1
|
Braunscheidel K, Okas M, Woodward JJ. Toluene alters the intrinsic excitability and excitatory synaptic transmission of basolateral amygdala neurons. Front Neurosci 2024; 18:1366216. [PMID: 38595974 PMCID: PMC11002899 DOI: 10.3389/fnins.2024.1366216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Inhalant abuse is an important health issue especially among children and adolescents who often encounter these agents in the home. Research into the neurobiological targets of inhalants has lagged behind that of other drugs such as alcohol and psychostimulants. However, studies from our lab and others have begun to reveal how inhalants such as the organic solvent toluene affect neurons in key addiction related areas of the brain including the ventral tegmental area, nucleus accumbens and medial prefrontal cortex. In the present study, we extend these findings and examine the effect of toluene on electrophysiological responses of pyramidal neurons in the basolateral amygdala BLA, a region important for generating emotional and reward based information needed to guide future behavior. Methods Whole-cell patch-clamp electrophysiology recordings of BLA pyramidal neurons in rat brain slices were used to assess toluene effects on intrinsic excitability and excitatory glutamatergic synaptic transmission. Results Acute application of 3 mM but not 0.3 mM toluene produced a small but significant (~20%) increase in current-evoked action potential (AP) firing that reversed following washout of the toluene containing solution. The change in firing during exposure to 3 mM toluene was accompanied by selective changes in AP parameters including reduced latency to first spike, increased AP rise time and decay and a reduction in the fast after-hyperpolization. To examine whether toluene also affects excitatory synaptic signaling, we expressed channelrhodopsin-2 in medial prefrontal cortex neurons and elicited synaptic currents in BLA neurons via light pulses. Toluene (3 mM) reduced light-evoked AMPA-mediated synaptic currents while a lower concentration (0.3 mM) had no effect. The toluene-induced reduction in AMPA-mediated BLA synaptic currents was prevented by the cannabinoid receptor-1 antagonist AM281. Discussion These findings are the first to demonstrate effects of acute toluene on BLA pyramidal neurons and add to existing findings showing that abused inhalants such as toluene have significant effects on neurons in brain regions involved in natural and drug induced reward.
Collapse
Affiliation(s)
| | | | - John J. Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
2
|
Davidson CJ, Hannigan JH, Perrine SA, Bowen SE. Abuse-like toluene exposure during early adolescence alters subsequent ethanol and cocaine behavioral effects and brain monoamines in male mice. Neurotoxicol Teratol 2024; 101:107317. [PMID: 38199311 PMCID: PMC11629394 DOI: 10.1016/j.ntt.2023.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Currently, there is a gap in understanding the neurobiological impact early adolescent toluene exposure has on subsequent actions of other drugs. Adolescent (PND 28-32) male Swiss-Webster mice (N = 210) were exposed to 0, 2000, or 4000 ppm of toluene vapor for 30 min/day for 5 days. Immediately following the last toluene exposure (PND 32; n = 15) or after a short delay (PND 35; n = 15), a subset of subjects' brains was collected for monoamine analysis. Remaining mice were assigned to one of two abstinence periods: a short 4-day (PND 36) or long 12-day (PND 44) delay after toluene exposure. Mice were then subjected to a cumulative dose response assessment of either cocaine (0, 2.5, 5, 10, 20 mg/kg; n = 60), ethanol (0, 0.5, 1, 2, 4 g/kg; n = 60), or saline (5 control injections; n = 60). Toluene concentration-dependently increased locomotor activity during exposure. When later challenged, mice exposed previously to toluene were significantly less active after cocaine (10 and 20 mg/kg) compared to air-exposed controls. Animals were also less active at the highest dose of alcohol (4 g/kg) following prior exposure to 4000 ppm when compared to air-exposed controls. Analysis of monoamines and their metabolites using High Pressure Liquid Chromatography (HPLC) within the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and ventral tegmental area (VTA) revealed subtle effects on monoamine or metabolite levels following cumulative dosing that varied by drug (cocaine and ethanol) and abstinence duration. Our results suggest that early adolescent toluene exposure produces behavioral desensitization to subsequent cocaine-induced locomotor activity with subtle enhancement of ethanol's depressive effects and less clear impacts on levels of monoamines.
Collapse
Affiliation(s)
- Cameron J Davidson
- Department of Psychology, Wayne State University, Detroit, MI, USA; School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - John H Hannigan
- Department of Psychology, Wayne State University, Detroit, MI, USA; School of Medicine, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child & Family Development, Wayne State University, Detroit, MI, USA; Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA
| | - Shane A Perrine
- School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Center for Urban Responses to Environmental Stressors, Wayne State University, Detroit, MI, USA; School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
3
|
Su X, Zhang X, Pei J, Deng M, Pan L, Liu J, Cui M, Zhan C, Wang J, Wu Y, Zhao L, Wang Z, Liu J, Song Y. Working memory-related alterations in neural oscillations reveal the influence of in-vehicle toluene on cognition at low concentration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21723-21734. [PMID: 36274073 DOI: 10.1007/s11356-022-23627-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Although toluene is a typical in-vehicle pollutant, the impacts of in-vehicle toluene exposure on cognitive functions remain unestablished. Therefore, this study aimed to investigate the effects of short-term toluene exposure in vehicles on working memory based on neural oscillations. In total, 24 healthy adults were recruited. Each subject was exposed to four different concentrations of toluene and divided into 0 ppb, 17.5 ppb, 35 ppb, and 70 ppb groups for self-control studies. After 4 h of exposure to each concentration of toluene, a behavioral test of visual working memory was performed while 19-channel electroencephalogram (EEG) signals were collected. Meanwhile, the power spectral density (PSD) and spatial distribution of working memory encoding, maintenance, and extraction periods were calculated by short-time Fourier transform to clarify the characteristic frequency bands, major brain regions, and characteristic channels of each period. To compare the changes in the characteristic patterns of neural oscillations under the effect of different concentrations of toluene. There was no significant difference in working memory reaction time and correct rate between the groups at different toluene concentrations (p > 0.05). The characteristic frequency band of the working memory neural oscillations in each group was the theta frequency band; the PSD of the theta frequency band was predominantly concentrated in the frontal area, and the characteristic channel was the Fz channel. The whole brain (F = 3.817, p < 0.05; F = 4.758, p < 0.01; F = 3.694, p < 0.05), the frontal area (F = 2.505, p < 0.05; F = 2.839, p < 0.05; F = 6.068, p < 0.05), the Fz channel (F = 3.522, p < 0.05; F = 3.745, p < 0.05; F = 6.526, p < 0.05), and the PSD of working memory in the theta frequency band was significantly increased in the 70 ppb group compared with the other three groups during the coding, maintenance, and retrieval phases of working memory. When the in-vehicle toluene exposure concentration was 70 ppb, the PSD of the characteristic frequency bands of working memory was significantly increased in the whole brain, major brain regions, and characteristic channels.
Collapse
Affiliation(s)
- Xiao Su
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xin Zhang
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jingjing Pei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Meili Deng
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Liping Pan
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Liu
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Mingrui Cui
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Changqin Zhan
- Department of Neurology, Wuhu No.2 People's Hospital, Wuhu, 241000, Anhui, China
| | - Jiajing Wang
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yakun Wu
- Tianjin Medical University, Tianjin, 300070, China
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lei Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Zunkun Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Yijun Song
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin, 300052, China.
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
4
|
Guo D, Zhan C, Liu J, Wang Z, Cui M, Zhang X, Su X, Pan L, Deng M, Zhao L, Liu J, Song Y. Alternations in neural oscillation related to attention network reveal influence of indoor toluene on cognition at low concentration. INDOOR AIR 2022; 32:e13067. [PMID: 35904384 DOI: 10.1111/ina.13067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Despite accumulative literature reporting negative impacts of high-concentration toluene, cognitive effects of toluene at low concentration are still unclear. Twenty-two healthy college students were exposed in a closed environmental chamber to investigate the influence of indoor toluene on cognitive performance and brain activity. During each toluene exposure condition (0 ppb, 17.5 ppb, 35 ppb, and 70 ppb), attention network test and electroencephalogram (EEG) recording were synchronously performed after 4-hour toluene exposure. Characteristic neural oscillation patterns in three attention networks were compared between four groups. The statistical analyses indicated that short-term exposure to toluene had no significant impact on behavioral performance of attention network. However, there was a significant increase in the power of theta and alpha band of executive network and orienting network in the whole brain, especially in frontal region when exposed to toluene. Besides, no significant difference was observed in alerting network. The alternations in neural oscillation demonstrated that more effort was required to accomplish the same tasks when exposed to toluene. The present study revealed that short-term exposure to toluene affected brain activity of attention network even at low concentration, which provided a theoretical basis for the development of safer evaluation methods and standards in the future.
Collapse
Affiliation(s)
- Dandan Guo
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Changqing Zhan
- Department of Neurology, Wuhu No.2 People's Hospital, Wuhu, China
| | - Jie Liu
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Zukun Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Mingrui Cui
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Xin Zhang
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Xiao Su
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Liping Pan
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Meili Deng
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| | - Lei Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yijun Song
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Neurological Institute, Tianjin, China
| |
Collapse
|
5
|
Blum K, Brodie MS, Pandey SC, Cadet JL, Gupta A, Elman I, Thanos PK, Gondre-Lewis MC, Baron D, Kazmi S, Bowirrat A, Febo M, Badgaiyan RD, Braverman ER, Dennen CA, Gold MS. Researching Mitigation of Alcohol Binge Drinking in Polydrug Abuse: KCNK13 and RASGRF2 Gene(s) Risk Polymorphisms Coupled with Genetic Addiction Risk Severity (GARS) Guiding Precision Pro-Dopamine Regulation. J Pers Med 2022; 12:1009. [PMID: 35743793 PMCID: PMC9224860 DOI: 10.3390/jpm12061009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Excessive alcohol intake, e.g., binge drinking, is a serious and mounting public health problem in the United States and throughout the world. Hence the need for novel insights into the underlying neurobiology that may help improve prevention and therapeutic strategies. Therefore, our group employed a darkness-induced alcohol intake protocol to define the reward deficiency domains of alcohol and other substance use disorders in terms of reward pathways' reduced dopamine signaling and its restoration via specifically-designed therapeutic compounds. It has been determined that KCNK13 and RASGRF2 genes, respectively, code for potassium two pore domain channel subfamily K member 13 and Ras-specific guanine nucleotide-releasing factor 2, and both genes have important dopamine-related functions pertaining to alcohol binge drinking. We present a hypothesis that identification of KCNK13 and RASGRF2 genes' risk polymorphism, coupled with genetic addiction risk score (GARS)-guided precision pro-dopamine regulation, will mitigate binge alcohol drinking. Accordingly, we review published reports on the benefits of this unique approach and provide data on favorable outcomes for both binge-drinking animals and drunk drivers, including reductions in alcohol intake and prevention of relapse to drinking behavior. Since driving under the influence of alcohol often leads to incarceration rather than rehabilitation, there is converging evidence to support the utilization of GARS with or without KCNK13 and RASGRF2 risk polymorphism in the legal arena, whereby the argument that "determinism" overrides the "free will" account may be a plausible defense strategy. Obviously, this type of research is tantamount to helping resolve a major problem related to polydrug abuse.
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
| | - Mark S. Brodie
- Center for Alcohol Research in Epigenetics, Departments of Physiology and Biophysics, and Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.S.B.); (S.C.P.)
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Departments of Physiology and Biophysics, and Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (M.S.B.); (S.C.P.)
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Marjorie C. Gondre-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA;
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
| | - Shan Kazmi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Marcelo Febo
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of Provost), Western University Health Sciences, Pomona, CA 91766, USA; (D.B.); (M.F.)
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
| | - Catherine A. Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA; (E.R.B.); (C.A.D.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
6
|
You C, Vandegrift BJ, Brodie MS. KCNK13 potassium channels in the ventral tegmental area of rats are important for excitation of ventral tegmental area neurons by ethanol. Alcohol Clin Exp Res 2021; 45:1348-1358. [PMID: 33960499 DOI: 10.1111/acer.14630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol excites neurons of the ventral tegmental area (VTA) and the release of dopamine from these neurons is a key event in ethanol (EtOH)-induced reward and reinforcement. Many mechanisms have been proposed to explain EtOH's actions on neurons of the VTA, but antagonists generally do not eliminate the EtOH-induced excitation of VTA neurons. We have previously demonstrated that the ion channel KCNK13 plays an important role in the EtOH-related excitation of mouse VTA neurons. Here, we elaborate on that finding and further assess the importance of KCNK13 in rats. METHODS Rats (Sprague-Dawley and Fisher 344) were used in these studies. In addition to single-unit electrophysiology in brain slices, we used quantitative PCR and immunohistochemistry to discern the effects of EtOH and the brain slice preparation method on the expression levels of the Kcnk13 gene and KCNK13 protein. RESULTS Immunohistochemistry demonstrated that the levels of KCNK13 were significantly reduced during procedures normally used to prepare brain slices for electrophysiology, with a reduction of about 75% in KCNK13 protein at the time that electrophysiological recordings would normally be made. Extracellular recordings demonstrated that EtOH-induced excitation of VTA neurons was reduced after knockdown of Kcnk13 using a small interfering RNA (siRNA) delivered via the recording micropipette. Real-time PCR demonstrated that the expression of Kcnk13 was altered in a time-dependent manner after alcohol withdrawal. CONCLUSIONS KCNK13 plays an important role in EtOH-induced stimulation of rat VTA neurons and is dynamically regulated by cell damage and EtOH exposure, and during withdrawal. KCNK13 is a novel alcohol-sensitive protein, and further investigation of this channel may offer new avenues for the development of agents useful in altering the rewarding effect of alcohol.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Psychiatry, Center for Alcohol Research in Epigenetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Dick AL, Zhao Q, Crossin R, Baker‐Andresen D, Li X, Edson J, Roeh S, Marshall V, Bredy TW, Lawrence AJ, Duncan JR. Adolescent chronic intermittent toluene inhalation dynamically regulates the transcriptome and neuronal methylome within the rat medial prefrontal cortex. Addict Biol 2021; 26:e12937. [PMID: 32638524 DOI: 10.1111/adb.12937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
Inhalants containing the volatile solvent toluene are misused to induce euphoria or intoxication. Inhalant abuse is most common during adolescence and can result in cognitive impairments during an important maturational period. Despite evidence suggesting that epigenetic modifications may underpin the cognitive effects of inhalants, no studies to date have thoroughly investigated toluene-induced regulation of the transcriptome or discrete epigenetic modifications within the brain. To address this, we investigated effects of adolescent chronic intermittent toluene (CIT) inhalation on gene expression and DNA methylation profiles within the rat medial prefrontal cortex (mPFC), which undergoes maturation throughout adolescence and has been implicated in toluene-induced cognitive deficits. Employing both RNA-seq and genome-wide Methyl CpG Binding Domain (MBD) Ultra-seq analysis, we demonstrate that adolescent CIT inhalation (10 000 ppm for 1 h/day, 3 days/week for 4 weeks) induces both transient and persistent changes to the transcriptome and DNA methylome within the rat mPFC for at least 2 weeks following toluene exposure. We demonstrate for the first time that adolescent CIT exposure results in dynamic regulation of the mPFC transcriptome likely relating to acute inflammatory responses and persistent deficits in synaptic plasticity. These adaptations may contribute to the cognitive deficits associated with chronic toluene exposure and provide novel molecular targets for preventing long-term neurophysiological abnormalities following chronic toluene inhalation.
Collapse
Affiliation(s)
- Alec L.W. Dick
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
- Department of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry Munich Germany
| | - Qiongyi Zhao
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Rose Crossin
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| | | | - Xiang Li
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Janette Edson
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Simone Roeh
- Department of Translational Research in Psychiatry Max Planck Institute of Psychiatry Munich Germany
| | - Victoria Marshall
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Timothy W. Bredy
- Queensland Brain Institute University of Queensland Brisbane QLD Australia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| | - Jhodie R. Duncan
- Florey Institute of Neuroscience and Mental Health University of Melbourne Melbourne VIC Australia
| |
Collapse
|
8
|
Zhao Y, Gameiro-Ros I, Glaaser IW, Slesinger PA. Advances in Targeting GIRK Channels in Disease. Trends Pharmacol Sci 2021; 42:203-215. [PMID: 33468322 DOI: 10.1016/j.tips.2020.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are essential regulators of cell excitability in the brain. While they are implicated in a variety of neurological diseases in both human and animal model studies, their therapeutic potential has been largely untapped. Here, we review recent advances in the development of small molecule compounds that specifically modulate GIRK channels and compare them with first-generation compounds that exhibit off-target activity. We describe the method of discovery of these small molecule modulators, their chemical features, and their effects in vivo. These studies provide a promising outlook on the future development of subunit-specific GIRK modulators to regulate neuronal excitability in a brain region-specific manner.
Collapse
Affiliation(s)
- Yulin Zhao
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian W Glaaser
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Apawu AK, Callan SP, Mathews TA, Bowen SE. Repeated toluene exposure leads to neuroadaptation in dopamine release mechanisms within the nucleus accumbens core. Toxicol Appl Pharmacol 2020; 408:115260. [DOI: 10.1016/j.taap.2020.115260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
|
10
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
You C, Savarese A, Vandegrift BJ, He D, Pandey SC, Lasek AW, Brodie MS. Ethanol acts on KCNK13 potassium channels in the ventral tegmental area to increase firing rate and modulate binge-like drinking. Neuropharmacology 2019; 144:29-36. [PMID: 30332606 PMCID: PMC6286249 DOI: 10.1016/j.neuropharm.2018.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Alcohol excitation of the ventral tegmental area (VTA) is important in neurobiological processes related to the development of alcoholism. The ionotropic receptors on VTA neurons that mediate ethanol-induced excitation have not been identified. Quinidine blocks ethanol excitation of VTA neurons, and blockade of two-pore potassium channels is among the actions of quinidine. Therefore two-pore potassium channels in the VTA may be potential targets for the action of ethanol. Here, we explored whether ethanol activation of VTA neurons is mediated by the two-pore potassium channel KCNK13. Extracellular recordings of the response of VTA neurons to ethanol were performed in combination with knockdown of Kcnk13 using a short hairpin RNA (shRNA) in C57BL/6 J mice. Real-time PCR and immunohistochemistry were used to examine expression of this channel in the VTA. Finally, the role of KCNK13 in binge-like drinking was examined in the drinking in the dark test after knockdown of the channel. Kcnk13 expression in the VTA was increased by acute ethanol exposure. Ethanol-induced excitation of VTA neurons was selectively reduced by shRNA targeting Kcnk13. Importantly, knockdown of Kcnk13 in the VTA resulted in increased alcohol drinking. These results are consistent with the idea that ethanol stimulates VTA neurons at least in part by inhibiting KCNK13, a specific two-pore potassium channel, and that KCNK13 can control both VTA neuronal activity and binge drinking. KCNK13 is a novel alcohol-sensitive molecular target and may be amenable to the development of pharmacotherapies for alcoholism treatment.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Antonia Savarese
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Donghong He
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA; Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Exposure to the Abused Inhalant Toluene Alters Medial Prefrontal Cortex Physiology. Neuropsychopharmacology 2018; 43:912-924. [PMID: 28589963 PMCID: PMC5809778 DOI: 10.1038/npp.2017.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022]
Abstract
Inhalants, including toluene, target the addiction neurocircuitry and are often one of the first drugs of abuse tried by adolescents. The medial prefrontal cortex (mPFC) is involved in regulating goal-directed/reward-motivated behaviors and different mPFC sub-regions have been proposed to promote (prelimbic, PRL) or inhibit (infralimbic, IL) these behaviors. While this dichotomy has been studied in the context of other drugs of abuse, it is not known whether toluene exposure differentially affects neurons within PRL and IL regions. To address this question, we used whole-cell electrophysiology and determined the intrinsic excitability of PRL and IL pyramidal neurons in adolescent rats 24 h following a brief exposure to air or toluene vapor (10 500 p.p.m.). Prior to exposure, fluorescent retrobeads were injected into the NAc core (NAcc) or shell (NAcs) sub-regions to identify projection-specific mPFC neurons. In toluene treated adolescent rats, layer 5/6 NAcc projecting PRL (PRL5/6) neurons fired fewer action potentials and this was associated with increased rheobase, increased spike duration, and reductions in membrane resistance and amplitude of the Ih current. No changes in excitability were observed in layer 2/3 NAcc projecting PRL (PRL2/3) neurons. In contrast to PRL neurons, layer 5 IL (IL5) and layer 2/3 (IL2/3) NAcc projecting neurons showed enhanced firing in toluene-exposed animals and in IL5 neurons, this was associated with a reduction in rheobase and AHP. For NAcs projecting neurons, toluene exposure significantly decreased firing of IL5 neurons and this was accompanied by an increased rheobase, increased spike duration, and reduced Ih amplitude. The intrinsic excitability of PRL5, PRL2/3, and IL2/3 neurons projecting to the NAcs was not affected by exposure to toluene. The changes in excitability observed 24 h after toluene exposure were not observed when recordings were performed 7 days after the exposure. Finally, there were no changes in intrinsic excitability of any region in rats exposed to toluene as adults. These findings demonstrate that specific projections of the reward circuitry are uniquely susceptible to the effects of toluene during adolescence supporting the idea that adolescence is a critical period of the development that is vulnerable to drugs of abuse.
Collapse
|
14
|
Chemogenetic Excitation of Accumbens-Projecting Infralimbic Cortical Neurons Blocks Toluene-Induced Conditioned Place Preference. J Neurosci 2018; 38:1462-1471. [PMID: 29317484 DOI: 10.1523/jneurosci.2503-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 11/21/2022] Open
Abstract
Abuse rates for inhalants among adolescents continue to be high, yet preclinical models for studying mechanisms underlying inhalant abuse remain limited. Our laboratory has previously shown that, in male rats, an acute binge-like exposure to toluene vapor that mimics human solvent abuse modifies the intrinsic excitability of mPFC pyramidal neurons projecting to the NAc. These changes showed region (infralimbic; IL vs prelimbic; PRL), layer (shallow; 2/3 vs deep; 5/6), target (core vs shell), and age (adolescent vs adult) dependent differences (Wayman and Woodward, 2017). To expand these findings using reward-based models that may better mimic human drug abuse, we used whole-cell electrophysiology and drug receptors exclusively activated by designer drugs to examine changes in neuronal function and behavior in rats showing a conditioned place preference (CPP) to toluene. Repeated pairings of adolescent rats to binge concentrations of toluene vapor previously shown to enhance dopamine release in reward-sensitive areas of the brain produced CPP that persisted for 7 but not 30 d. Toluene-induced CPP was associated with increased excitability of IL5/6 mPFC neurons projecting to the core of the NAc and reduced excitability of those projecting to the NAc shell. No changes in PRL-NAc-projecting neurons were found in toluene-CPP rats. Chemogenetic reversal of the toluene-induced decrease in IL5/6-NAc shell neurons blocked the expression of toluene-induced CPP while manipulating IL5/6-NAc core neuron activity had no effect. These data reveal that alterations in selective mPFC-NAc pathways are required for expression of toluene-induced CPP.SIGNIFICANCE STATEMENT Disturbed physiology of pyramidal neurons projecting from the mPFC to the NAc has been shown to have different roles in drug-seeking behaviors for a number of drugs (e.g., methamphetamine, cocaine, ecstasy, alcohol, heroin). Here, we report that rats repeatedly exposed to the volatile organic solvent toluene, a member of the class of abused inhalants often used for intoxicating purposes by adolescents, induces a preference for the drug-paired environment that is accompanied by altered physiology of a specific population of NAc-projecting mPFC neurons. Chemogenetic correction of this deficit before testing prevented expression of drug preference. Overall, these findings highlight the importance of corticolimbic circuitry in mediating the rewarding properties of abused inhalants.
Collapse
|
15
|
Siciliano CA, Karkhanis AN, Holleran KM, Melchior JR, Jones SR. Cross-Species Alterations in Synaptic Dopamine Regulation After Chronic Alcohol Exposure. Handb Exp Pharmacol 2018; 248:213-238. [PMID: 29675581 PMCID: PMC6195853 DOI: 10.1007/164_2018_106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.
Collapse
Affiliation(s)
- Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Katherine M Holleran
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
16
|
Zou L, Xue Y, Jones M, Heinbockel T, Ying M, Zhan X. The Effects of Quinine on Neurophysiological Properties of Dopaminergic Neurons. Neurotox Res 2017; 34:62-73. [PMID: 29285614 DOI: 10.1007/s12640-017-9855-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/28/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Quinine is an antimalarial drug that is toxic to the auditory system by commonly inducing hearing loss and tinnitus, presumably due to its ototoxic effects on disruption of cochlear hair cells and blockade of ion channels of neurons in the auditory system. To a lesser extent, quinine also causes ataxia, tremor, and dystonic reactions. As dopaminergic neurons are implicated to play a role in all of these diseases, we tested the toxicity of quinine on induced dopaminergic (iDA) neurons derived from human pluripotent stem cells (iPSCs) and primary dopaminergic (DA) neurons of substantia nigra from mice brain slices. Patch clamp recordings and combined drug treatments were performed to examine key physiological properties of the DA neurons. We found that quinine (12.5-200 μM) depolarized the resting membrane potential and attenuated the amplitudes of rebound spikes induced by hyperpolarization. Action potentials were also broadened in spontaneously spiking neurons. In addition to quinine attenuating hyperpolarization-dependent conductance, the tail currents following withdrawal of hyperpolarizing currents were also attenuated. Taken together, we found that iPSC-derived DA neurons recapitulated all the tested physiological properties of human DA neurons, and quinine had distinct effects on the physiology of both iDA and primary DA neurons. This toxicity of quinine may be the underlying mechanism for the movement disorders of cinchonism or quinism and may play a role in tinnitus modulation.
Collapse
Affiliation(s)
- Li Zou
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Yingchao Xue
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Jones
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA
| | - Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Mingyao Ying
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiping Zhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|
17
|
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017; 96:1223-1238. [PMID: 29268093 PMCID: PMC6566861 DOI: 10.1016/j.neuron.2017.10.032] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Morales M, McGinnis MM, Robinson SL, Chappell AM, McCool BA. Chronic Intermittent Ethanol Exposure Modulation of Glutamatergic Neurotransmission in Rat Lateral/Basolateral Amygdala is Duration-, Input-, and Sex-Dependent. Neuroscience 2017; 371:277-287. [PMID: 29237566 DOI: 10.1016/j.neuroscience.2017.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/27/2023]
Abstract
The basolateral amygdala (BLA) controls numerous behaviors, like anxiety and reward seeking, via the activity of glutamatergic principal neurons. These BLA neurons receive excitatory inputs primarily via two major anatomical pathways - the external capsule (EC), which contains afferents from lateral cortical structures, and the stria terminalis (ST), containing synapses from more midline brain structures. Chronic intermittent ethanol (CIE) exposure/withdrawal produces distinct alterations in these pathways. Specifically, 10 days of CIE (via vapor inhalation) increases presynaptic function at ST synapses and postsynaptic function at EC synapses. Given that 10-day CIE/withdrawal also increases anxiety-like behavior, we sought to examine the development of these alterations at these inputs using an exposure time-course in both male and female rats. Specifically, using 3, 7, and 10 days CIE exposure, we found that all three durations increase anxiety-like behavior in the elevated plus maze. At BLA synapses, increased presynaptic function at ST inputs required shorter exposure durations relative to post-synaptic alterations at EC inputs in both sexes. But, synaptic alterations in females required longer ethanol exposures compared to males. These data suggest that presynaptic alteration at ST-BLA afferents is an early neuroadaptation during repeated ethanol exposures. And, the similar patterns of presynaptic-then-postsynaptic facilitation across the sexes suggest the former may be required for the latter. These cooperative interactions may contribute to the increased anxiety-like behavior that is observed following CIE-induced withdrawal and may provide novel therapeutic targets to reverse withdrawal-induced anxiety.
Collapse
Affiliation(s)
- Melissa Morales
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA.
| | - Molly M McGinnis
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Stacey L Robinson
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Ann M Chappell
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| | - Brian A McCool
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27103, USA
| |
Collapse
|
19
|
Vandegrift BJ, You C, Satta R, Brodie MS, Lasek AW. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol. PLoS One 2017; 12:e0187698. [PMID: 29107956 PMCID: PMC5673180 DOI: 10.1371/journal.pone.0187698] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.
Collapse
Affiliation(s)
- Bertha J. Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rosalba Satta
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mark S. Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|