy.
Collapse
|
11
|
Prepulse Inhibition of the Auditory Startle Reflex Assessment as a Hallmark of Brainstem Sensorimotor Gating Mechanisms. Brain Sci 2020; 10:brainsci10090639. [PMID: 32947873 PMCID: PMC7563436 DOI: 10.3390/brainsci10090639] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
When a low-salience stimulus of any type of sensory modality-auditory, visual, tactile-immediately precedes an unexpected startle-like stimulus, such as the acoustic startle reflex, the startle motor reaction becomes less pronounced or is even abolished. This phenomenon is known as prepulse inhibition (PPI), and it provides a quantitative measure of central processing by filtering out irrelevant stimuli. As PPI implies plasticity of a reflex and is related to automatic or attentional processes, depending on the interstimulus intervals, this behavioral paradigm might be considered a potential marker of short- and long-term plasticity. Assessment of PPI is directly related to the examination of neural sensorimotor gating mechanisms, which are plastic-adaptive operations for preventing overstimulation and helping the brain to focus on a specific stimulus among other distracters. Despite their obvious importance in normal brain activity, little is known about the intimate physiology, circuitry, and neurochemistry of sensorimotor gating mechanisms. In this work, we extensively review the current literature focusing on studies that used state-of-the-art techniques to interrogate the neuroanatomy, connectomics, neurotransmitter-receptor functions, and sex-derived differences in the PPI process, and how we can harness it as biological marker in neurological and psychiatric pathology.
Collapse
|
12
|
Abstract
Animal models have significantly contributed to understanding the pathophysiology of chronic subjective tinnitus. They are useful because they control etiology, which in humans is heterogeneous; employ random group assignment; and often use methods not permissible in human studies. Animal models can be broadly categorized as either operant or reflexive, based on methodology. Operant methods use variants of established psychophysical procedures to reveal what an animal hears. Reflexive methods do the same using elicited behavior, for example, the acoustic startle reflex. All methods contrast the absence of sound and presence of sound, because tinnitus cannot by definition be perceived as silence.
Collapse
|
13
|
Bilel S, Tirri M, Arfè R, Stopponi S, Soverchia L, Ciccocioppo R, Frisoni P, Strano-Rossi S, Miliano C, De-Giorgio F, Serpelloni G, Fantinati A, De Luca MA, Neri M, Marti M. Pharmacological and Behavioral Effects of the Synthetic Cannabinoid AKB48 in Rats. Front Neurosci 2019; 13:1163. [PMID: 31736697 PMCID: PMC6831561 DOI: 10.3389/fnins.2019.01163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
AKB48 is a designer drug belonging to the indazole synthetic cannabinoids class, illegally sold as herbal blend, incense, or research chemicals for their psychoactive cannabis-like effects. In the present study, we investigated the in vivo pharmacological and behavioral effects of AKB48 in male rats and measured the pharmacodynamic effects of AKB48 and simultaneously determined its plasma pharmacokinetic. AKB48 at low doses preferentially stimulated dopamine release in the nucleus accumbens shell (0.25 mg/kg) and impaired visual sensorimotor responses (0.3 mg/kg) without affecting acoustic and tactile reflexes, which are reduced only to the highest dose tested (3 mg/kg). Increasing doses (0.5 mg/kg) of AKB48 impaired place preference and induced hypolocomotion in rats. At the highest dose (3 mg/kg), AKB48 induced hypothermia, analgesia, and catalepsy; inhibited the startle/pre-pulse inhibition test; and caused cardiorespiratory changes characterized by bradycardia and mild bradipnea and SpO2 reduction. All behavioral and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM251. AKB48 plasma concentrations rose linearly with increasing dose and were correlated with changes in the somatosensory, hypothermic, analgesic, and cataleptic responses in rats. For the first time, this study shows the pharmacological and behavioral effects of AKB48 in rats, correlating them to the plasma levels of the synthetic cannabinoid. Chemical Compound Studied in This Article: AKB48 (PubChem CID: 57404063); AM251 (PubChem CID: 2125).
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Serena Stopponi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Soverchia
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Paolo Frisoni
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabina Strano-Rossi
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabio De-Giorgio
- Section of Legal Medicine, Institute of Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Matteo Marti
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department of Anti-Drug Policies, Presidency of the Council of Ministers, Collaborative Center for the Italian National Early Warning System, Ferrara, Italy
| |
Collapse
|
14
|
Suppressed acoustic startle response in traumatic brain injury masks post-traumatic stress disorder hyper-responsivity. Neuroreport 2019; 29:939-944. [PMID: 29771818 PMCID: PMC6045952 DOI: 10.1097/wnr.0000000000001056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An exaggerated acoustic startle reflex (ASR) is a clinical indicator of anxiety disorders, such as post-traumatic stress disorder (PTSD). Given the prevalence of PTSD following traumatic brain injury (TBI), we studied the effects of TBI on ASR. Adult Sprague Dawley rats exposed to moderate controlled cortical impact injury model of TBI displayed suppression of ASR intensity and sensitivity. As patients with PTSD have been shown to display hyperactive startle responses, the present discrepant observation of TBI-induced suppression of ASR has clinical implications, in that the reduced, instead of elevated, startle response in patients with comorbid TBI/PTSD could be owing to a masking effect of TBI.
Collapse
|
15
|
Lee W, Croce P, Margolin RW, Cammalleri A, Yoon K, Yoo SS. Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci 2018; 19:57. [PMID: 30231861 PMCID: PMC6146769 DOI: 10.1186/s12868-018-0459-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/15/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound (tFUS) has emerged as a new non-invasive modality of brain stimulation with the potential for high spatial selectivity and penetration depth. Anesthesia is typically applied in animal-based tFUS brain stimulation models; however, the type and depth of anesthesia are known to introduce variability in responsiveness to the stimulation. Therefore, the ability to conduct sonication experiments on awake small animals, such as rats, is warranted to avoid confounding effects of anesthesia. RESULTS We developed a miniature tFUS headgear, operating at 600 kHz, which can be attached to the skull of Sprague-Dawley rats through an implanted pedestal, allowing the ultrasound to be transcranially delivered to motor cortical areas of unanesthetized freely-moving rats. Video recordings were obtained to monitor physical responses from the rat during acoustic brain stimulation. The stimulation elicited body movements from various areas, such as the tail, limbs, and whiskers. Movement of the head, including chewing behavior, was also observed. When compared to the light ketamine/xylazine and isoflurane anesthetic conditions, the response rate increased while the latency to stimulation decreased in the awake condition. The individual variability in response rates was smaller during the awake condition compared to the anesthetic conditions. Our analysis of latency distribution of responses also suggested possible presence of acoustic startle responses mixed with stimulation-related physical movement. Post-tFUS monitoring of animal behaviors and histological analysis performed on the brain did not reveal any abnormalities after the repeated tFUS sessions. CONCLUSIONS The wearable miniature tFUS configuration allowed for the stimulation of motor cortical areas in rats and elicited sonication-related movements under both awake and anesthetized conditions. The awake condition yielded diverse physical responses compared to those reported in existing literatures. The ability to conduct an experiment in freely-moving awake animals can be gainfully used to investigate the effects of acoustic neuromodulation free from the confounding effects of anesthesia, thus, may serve as a translational platform to large animals and humans.
Collapse
Affiliation(s)
- Wonhye Lee
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Phillip Croce
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Ryan W. Margolin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Amanda Cammalleri
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kyungho Yoon
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| |
Collapse
|
16
|
Wolter S, Möhrle D, Schmidt H, Pfeiffer S, Zelle D, Eckert P, Krämer M, Feil R, Pilz PKD, Knipper M, Rüttiger L. GC-B Deficient Mice With Axon Bifurcation Loss Exhibit Compromised Auditory Processing. Front Neural Circuits 2018; 12:65. [PMID: 30275816 PMCID: PMC6152484 DOI: 10.3389/fncir.2018.00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Sensory axon T-like branching (bifurcation) in neurons from dorsal root ganglia and cranial sensory ganglia depends on the molecular signaling cascade involving the secreted factor C-type natriuretic peptide, the natriuretic peptide receptor guanylyl cyclase B (GC-B; also known as Npr2) and cGMP-dependent protein kinase I (cGKI, also known as PKGI). The bifurcation of cranial nerves is suggested to be important for information processing by second-order neurons in the hindbrain or spinal cord. Indeed, mice with a spontaneous GC-B loss of function mutation (Npr2cn/cn ) display an impaired bifurcation of auditory nerve (AN) fibers. However, these mice did not show any obvious sign of impaired basal hearing. Here, we demonstrate that mice with a targeted inactivation of the GC-B gene (Npr2 lacZ/lacZ , GC-B KO mice) show an elevation of audiometric thresholds. In the inner ear, the cochlear hair cells in GC-B KO mice were nevertheless similar to those from wild type mice, justified by the typical expression of functionally relevant marker proteins. However, efferent cholinergic feedback to inner and outer hair cells was reduced in GC-B KO mice, linked to very likely reduced rapid efferent feedback. Sound-evoked AN responses of GC-B KO mice were elevated, a feature that is known to occur when the efferent axo-dendritic feedback on AN is compromised. Furthermore, late sound-evoked brainstem responses were significantly delayed in GC-B KO mice. This delay in sound response was accompanied by a weaker sensitivity of the auditory steady state response to amplitude-modulated sound stimuli. Finally, the acoustic startle response (ASR) - one of the fastest auditory responses - and the prepulse inhibition of the ASR indicated significant changes in temporal precision of auditory processing. These findings suggest that GC-B-controlled axon bifurcation of spiral ganglion neurons is important for proper activation of second-order neurons in the hindbrain and is a prerequisite for proper temporal auditory processing likely by establishing accurate efferent top-down control circuits. These data hypothesize that the bifurcation pattern of cranial nerves is important to shape spatial and temporal information processing for sensory feedback control.
Collapse
Affiliation(s)
- Steffen Wolter
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sylvia Pfeiffer
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Dennis Zelle
- Department of Otolaryngology, Head and Neck Surgery, Physiological Acoustics and Communication, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Philipp Eckert
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Michael Krämer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Peter K D Pilz
- Department of Animal Physiology, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Molecular Physiology of Hearing, Tübingen Hearing Research Centre, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
LeDoux J, Daw ND. Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour. Nat Rev Neurosci 2018; 19:269-282. [PMID: 29593300 DOI: 10.1038/nrn.2018.22] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on defensive behaviour in mammals has in recent years focused on elicited reactions; however, organisms also make active choices when responding to danger. We propose a hierarchical taxonomy of defensive behaviour on the basis of known psychological processes. Included are three categories of reactions (reflexes, fixed reactions and habits) and three categories of goal-directed actions (direct action-outcome behaviours and actions based on implicit or explicit forecasting of outcomes). We then use this taxonomy to guide a summary of findings regarding the underlying neural circuits.
Collapse
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA.,Department of Psychiatry and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, USA.,Nathan Kline Institute for Psychiatry Research, Orangeburg, NY, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
18
|
Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Struct Funct 2018; 223:2733-2751. [DOI: 10.1007/s00429-018-1654-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
|
19
|
Berger JI, Owen W, Wilson CA, Hockley A, Coomber B, Palmer AR, Wallace MN. Gap-induced reductions of evoked potentials in the auditory cortex: A possible objective marker for the presence of tinnitus in animals. Brain Res 2017; 1679:101-108. [PMID: 29191772 PMCID: PMC5780299 DOI: 10.1016/j.brainres.2017.11.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 01/03/2023]
Abstract
Gap-suppression of startle responses is regularly used as a measure for tinnitus. We studied this phenomenon in auditory cortical evoked potentials in awake animals. Gap-suppression of evoked potentials was also examined following noise exposure. 120 dB SPL noise exposure, but not 105 dB, resulted in deficits in gap-suppression. Results are discussed in the context of a potential correlate of tinnitus.
Animal models of tinnitus are essential for determining the underlying mechanisms and testing pharmacotherapies. However, there is doubt over the validity of current behavioural methods for detecting tinnitus. Here, we applied a stimulus paradigm widely used in a behavioural test (gap-induced inhibition of the acoustic startle reflex GPIAS) whilst recording from the auditory cortex, and showed neural response changes that mirror those found in the behavioural tests. We implanted guinea pigs (GPs) with electrocorticographic (ECoG) arrays and recorded baseline auditory cortical responses to a startling stimulus. When a gap was inserted in otherwise continuous background noise prior to the startling stimulus, there was a clear reduction in the subsequent evoked response (termed gap-induced reductions in evoked potentials; GIREP), suggestive of a neural analogue of the GPIAS test. We then unilaterally exposed guinea pigs to narrowband noise (left ear; 8–10 kHz; 1 h) at one of two different sound levels – either 105 dB SPL or 120 dB SPL – and recorded the same responses seven-to-ten weeks following the noise exposure. Significant deficits in GIREP were observed for all areas of the auditory cortex (AC) in the 120 dB-exposed GPs, but not in the 105 dB-exposed GPs. These deficits could not simply be accounted for by changes in response amplitudes. Furthermore, in the contralateral (right) caudal AC we observed a significant increase in evoked potential amplitudes across narrowband background frequencies in both 105 dB and 120 dB-exposed GPs. Taken in the context of the large body of literature that has used the behavioural test as a demonstration of the presence of tinnitus, these results are suggestive of objective neural correlates of the presence of noise-induced tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - William Owen
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Caroline A Wilson
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Adam Hockley
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ben Coomber
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
20
|
Popelář J, Díaz Gómez M, Lindovský J, Rybalko N, Burianová J, Oohashi T, Syka J. The absence of brain-specific link protein Bral2 in perineuronal nets hampers auditory temporal resolution and neural adaptation in mice. Physiol Res 2017; 66:867-880. [PMID: 29020454 DOI: 10.33549/physiolres.933605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Brain-specific link protein Bral2 represents a substantial component of perineuronal nets (PNNs) enwrapping neurons in the central nervous system. To elucidate the role of Bral2 in auditory signal processing, the hearing function in knockout Bral2(-/-) (KO) mice was investigated using behavioral and electrophysiological methods and compared with wild type Bral2(+/+) (WT) mice. The amplitudes of the acoustic startle reflex (ASR) and the efficiency of the prepulse inhibition of ASR (PPI of ASR), produced by prepulse noise stimulus or gap in continuous noise, was similar in 2-week-old WT and KO mice. Over the 2-month postnatal period the increase of ASR amplitudes was significantly more evident in WT mice than in KO mice. The efficiency of the PPI of ASR significantly increased in the 2-month postnatal period in WT mice, whereas in KO mice the PPI efficiency did not change. Hearing thresholds in 2-month-old WT mice, based on the auditory brainstem response (ABR) recordings, were significantly lower at high frequencies than in KO mice. However, amplitudes and peak latencies of individual waves of click-evoked ABR did not differ significantly between WT and KO mice. Temporal resolution and neural adaptation were significantly better in 2-month-old WT mice than in age-matched KO mice. These results support a hypothesis that the absence of perineuronal net formation at the end of the developmental period in the KO mice results in higher hearing threshold at high frequencies and weaker temporal resolution ability in adult KO animals compared to WT mice.
Collapse
Affiliation(s)
- J Popelář
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lauer AM, Behrens D, Klump G. Acoustic startle modification as a tool for evaluating auditory function of the mouse: Progress, pitfalls, and potential. Neurosci Biobehav Rev 2017; 77:194-208. [PMID: 28327385 PMCID: PMC5446932 DOI: 10.1016/j.neubiorev.2017.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
Acoustic startle response (ASR) modification procedures, especially prepulse inhibition (PPI), are increasingly used as behavioral measures of auditory processing and sensorimotor gating in rodents due to their perceived ease of implementation and short testing times. In practice, ASR and PPI procedures are extremely variable across animals, experimental setups, and studies, and the interpretation of results is subject to numerous caveats and confounding influences. We review considerations for modification of the ASR using acoustic stimuli, and we compare the sensitivity of PPI procedures to more traditional operant psychoacoustic techniques. We also discuss non-auditory variables that must be considered. We conclude that ASR and PPI measures cannot substitute for traditional operant techniques due to their low sensitivity. Additionally, a substantial amount of pilot testing must be performed to properly optimize an ASR modification experiment, negating any time benefit over operant conditioning. Nevertheless, there are some circumstances where ASR measures may be the only option for assessing auditory behavior, such as when testing mouse strains with early-onset hearing loss or learning impairments.
Collapse
Affiliation(s)
- Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, 515 Traylor Building, 720 Rutland Ave., Baltimore, MD 21205, USA.
| | - Derik Behrens
- Cluster of Excellence Hearing4all, Animal Physiology & Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl Von Ossietzky Str. 9-11, 26111 Oldenburg, Germany
| | - Georg Klump
- Cluster of Excellence Hearing4all, Animal Physiology & Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl Von Ossietzky Str. 9-11, 26111 Oldenburg, Germany
| |
Collapse
|
22
|
Hormigo S, Gómez-Nieto R, Sancho C, Herrero-Turrión J, Carro J, López DE, Horta-Júnior JDADCE. Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons. Brain Struct Funct 2017; 222:3491-3508. [PMID: 28382577 DOI: 10.1007/s00429-017-1415-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
The noradrenergic locus coeruleus (LC) plays an important role in the promotion and maintenance of arousal and alertness. Our group recently described coerulean projections to cochlear root neurons (CRNs), the first relay of the primary acoustic startle reflex (ASR) circuit. However, the role of the LC in the ASR and its modulation, prepulse inhibition (PPI), is not clear. In this study, we damaged LC neurons and fibers using a highly selective neurotoxin, DSP-4, and then assessed ASR and PPI in male and female rats. Our results showed that ASR amplitude was higher in males at 14 days after DSP-4 injection when compared to pre-administration values and those in the male control group. Such modifications in ASR amplitude did not occur in DSP-4-injected females, which exhibited ASR amplitude within the range of control values. PPI differences between males and females seen in controls were not observed in DSP-4-injected rats for any interstimulus interval tested. DSP-4 injection did not affect ASR and PPI latencies in either the male or the female groups, showing values that were consistent with the sex-related variability observed in control rats. Furthermore, we studied the noradrenergic receptor system in the cochlear nerve root using gene expression analysis. When compared to controls, DSP-4-injected males showed higher levels of expression in all adrenoceptor subtypes; however, DSP-4-injected females showed varied effects depending on the receptor type, with either up-, downregulations, or maintenance of expression levels. Lastly, we determined noradrenaline levels in CRNs and other LC-targeted areas using HPLC assays, and these results correlated with behavioral and adrenoceptor expression changes post DSP-4 injection. Our study supports the participation of LC in ASR and PPI, and contributes toward a better understanding of sex-related differences observed in somatosensory gating paradigms.
Collapse
Affiliation(s)
- Sebastian Hormigo
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.
| | - Ricardo Gómez-Nieto
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Consuelo Sancho
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Javier Herrero-Turrión
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Juan Carro
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - José de Anchieta de Castro E Horta-Júnior
- Department of Anatomy, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Distrito de Rubião Jr., S/N, PO.Box 510, Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
23
|
BK Channels Mediate Synaptic Plasticity Underlying Habituation in Rats. J Neurosci 2017; 37:4540-4551. [PMID: 28348135 DOI: 10.1523/jneurosci.3699-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022] Open
Abstract
Habituation is a basic form of implicit learning and represents a sensory filter that is disrupted in autism, schizophrenia, and several other mental disorders. Despite extensive research in the past decades on habituation of startle and other escape responses, the underlying neural mechanisms are still not fully understood. There is evidence from previous studies indicating that BK channels might play a critical role in habituation. We here used a wide array of approaches to test this hypothesis. We show that BK channel activation and subsequent phosphorylation of these channels are essential for synaptic depression presumably underlying startle habituation in rats, using patch-clamp recordings and voltage-sensitive dye imaging in slices. Furthermore, positive modulation of BK channels in vivo can enhance short-term habituation. Although results using different approaches do not always perfectly align, together they provide convincing evidence for a crucial role of BK channel phosphorylation in synaptic depression underlying short-term habituation of startle. We also show that this mechanism can be targeted to enhance short-term habituation and therefore to potentially ameliorate sensory filtering deficits associated with psychiatric disorders.SIGNIFICANCE STATEMENT Short-term habituation is the most fundamental form of implicit learning. Habituation also represents a filter for inundating sensory information, which is disrupted in autism, schizophrenia, and other psychiatric disorders. Habituation has been studied in different organisms and behavioral models and is thought to be caused by synaptic depression in respective pathways. The underlying molecular mechanisms, however, are poorly understood. We here identify, for the first time, a BK channel-dependent molecular synaptic mechanism leading to synaptic depression that is crucial for habituation, and we discuss the significance of our findings for potential treatments enhancing habituation.
Collapse
|
24
|
Deleting the HCN1 Subunit of Hyperpolarization-Activated Ion Channels in Mice Impairs Acoustic Startle Reflexes, Gap Detection, and Spatial Localization. J Assoc Res Otolaryngol 2017; 18:427-440. [PMID: 28050647 DOI: 10.1007/s10162-016-0610-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
Abstract
It has been proposed that the high temporal and spatial acuities of human listeners and animals tested in the hearing laboratory depend in part on the short time constants of auditory neurons that are able to preserve or sharpen the information conveyed in the timing of firing of auditory nerve fibers. We tested this hypothesis in a series of in vivo experiments, based on previous in vitro experiments showing that neuronal time constants are raised in brainstem slices when HCN1 channels are blocked or in slices obtained from Hcn1 -/- null mutant mice. We compared Hcn1 -/- and Hcn1 +/+ mice on auditory brainstem responses (ABRs) and behavioral measures. Those measures included temporal integration for acoustic startle responses (ASRs), ASR depression by noise offset, and ASR inhibition by gaps in noise and by shifts of a noise source along the azimuth as measures of temporal and spatial acuity. Hcn1 -/- mice had less sensitive ABR thresholds at 32 and 48 kHz. Their wavelet P1b was delayed, and wave 2 was absent in the 16 kHz/90 SPL waveform, indicating that groups of neurons early in the auditory pathways were delayed and fired asynchronously. Baseline ASR levels were lower in Hcn1 -/- mice, temporal integration was delayed, time constants for ASR depression by noise offset were higher, and their sensitivity to brief gaps and spatial acuity was diminished. HCN1 channels are also present in vestibular, cutaneous, digestive, and cardiac neurons that variously may contribute to the deficits in spatial acuity and possibly in ASR levels.
Collapse
|
25
|
Troconis EL, Ordoobadi AJ, Sommers TF, Aziz‐Bose R, Carter AR, Trapani JG. Intensity-dependent timing and precision of startle response latency in larval zebrafish. J Physiol 2017; 595:265-282. [PMID: 27228964 PMCID: PMC5199724 DOI: 10.1113/jp272466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Using high-speed videos time-locked with whole-animal electrical recordings, simultaneous measurement of behavioural kinematics and field potential parameters of C-start startle responses allowed for discrimination between short-latency and long-latency C-starts (SLCs vs. LLCs) in larval zebrafish. Apart from their latencies, SLC kinematics and SLC field potential parameters were intensity independent. Increasing stimulus intensity increased the probability of evoking an SLC and decreased mean SLC latencies while increasing their precision; subtraction of field potential latencies from SLC latencies revealed a fixed time delay between the two measurements that was intensity independent. The latency and the precision in the latency of the SLC field potentials were linearly correlated to the latencies and precision of the first evoked action potentials (spikes) in hair-cell afferent neurons of the lateral line. Together, these findings indicate that first spike latency (FSL) is a fast encoding mechanism that can serve to precisely initiate startle responses when speed is critical for survival. ABSTRACT Vertebrates rely on fast sensory encoding for rapid and precise initiation of startle responses. In afferent sensory neurons, trains of action potentials (spikes) encode stimulus intensity within the onset time of the first evoked spike (first spike latency; FSL) and the number of evoked spikes. For speed of initiation of startle responses, FSL would be the more advantageous mechanism to encode the intensity of a threat. However, the intensity dependence of FSL and spike number and whether either determines the precision of startle response initiation is not known. Here, we examined short-latency startle responses (SLCs) in larval zebrafish and tested the hypothesis that first spike latencies and their precision (jitter) determine the onset time and precision of SLCs. We evoked startle responses via activation of Channelrhodopsin (ChR2) expressed in ear and lateral line hair cells and acquired high-speed videos of head-fixed larvae while simultaneously recording underlying field potentials. This method allowed for discrimination between primary SLCs and less frequent, long-latency startle responses (LLCs). Quantification of SLC kinematics and field potential parameters revealed that, apart from their latencies, they were intensity independent. We found that increasing stimulus intensity decreased SLC latencies while increasing their precision, which was significantly correlated with corresponding changes in field potential latencies and their precision. Single afferent neuron recordings from the lateral line revealed a similar intensity-dependent decrease in first spike latencies and their jitter, which could account for the intensity-dependent changes in timing and precision of startle response latencies.
Collapse
Affiliation(s)
| | | | | | | | - Ashley R. Carter
- Department of Physics and AstronomyAmherst CollegeAmherstMA01002USA
| | - Josef G. Trapani
- Department of BiologyAmherst CollegeAmherstMA01002USA
- Neuroscience ProgramAmherst CollegeAmherstMA01002USA
| |
Collapse
|
26
|
Canazza I, Ossato A, Trapella C, Fantinati A, De Luca MA, Margiani G, Vincenzi F, Rimondo C, Di Rosa F, Gregori A, Varani K, Borea PA, Serpelloni G, Marti M. Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on "tetrad", sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology (Berl) 2016; 233:3685-3709. [PMID: 27527584 DOI: 10.1007/s00213-016-4402-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE AKB48 and its fluorinate derivate 5F-AKB48 are two novel synthetic cannabinoids belonging to a structural class with an indazole core structure. They are marketed as incense, herbal preparations or chemical supply for their psychoactive Cannabis-like effects. OBJECTIVES The present study was aimed at investigating the in vitro and in vivo pharmacological activity of AKB48 and 5F-AKB48 in male CD-1 mice and comparing their in vivo effects with those caused by the administration of Δ9-THC and JWH-018. RESULTS In vitro competition binding experiments performed on mouse and human CB1 and CB2 receptors revealed a nanomolar affinity and potency of the AKB48 and 5F-AKB48. In vivo studies showed that AKB48 and 5F-AKB48, induced hypothermia, increased pain threshold to both noxious mechanical and thermal stimuli, caused catalepsy, reduced motor activity, impaired sensorimotor responses (visual, acoustic and tactile), caused seizures, myoclonia, hyperreflexia and promoted aggressiveness in mice. Moreover, microdialysis study in freely moving mice showed that systemic administration of AKB48 and 5F-AKB48 stimulated dopamine release in the nucleus accumbens. Behavioural, neurological and neurochemical effects were fully prevented by the selective CB1 receptor antagonist/inverse agonist AM 251. CONCLUSIONS For the first time, the present study demonstrates the overall pharmacological effects induced by the administration of AKB48 and 5F-AKB48 in mice and suggests that the fluorination can increase the power and/or effectiveness of SCBs. Furthermore, this study outlines the potential detrimental effects of SCBs on human health.
Collapse
Affiliation(s)
- Isabella Canazza
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Andrea Ossato
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Giulia Margiani
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Claudia Rimondo
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, 00191, Rome, Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- U.R.I.To.N., Forensic Toxicology Unit, Department of Health Science, University of Florence, Florence, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, via Fossato di Mortara 17-19, 44121, Ferrara, Italy. .,Center for Neuroscience and Istituto Nazionale di Neuroscienze, ᅟ, Italy.
| |
Collapse
|
27
|
Longenecker RJ, Alghamdi F, Rosen MJ, Galazyuk AV. Prepulse inhibition of the acoustic startle reflex vs. auditory brainstem response for hearing assessment. Hear Res 2016; 339:80-93. [PMID: 27349914 DOI: 10.1016/j.heares.2016.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/18/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023]
Abstract
The high prevalence of noise-induced and age-related hearing loss in the general population has warranted the use of animal models to study the etiology of these pathologies. Quick and accurate auditory threshold determination is a prerequisite for experimental manipulations targeting hearing loss in animal models. The standard auditory brainstem response (ABR) measurement is fairly quick and translational across species, but is limited by the need for anesthesia and a lack of perceptual assessment. The goal of this study was to develop a new method of hearing assessment utilizing prepulse inhibition (PPI) of the acoustic startle reflex, a commonly used tool that measures detection thresholds in awake animals, and can be performed on multiple animals simultaneously. We found that in control mice PPI audiometric functions are similar to both ABR and traditional operant conditioning audiograms. The hearing thresholds assessed with PPI audiometry in sound exposed mice were also similar to those detected by ABR thresholds one day after exposure. However, three months after exposure PPI threshold shifts were still evident at and near the frequency of exposure whereas ABR thresholds recovered to the pre-exposed level. In contrast, PPI audiometry and ABR wave one amplitudes detected similar losses. PPI audiometry provides a high throughput automated behavioral screening tool of hearing in awake animals. Overall, PPI audiometry and ABR assessments of the auditory system are robust techniques with distinct advantages and limitations, which when combined, can provide ample information about the functionality of the auditory system.
Collapse
Affiliation(s)
- R J Longenecker
- Northeast Ohio Medical University, Department of Anatomy and Neurobiology, Rootstown, OH, USA.
| | - F Alghamdi
- Northeast Ohio Medical University, Department of Anatomy and Neurobiology, Rootstown, OH, USA
| | - M J Rosen
- Northeast Ohio Medical University, Department of Anatomy and Neurobiology, Rootstown, OH, USA
| | - A V Galazyuk
- Northeast Ohio Medical University, Department of Anatomy and Neurobiology, Rootstown, OH, USA
| |
Collapse
|
28
|
Hale ME, Katz HR, Peek MY, Fremont RT. Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes. J Neurogenet 2016; 30:89-100. [DOI: 10.1080/01677063.2016.1182526] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Karcz A, Allen PD, Walton J, Ison JR, Kopp-Scheinpflug C. Auditory deficits of Kcna1 deletion are similar to those of a monaural hearing impairment. Hear Res 2015; 321:45-51. [PMID: 25602577 DOI: 10.1016/j.heares.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 11/28/2022]
Abstract
Kv1.1 subunits of low voltage-activated (Kv) potassium channels are encoded by the Kcna1 gene and crucially determine the synaptic integration window to control the number and temporal precision of action potentials in the auditory brainstem of mammals and birds. Prior electrophysiological studies showed that auditory signaling is compromised in monaural as well as in binaural neurons of the auditory brainstem in Kv1.1 knockout mice (Kcna1(-/-)). Here we examine the behavioral effects of Kcna1 deletion on sensory tasks dependent on either binaural processing (detecting the movement of a sound source across the azimuth), monaural processing (detecting a gap in noise), as well as binaural summation of the acoustic startle reflex (ASR). Hearing thresholds measured by auditory brainstem responses (ABR) do not differ between genotypes, but our data show a much stronger performance of wild type mice (+/+) in each test during binaural hearing which was lost by temporarily inducing a unilateral hearing loss (through short term blocking of one ear) thus remarkably, leaving no significant difference between binaural and monaural hearing in Kcna1(-/-) mice. These data suggest that the behavioral effect of Kv1.1 deletion is primarily to impede binaural integration and thus to mimic monaural hearing.
Collapse
Affiliation(s)
- Anita Karcz
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Medical School, Germany
| | - Paul D Allen
- Department of Neurobiology and Anatomy, School of Medicine & Dentistry, University of Rochester, NY, USA
| | - Joseph Walton
- Department of Communication Sciences and Disorders, University of South Florida, 4202 Fowler Av., Tampa, Fl 32620, USA
| | - James R Ison
- Department of Neurobiology and Anatomy, School of Medicine & Dentistry, University of Rochester, NY, USA; Department of Brain & Cognitive Sciences, University of Rochester, NY, USA
| | | |
Collapse
|