1
|
Briânis RC, Andreotti JP, Moreira FA, Iglesias LP. Interplay between endocannabinoid and endovanilloid mechanisms in fear conditioning. Acta Neuropsychiatr 2024; 36:255-264. [PMID: 37982167 DOI: 10.1017/neu.2023.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVE The transient receptor potential cation channel, subfamily V (vanilloid), member 1 (TRPV1) mediates pain perception to thermal and chemical stimuli in peripheral neurons. The cannabinoid receptor type 1 (CB1), on the other hand, promotes analgesia in both the periphery and the brain. TRPV1 and CB1 have also been implicated in learned fear, which involves the association of a previously neutral stimulus with an aversive event. In this review, we elaborate on the interplay between CB1 receptors and TRPV1 channels in learned fear processing. METHODS We conducted a PubMed search for a narrative review on endocannabinoid and endovanilloid mechanisms on fear conditioning. RESULTS TRPV1 and CB1 receptors are activated by a common endogenous agonist, arachidonoyl ethanolamide (anandamide), Moreover, they are expressed in common neuroanatomical structures and recruit converging cellular pathways, acting in concert to modulate fear learning. However, evidence suggests that TRPV1 exerts a facilitatory role, whereas CB1 restrains fear responses. CONCLUSION TRPV1 and CB1 seem to mediate protective and aversive roles of anandamide, respectively. However, more research is needed to achieve a better understanding of how these receptors interact to modulate fear learning.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Boo KJ, Kim DH, Cho E, Kim DH, Jeon SJ, Shin CY. Neonatal dysregulation of 2-arachidonoylglycerol induces impaired brain function in adult mice. Neuropharmacology 2024; 257:110045. [PMID: 38885736 DOI: 10.1016/j.neuropharm.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The endocannabinoid system (ECS) regulates neurotransmission linked to synaptic plasticity, cognition, and emotion. While it has been demonstrated that dysregulation of the ECS in adulthood is relevant not only to central nervous system (CNS) disorders such as autism spectrum disorder, cognitive dysfunction, and depression but also to brain function, there are few studies on how dysregulation of the ECS in the neonatal period affects the manifestation and pathophysiology of CNS disorders later in life. In this study, DO34, a diacylglycerol lipase alpha (DAGLα) inhibitor affecting endocannabinoid 2-AG production, was injected into C57BL/6N male mice from postnatal day (PND) 7 to PND 10, inducing dysregulation of the ECS in the neonatal period. Subsequently, we examined whether it affects neuronal function in adulthood through electrophysiological and behavioral evaluation. DO34-injected mice showed significantly decreased cognitive functions, attributed to impairment of hippocampal synaptic plasticity. The findings suggest that regulation of ECS activity in the neonatal period may induce enduring effects on adult brain function.
Collapse
Affiliation(s)
- Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dae Hyun Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Rivi V, Rigillo G, Batabyal A, Lukowiak K, Pani L, Tascedda F, Benatti C, Blom JMC. Different stressors uniquely affect the expression of endocannabinoid-metabolizing enzymes in the central ring ganglia of Lymnaea stagnalis. J Neurochem 2024; 168:2848-2867. [PMID: 38922726 DOI: 10.1111/jnc.16147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.
Collapse
Affiliation(s)
- Veronica Rivi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anuradha Batabyal
- Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna M C Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
5
|
Ramos-Medina L, Rosas-Vidal LE, Patel S. Pharmacological diacylglycerol lipase inhibition impairs contextual fear extinction in mice. Psychopharmacology (Berl) 2024; 241:569-584. [PMID: 38182791 PMCID: PMC10884152 DOI: 10.1007/s00213-023-06523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Acquisition and extinction of associative fear memories are critical for guiding adaptive behavioral responses to environmental threats, and dysregulation of these processes is thought to represent important neurobehavioral substrates of trauma and stress-related disorders including posttraumatic stress disorder (PTSD). Endogenous cannabinoid (eCB) signaling has been heavily implicated in the extinction of aversive fear memories and we have recently shown that pharmacological inhibition of 2-arachidonoylglycerol (2-AG) synthesis, a major eCB regulating synaptic suppression, impairs fear extinction in an auditory cue conditioning paradigm. Despite these data, the role of 2-AG signaling in contextual fear conditioning is not well understood. Here, we show that systemic pharmacological blockade of diacylglycerol lipase, the rate-limiting enzyme catalyzing in the synthesis of 2-AG, enhances contextual fear learning and impairs within-session extinction. In sham-conditioned mice, 2-AG synthesis inhibition causes a small increase in unconditioned freezing behavior. No effects of 2-AG synthesis inhibition were noted in the Elevated Plus Maze in mice tested after fear extinction. These data provide support for 2-AG signaling in the suppression of contextual fear learning and the expression of within-session extinction of contextual fear memories.
Collapse
Affiliation(s)
| | - Luis E Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Rosas-Vidal LE, Naskar S, Mayo LM, Perini I, Altemus M, Engelbrektsson H, Jagasia P, Heilig M, Patel S. PREFRONTAL CORRELATES OF FEAR GENERALIZATION DURING ENDOCANNABINOID DEPLETION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577847. [PMID: 38352388 PMCID: PMC10862899 DOI: 10.1101/2024.01.30.577847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Maladaptive fear generalization is one of the hallmarks of trauma-related disorders. The endocannabinoid 2-arachidonoylglycerol (2-AG) is crucial for modulating anxiety, fear, and stress adaptation but its role in balancing fear discrimination versus generalization is not known. To address this, we used a combination of plasma endocannabinoid measurement and neuroimaging from a childhood maltreatment exposed and non-exposed mixed population combined with human and rodent fear conditioning models. Here we show that 2-AG levels are inversely associated with fear generalization at the behavioral level in both mice and humans. In mice, 2-AG depletion increases the proportion of neurons, and the similarity between neuronal representations, of threat-predictive and neutral stimuli within prelimbic prefrontal cortex ensembles. In humans, increased dorsolateral prefrontal cortical-amygdala resting state connectivity is inversely correlated with fear generalization. These data provide convergent cross-species evidence that 2-AG is a key regulator of fear generalization and suggest 2-AG deficiency could represent a trauma-related disorder susceptibility endophenotype.
Collapse
Affiliation(s)
- Luis E Rosas-Vidal
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| | - Saptarnab Naskar
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| | - Leah M Mayo
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Irene Perini
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Megan Altemus
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN
| | - Hilda Engelbrektsson
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Puja Jagasia
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN
| | - Markus Heilig
- Linköping University, Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping, Sweden
| | - Sachin Patel
- Northwestern University, Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL
| |
Collapse
|
7
|
Chen M, Shin M, Ware TB, Donvito G, Muchhala KH, Mischel R, Mustafa MA, Serbulea V, Upchurch CM, Leitinger N, Akbarali HI, Lichtman AH, Hsu KL. Endocannabinoid biosynthetic enzymes regulate pain response via LKB1-AMPK signaling. Proc Natl Acad Sci U S A 2023; 120:e2304900120. [PMID: 38109529 PMCID: PMC10756258 DOI: 10.1073/pnas.2304900120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Diacylglycerol lipase-beta (DAGLβ) serves as a principal 2-arachidonoylglycerol (2-AG) biosynthetic enzyme regulating endocannabinoid and eicosanoid metabolism in immune cells including macrophages and dendritic cells. Genetic or pharmacological inactivation of DAGLβ ameliorates inflammation and hyper-nociception in preclinical models of pathogenic pain. These beneficial effects have been assigned principally to reductions in downstream proinflammatory lipid signaling, leaving alternative mechanisms of regulation largely underexplored. Here, we apply quantitative chemical- and phospho-proteomics to find that disruption of DAGLβ in primary macrophages leads to LKB1-AMPK signaling activation, resulting in reprogramming of the phosphoproteome and bioenergetics. Notably, AMPK inhibition reversed the antinociceptive effects of DAGLβ blockade, thereby directly supporting DAGLβ-AMPK crosstalk in vivo. Our findings uncover signaling between endocannabinoid biosynthetic enzymes and ancient energy-sensing kinases to mediate cell biological and pain responses.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Myungsun Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Timothy B. Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Giulia Donvito
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Karan H. Muchhala
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Ryan Mischel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Mohammed A. Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA23298
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA23298
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA22908
- University of Virginia Cancer Center, Cancer Biology Program, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
8
|
Vozella V, Cruz B, Feldman HC, Bullard R, Bianchi PC, Natividad LA, Cravatt BF, Zorrilla EP, Ciccocioppo R, Roberto M. Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behaviour and drinking in Marchigian Sardinian alcohol-preferring rats. Br J Pharmacol 2023; 180:3130-3145. [PMID: 37488777 PMCID: PMC10805956 DOI: 10.1111/bph.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid (eCB) system plays an important homeostatic role in the regulation of stress circuits and has emerged as a therapeutic target to treat stress disorders and alcohol use disorder (AUD). Extensive research has elucidated a role for the eCB anandamide (AEA), but less is known about 2-arachidonoylglycerol (2-AG) mediated signalling. EXPERIMENTAL APPROACH We pharmacologically enhanced eCB signalling by inhibiting the 2-AG metabolizing enzyme, monoacylglycerol lipase (MAGL), in male and female Marchigian Sardinian alcohol-preferring (msP) rats, a model of innate alcohol preference and stress hypersensitivity, and in control Wistar rats. We tested the acute effect of the selective MAGL inhibitor MJN110 in alleviating symptoms of alcohol drinking, anxiety, irritability and fear. KEY RESULTS A single systemic administration of MJN110 increased 2-AG levels in the central amygdala, prelimbic and infralimbic cortex but did not acutely alter alcohol drinking. MAGL inhibition reduced aggressive behaviours in female msPs, and increased defensive behaviours in male msPs, during the irritability test. Moreover, in the novelty-induced hypophagia test, MJN110 selectively enhanced palatable food consumption in females, mitigating stress-induced food suppression. Lastly, msP rats showed increased conditioned fear behaviour compared with Wistar rats, and MJN110 reduced context-associated conditioned fear responses, but not cue-probed fear expression, in male msPs. CONCLUSIONS AND IMPLICATIONS Acute inhibition of MAGL attenuated some stress-related responses in msP rats but not voluntary alcohol drinking. Our results provide new insights into the sex dimorphism documented in stress-induced responses. Sex-specific eCB-based approaches should be considered in the clinical development of therapeutics.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hannah C. Feldman
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paula C. Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, SP 04023-062, Brazil
| | - Luis A. Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX 78712, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032 Italy
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Kondev V, Bluett R, Najeed M, Rosas-Vidal LE, Grueter BA, Patel S. Ventral hippocampal diacylglycerol lipase-alpha deletion decreases avoidance behaviors and alters excitation-inhibition balance. Neurobiol Stress 2022; 22:100510. [PMID: 36594052 PMCID: PMC9803955 DOI: 10.1016/j.ynstr.2022.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The endogenous cannabinoid, 2-arachidonoylglycerol (2-AG), plays a key role in the regulation of anxiety- and stress-related behavioral phenotypes and may represent a novel target for the treatment of anxiety disorders. However, recent studies have suggested a more complex role for 2-AG signaling in the regulation of stress responsivity, including increases in acute fear responses after 2-AG augmentation under some conditions. Thus, 2-AG signaling within distinct brain regions and circuits could regulate anxiety-like behavior and stress responsivity in opposing manners. The ventral hippocampus (vHPC) is a critical region for emotional processing, anxiety-like behaviors, and stress responding. Here, we use a conditional knock-out of the 2-AG synthesis enzyme, diacylglycerol lipase α (DAGLα), to study the role of vHPC 2-AG signaling in the regulation of affective behavior. We show that vHPC DAGLα deletion decreases avoidance behaviors both basally and following an acute stress exposure. Genetic deletion of vHPC DAGLα also promotes stress resiliency, with no effect on fear acquisition, expression, or contextual fear generalization. Using slice electrophysiology, we demonstrate that vHPC DAGLα deletion shifts vHPC activity towards enhanced inhibition. Together, these data indicate endogenous 2-AG signaling in the vHPC promotes avoidance and increases stress reactivity, confirming the notion that 2-AG signaling within distinct brain regions may exert divergent effects on anxiety states and stress adaptability.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Rebecca Bluett
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Mustafa Najeed
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Luis E. Rosas-Vidal
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Brad A. Grueter
- Department of Anesthesiology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sachin Patel
- Northwestern Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA,Corresponding author. Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, USA.
| |
Collapse
|
10
|
Kondev V, Morgan A, Najeed M, Winters ND, Kingsley PJ, Marnett L, Patel S. The Endocannabinoid 2-Arachidonoylglycerol Bidirectionally Modulates Acute and Protracted Effects of Predator Odor Exposure. Biol Psychiatry 2022; 92:739-749. [PMID: 35961791 PMCID: PMC9827751 DOI: 10.1016/j.biopsych.2022.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Stress-related disorders are among the most prevalent psychiatric disorders, characterized by excess fear and enhanced avoidance of trauma triggers. Elucidating the mechanisms regulating temporally distinct aspects of innate and conditioned fear responses could facilitate novel therapeutic development for stress-related disorders. One potential target that has recently emerged is the endocannabinoid system, which has been reported to mediate the physiological response to stress and represents an important substrate underlying individual differences in stress susceptibility. METHODS Here, we exposed male and female CD-1 mice to an innate predator stressor, 2MT (2-methyl-2-thiazoline), to investigate the ability of endocannabinoid signaling to modulate temporally distinct innate and conditioned fear behaviors. RESULTS We found that 2MT exposure increased amygdala 2-AG (2-arachidonoylglycerol) content and selectively increased excitability in central, but not basolateral, amygdala neurons. We also found that pharmacological 2-AG augmentation during stress exposure exacerbated both acute freezing responses and central amygdala hyperexcitability via cannabinoid receptor type 1- and type 2-dependent mechanisms. Finally, 2-AG augmentation during stress exposure reduced long-term contextual conditioned freezing, and 2-AG augmentation 24 hours after stress exposure reduced conditioned avoidance behavior. CONCLUSIONS Our findings demonstrate a bidirectional effect of 2-AG augmentation on innate and conditioned fear behavior, with enhancement of 2-AG levels during stress promoting innate fear responses but ultimately resulting in long-term conditioned fear reduction. These data could reconcile contradictory data on the role of 2-AG in the regulation of innate and conditioned fear-related behavioral responses.
Collapse
Affiliation(s)
- Veronika Kondev
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - Amanda Morgan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mustafa Najeed
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - Nathan D Winters
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Philip J Kingsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lawrence Marnett
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
11
|
Morgan A, Adank D, Johnson K, Butler E, Patel S. 2-Arachidonoylglycerol-mediated endocannabinoid signaling modulates mechanical hypersensitivity associated with alcohol withdrawal in mice. Alcohol Clin Exp Res 2022; 46:2010-2024. [PMID: 36125319 PMCID: PMC10091740 DOI: 10.1111/acer.14949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alcohol use disorder (AUD) commonly occurs in patients with chronic pain, and a major barrier to achieving abstinence and preventing relapse is the emergence of hyperalgesia during alcohol withdrawal. Elucidating novel therapeutic approaches to target hyperalgesia associated with alcohol withdrawal could have important implications for treating AUD. Here, we examined the role of 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid (eCB) signaling in the regulation of hyperalgesia associated with alcohol withdrawal in mice. We tested the hypothesis that pharmacological augmentation of 2-AG signaling could reduce hyperalgesia during withdrawal. METHODS Male and female C57BL/6J mice were tested during withdrawal from a continuous access two-bottle choice (2BC) paradigm to investigate how eCB signaling modulates mechanical and thermal sensitivity during withdrawal. Mice were pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184 to elevate levels of 2-AG. Rimonabant or AM630 were given to block CB1 and CB2 receptor activity, respectively. DO34 was given to reduce 2-AG by inhibiting the 2-AG synthetic enzyme diacylglycerol lipase (DAGL). RESULTS After 72 h of withdrawal, male and female mice exhibited increased mechanical, but not thermal, hypersensitivity, which normalized by 7 days. This effect was reversed by pretreatment with JZL184. The effects of JZL184 were prevented by coadministration of either the CB1 or the CB2 antagonist. DO34, Rimonabant, and AM630 exacerbated mechanical hypersensitivity during alcohol withdrawal, causing an earlier onset and persistent hypersensitivity even 1 week into withdrawal. CONCLUSIONS Our findings demonstrate the critical role of 2-AG signaling in the bidirectional regulation of mechanical sensitivity during alcohol withdrawal, with enhancement of 2-AG levels reducing sensitivity, and inhibition of 2-AG signaling exacerbating sensitivity. These data suggest that 2-AG augmentation represents a novel approach to the treatment of alcohol withdrawal-associated hyperalgesia and AUD in patients with comorbid pain disorders.
Collapse
Affiliation(s)
- Amanda Morgan
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Danielle Adank
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Keenan Johnson
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Emily Butler
- Interdisciplinary Program in NeuroscienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Sachin Patel
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
12
|
Mizuno I, Matsuda S, Tohyama S, Mizutani A. The role of the cannabinoid system in fear memory and extinction in male and female mice. Psychoneuroendocrinology 2022; 138:105688. [PMID: 35176534 DOI: 10.1016/j.psyneuen.2022.105688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
The prevalence of post-traumatic stress disorder (PTSD) is higher in women than in men. Among both humans and mice, females exhibit higher resistance to fear extinction than males, suggesting that differences between sexes in fear-extinction processes are involved in the pathophysiology of such fear-related diseases. Sex differences in molecular mechanisms underlying fear memory and extinction are unclear. The cannabinoid (CB) system is well known to be involved in fear memory and extinction, but this involvement is based mainly on experiments using male rodents. It is not known whether there are sex differences in the role of the CB system in fear memory and extinction. To explore this possibility, we investigated the effects of pharmacological manipulations of the CB system on the retrieval and extinction of contextual fear memory in male and female mice. WIN55,212-2, a CB receptor (CBR) agonist, augmented the retrieval of fear memory in both sexes, but SR141716 (a CB1R antagonist) did not affect it in either sex. An enhancement of 2-arachidonylglycerol (2-AG, one of the two major endocannabinoids) via JZL184 (an inhibitor of the 2-AG hydrolase monoacylglycerol lipase [MAGL]), augmented the retrieval of fear memory through the activation of CB1R but not CB2R in female mice. In contrast, the enhancement of N-arachidonylethanolamine (AEA, the other major endocannabinoid) via URB597, an inhibitor of an AEA hydrolase (fatty acid amide hydrolase-1) did not show any effects on the retrieval of fear memory in either sex. WIN55,212-2, SR141716, and JZL184 inhibited fear extinction irrespective of sex. URB enhanced fear extinction in females that were in diestrus phase at the first extinction session, but not in males. These results suggest that although the role of CB1R in the retrieval and extinction of contextual fear memory is common among males and females, the effects of an increase in endocannabinoid levels on the retrieval or extinction of contextual fear memory differ between the sexes.
Collapse
Affiliation(s)
- Ikumi Mizuno
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Shingo Matsuda
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan; Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan; Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | - Suguru Tohyama
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa City, Chiba 277-8567, Japan
| | - Akihiro Mizutani
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
13
|
Mayo LM, Rabinak CA, Hill MN, Heilig M. Targeting the Endocannabinoid System in the Treatment of Posttraumatic Stress Disorder: A Promising Case of Preclinical-Clinical Translation? Biol Psychiatry 2022; 91:262-272. [PMID: 34598785 PMCID: PMC11097652 DOI: 10.1016/j.biopsych.2021.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The endocannabinoid (eCB) system is one the most ubiquitous signaling systems of the brain and offers a rich pharmacology including multiple druggable targets. Preclinical research shows that eCB activity influences functional connectivity between the prefrontal cortex and amygdala and thereby influences an organism's ability to cope with threats and stressful experiences. Animal studies show that CB1 receptor activation within the amygdala is essential for extinction of fear memories. Failure to extinguish traumatic memories is a core symptom of posttraumatic stress disorder, suggesting that potentiating eCB signaling may have a therapeutic potential in this condition. However, it has been unknown whether animal findings in this domain translate to humans. Data to inform this critical question are now emerging and are the focus of this review. We first briefly summarize the biology of the eCB system and the animal studies that support its role in fear extinction and stress responding. We then discuss the pharmacological eCB-targeting strategies that may be exploited for therapeutic purposes: direct CB1 receptor activation, using Δ9-tetrahydrocannabinol or its synthetic analogs; or indirect potentiation, through inhibition of eCB-degrading enzymes, the anandamide-degrading enzyme fatty acid amide hydrolase; or the 2-AG (2-arachidonoyl glycerol)-degrading enzyme monoacylglycerol lipase. We then review recent human data on direct CB1 receptor activation via Δ9-tetrahydrocannabinol and anandamide potentiation through fatty acid amide hydrolase blockade. The available human data consistently support a translation of animal findings on fear memories and stress reactivity and suggest a potential therapeutic utility in humans.
Collapse
Affiliation(s)
- Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden.
| | - Christine A Rabinak
- Department of Pharmacy Practice, Translational Neuroscience Program, Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Matthew N Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and the Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Selvaraj P, Tanaka M, Wen J, Zhang Y. The Novel Monoacylglycerol Lipase Inhibitor MJN110 Suppresses Neuroinflammation, Normalizes Synaptic Composition and Improves Behavioral Performance in the Repetitive Traumatic Brain Injury Mouse Model. Cells 2021; 10:cells10123454. [PMID: 34943962 PMCID: PMC8700188 DOI: 10.3390/cells10123454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, β2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3212
| |
Collapse
|
15
|
Crombie KM, Sartin-Tarm A, Sellnow K, Ahrenholtz R, Lee S, Matalamaki M, Almassi NE, Hillard CJ, Koltyn KF, Adams TG, Cisler JM. Exercise-induced increases in Anandamide and BDNF during extinction consolidation contribute to reduced threat following reinstatement: Preliminary evidence from a randomized controlled trial. Psychoneuroendocrinology 2021; 132:105355. [PMID: 34280820 PMCID: PMC8487992 DOI: 10.1016/j.psyneuen.2021.105355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We recently demonstrated that moderate-intensity aerobic exercise delivered during the consolidation of fear extinction learning reduced threat expectancy during a test of extinction recall among women with posttraumatic stress disorder (PTSD). These findings suggest that exercise may be a potential candidate for improving the efficacy of exposure-based therapies, which are hypothesized to work via the mechanisms of fear extinction learning. The purpose of this secondary analysis was to examine whether exercise-induced increases in circulating concentrations of candidate biomarkers: endocannabinoids (anandamide [AEA]; 2-arachidonoylglycerol [2-AG], brain-derived neurotrophic factor (BDNF), and homovanillic acid (HVA), mediate the effects of exercise on extinction recall. METHODS Participants (N = 35) completed a 3-day fear acquisition (day 1), extinction (day 2), and extinction recall (day 3) protocol, in which participants were randomly assigned to complete either moderate-intensity aerobic exercise (EX) or a light-intensity control (CON) condition following extinction training (day 2). Blood was obtained prior to and following EX or CON. Threat expectancy ratings during tests of extinction recall (i.e., initial fear recall and fear recall following reinstatement) were obtained 24 h following EX or CON. Mediation was tested using linear-mixed effects models and bootstrapping of the indirect effect. RESULTS Circulating concentrations of AEA and BDNF (but not 2-AG and HVA) were found to mediate the relationship between moderate-intensity aerobic exercise and reduced threat expectancy ratings following reinstatement (AEA 95% CI: -0.623 to -0.005; BDNF 95% CI: -0.941 to -0.005). CONCLUSIONS Exercise-induced increases in peripheral AEA and BDNF appear to play a role in enhancing consolidation of fear extinction learning, thereby leading to reduced threat expectancies following reinstatement among women with PTSD. Future mechanistic research examining these and other biomarkers (e.g., brain-based biomarkers) is warranted.
Collapse
Affiliation(s)
- Kevin M. Crombie
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Anneliis Sartin-Tarm
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Kyrie Sellnow
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Rachel Ahrenholtz
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Sierra Lee
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Megan Matalamaki
- University of Wisconsin, Department of Psychiatry, 6001
Research Park Boulevard, Madison, Wisconsin, United States of America,
53719-1176
| | - Neda E. Almassi
- University of Wisconsin, Department of Kinesiology, 285 Med
Sci, 1300 University Ave, Madison, WI, United States of America, 53706-1121
| | - Cecilia J. Hillard
- Medical College of Wisconsin, Neuroscience Research Center,
Department of Pharmacology and, Toxicology, 8701 Watertown Plank Rd., Milwaukee, WI
53226
| | - Kelli F. Koltyn
- University of Wisconsin, Department of Kinesiology, 285 Med
Sci, 1300 University Ave, Madison, WI, United States of America, 53706-1121
| | - Tom G. Adams
- University of Kentucky, Department of Psychology, 105
Kastle Hill, Lexington, Kentucky, United States of America, 40506-0044,Yale School of Medicine, Department of Psychiatry, 300
George St., New Haven, CT, United States of America, 06511,National Center for PTSD, Clinical Neurosciences Division,
VA CT Healthcare System, 950 Campbell Avenue, West Haven, CT, United States of
America, 06516
| | - Josh M. Cisler
- University of Texas at Austin, Department of Psychiatry and
Behavioral Sciences, 1601 Trinity St, Bldg B, Austin, TX, United States of America,
78712
| |
Collapse
|
16
|
Winters ND, Bedse G, Astafyev AA, Patrick TA, Altemus M, Morgan AJ, Mukerjee S, Johnson KD, Mahajan VR, Uddin MJ, Kingsley PJ, Centanni SW, Siciliano CA, Samuels DC, Marnett LJ, Winder DG, Patel S. Targeting diacylglycerol lipase reduces alcohol consumption in preclinical models. J Clin Invest 2021; 131:146861. [PMID: 34292886 PMCID: PMC8409586 DOI: 10.1172/jci146861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol use disorder (AUD) is associated with substantial morbidity, mortality, and societal cost, and pharmacological treatment options for AUD are limited. The endogenous cannabinoid (eCB) signaling system is critically involved in reward processing and alcohol intake is positively correlated with release of the eCB ligand 2-Arachidonoylglycerol (2-AG) within reward neurocircuitry. Here we show that genetic and pharmacological inhibition of diacylglycerol lipase (DAGL), the rate limiting enzyme in the synthesis of 2-AG, reduces alcohol consumption in a variety of preclinical models ranging from a voluntary free-access model to aversion resistant-drinking and dependence-like drinking induced via chronic intermittent ethanol vapor exposure in mice. DAGL inhibition during either chronic alcohol consumption or protracted withdrawal was devoid of anxiogenic and depressive-like behavioral effects. Lastly, DAGL inhibition also prevented ethanol-induced suppression of GABAergic transmission onto midbrain dopamine neurons, providing mechanistic insight into how DAGL inhibition could affect alcohol reward. These data suggest reducing 2-AG signaling via inhibition of DAGL could represent an effective approach to reduce alcohol consumption across the spectrum of AUD severity.
Collapse
Affiliation(s)
- Nathan D. Winters
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | - Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
| | | | | | | | | | - Snigdha Mukerjee
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
| | | | | | - Md Jashim Uddin
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Philip J. Kingsley
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Cody A. Siciliano
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Vanderbilt Brain Institute, and
| | - David C. Samuels
- Department of Molecular Physiology and Biophysics
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lawrence J. Marnett
- Department of Pharmacology
- Departments of Biochemistry and Chemistry, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences
- Vanderbilt Center for Addiction Research
- Department of Pharmacology
- Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
| |
Collapse
|
17
|
Danan D, Todder D, Zohar J, Cohen H. Is PTSD-Phenotype Associated with HPA-Axis Sensitivity?: The Endocannabinoid System in Modulating Stress Response in Rats. Int J Mol Sci 2021; 22:6416. [PMID: 34203952 PMCID: PMC8232809 DOI: 10.3390/ijms22126416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Endocannabinoids play a role in adaptation to stress and regulate the release of glucocorticoids in stressed and unstressed conditions. We recently found that basal corticosterone pulsatility may significantly impact the vulnerability for developing post-traumatic-stress-disorder (PTSD), suggesting that the endocannabinoid system may contribute to its development. To examine this, we exposed rats to predator scent stress (PSS). Behavioral reactions were recorded seven days post-PSS. Cerebrospinal fluid (CSF) was collected from anesthetized rats shortly after PSS exposure to determine the levels of 2-arachidonoyl glycerol (2-AG) and anandamide (AEA). To correlate between endocannabinoids and corticosterone levels, rats were placed in metabolic cages for urine collection. To assess the levels of endocannabinoids in specific brain regions, rats' brains were harvested one day after behavioral analysis for staining and fluorescence quantification. Moreover, 2-AG was elevated in the CSF of PTSD-phenotype rats as compared with other groups and was inversely correlated with corticosterone urinary secretion. Eight days post-PSS exposure, hippocampal and hypothalamic 2-AG levels and hippocampal AEA levels were significantly more reduced in the PTSD-phenotype group compared to other groups. We posit that maladaptation to stress, which is propagated by an abnormal activation of endocannabinoids, mediates the subsequent stress-induced behavioral disruption, which, later, reduces neuronal the expression of endocannabinoids, contributing to PTSD symptomology.
Collapse
Affiliation(s)
- Dor Danan
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Ministry of Health, Beer-Sheva 8461144, Israel; (D.D.); (D.T.)
| | - Doron Todder
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Ministry of Health, Beer-Sheva 8461144, Israel; (D.D.); (D.T.)
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv 5262000, Israel;
| | - Hagit Cohen
- Anxiety and Stress Research Unit, Beer-Sheva Mental Health Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Ministry of Health, Beer-Sheva 8461144, Israel; (D.D.); (D.T.)
| |
Collapse
|
18
|
Mizuno I, Matsuda S. The role of endocannabinoids in consolidation, retrieval, reconsolidation, and extinction of fear memory. Pharmacol Rep 2021; 73:984-1003. [PMID: 33954935 DOI: 10.1007/s43440-021-00246-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022]
Abstract
Endocannabinoids are involved in various physiological functions, including synaptic plasticity and memory, and some psychiatric disorders, such as posttraumatic stress disorder (PTSD), through the activation of cannabinoid (CB) receptors. Patients with PTSD often show excessive fear memory and impairment of fear extinction (FE). It has been reported that the stability of acquired fear memory is altered through multiple memory stages, such as consolidation and reconsolidation. FE also affects the stability of fear memory. Each stage of fear memory formation and FE are regulated by different molecular mechanisms, including the CB system. However, to the best of our knowledge, no review summarizes the role of the CB system during each stage of fear memory formation and FE. In this review, we summarize the roles of endocannabinoids in fear memory formation and FE. Moreover, based on the summary, we propose a new hypothesis for the role of endocannabinoids in fear regulation, and discuss treatment for PTSD using CB system-related drugs.
Collapse
Affiliation(s)
- Ikumi Mizuno
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shingo Matsuda
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan. .,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan. .,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
19
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Gunduz-Cinar O. The endocannabinoid system in the amygdala and modulation of fear. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110116. [PMID: 32976951 PMCID: PMC7511205 DOI: 10.1016/j.pnpbp.2020.110116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a persistent, trauma induced psychiatric condition characterized by lifelong complex cognitive, emotional and behavioral phenotype. Although many individuals that experience trauma are able to gradually diminish their emotional responding to trauma-related stimuli over time, known as extinction learning, individuals suffering from PTSD are impaired in this capacity. An inability to decline this initially normal and adaptive fear response, can be confronted with exposure-based therapies, often in combination with pharmacological treatments. Due to the complexity of PTSD, currently available pharmacotherapeutics are inadequate in treating the deficient extinction observed in many PTSD patients. To develop novel therapeutics, researchers have exploited the conserved nature of fear and stress-associated behavioral responses and neurocircuits across species in an attempt to translate knowledge gained from preclinical studies into the clinic. There is growing evidence on the endocannabinoid modulation of fear and stress due to their 'on demand' synthesis and degradation. Involvement of the endocannabinoids in fear extinction makes the endocannabinoid system very attractive for finding effective therapeutics for trauma and stress related disorders. In this review, a brief introduction on neuroanatomy and circuitry of fear extinction will be provided as a model to study PTSD. Then, the endocannabinoid system will be discussed as an important component of extinction modulation. In this regard, anandamide degrading enzyme, fatty acid amide hydrolase (FAAH) will be exemplified as a target identified and validated strongly from preclinical to clinical translational studies of enhancing extinction.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA.
| |
Collapse
|
21
|
Cannabis use and posttraumatic stress disorder comorbidity: Epidemiology, biology and the potential for novel treatment approaches. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 157:143-193. [PMID: 33648669 DOI: 10.1016/bs.irn.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cannabis use is increasing among some demographics in the United States and is tightly linked to anxiety, trauma, and stress reactivity at the epidemiological and biological level. Stress-coping motives are highly cited reasons for cannabis use. However, with increased cannabis use comes the increased susceptibility for cannabis use disorder (CUD). Indeed, CUD is highly comorbid with posttraumatic stress disorder (PTSD). Importantly, endogenous cannabinoid signaling systems play a key role in the regulation of stress reactivity and anxiety regulation, and preclinical data suggest deficiencies in this signaling system could contribute to the development of stress-related psychopathology. Furthermore, endocannabinoid deficiency states, either pre-existing or induced by trauma exposure, could provide explanatory insights into the high rates of comorbid cannabis use in patients with PTSD. Here we review clinical and preclinical literature related to the cannabis use-PTSD comorbidity, the role of endocannabinoids in the regulation of stress reactivity, and potential therapeutic implications of recent work in this area.
Collapse
|
22
|
Bedse G, Hill MN, Patel S. 2-Arachidonoylglycerol Modulation of Anxiety and Stress Adaptation: From Grass Roots to Novel Therapeutics. Biol Psychiatry 2020; 88:520-530. [PMID: 32197779 PMCID: PMC7486996 DOI: 10.1016/j.biopsych.2020.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 01/18/2020] [Indexed: 01/13/2023]
Abstract
Over the past decade there has been a surge of interest in the development of endocannabinoid-based therapeutic approaches for the treatment of diverse neuropsychiatric conditions. Although initial preclinical and clinical development efforts focused on pharmacological inhibition of fatty acid amide hydrolase to elevate levels of the endocannabinoid anandamide, more recent efforts have focused on inhibition of monoacylglycerol lipase (MAGL) to enhance signaling of the most abundant and efficacious endocannabinoid ligand, 2-arachidonoylglycerol (2-AG). We review the biochemistry and physiology of 2-AG signaling and preclinical evidence supporting a role for this system in the regulation of anxiety-related outcomes and stress adaptation. We review preclinical evidence supporting MAGL inhibition for the treatment of affective, trauma-related, and stress-related disorders; describe the current state of MAGL inhibitor drug development; and discuss biological factors that could affect MAGL inhibitor efficacy. Issues related to the clinical advancement of MAGL inhibitors are also discussed. We are cautiously optimistic, as the field of MAGL inhibitor development transitions from preclinical to clinical and theoretical to practical, that pharmacological 2-AG augmentation could represent a mechanistically novel therapeutic approach for the treatment of affective and stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Vanderbilt Center for Addiction Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mathew N Hill
- Department of Cell Biology, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Anatomy and Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Vanderbilt Center for Addiction Research, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
23
|
deRoon-Cassini TA, Stollenwerk TM, Beatka M, Hillard CJ. Meet Your Stress Management Professionals: The Endocannabinoids. Trends Mol Med 2020; 26:953-968. [PMID: 32868170 PMCID: PMC7530069 DOI: 10.1016/j.molmed.2020.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
The endocannabinoid signaling system (ECSS) is altered by exposure to stress and mediates and modulates the effects of stress on the brain. Considerable preclinical data support critical roles for the endocannabinoids and their target, the CB1 cannabinoid receptor, in the adaptation of the brain to repeated stress exposure. Chronic stress exposure increases vulnerability to mental illness, so the ECSS has attracted attention as a potential therapeutic target for the prevention and treatment of stress-related psychopathology. We discuss human genetic studies indicating that the ECSS contributes to risk for mental illness in those exposed to severe stress and trauma early in life, and we explore the potential difficulties in pharmacological manipulation of the ECSS.
Collapse
Affiliation(s)
- Terri A deRoon-Cassini
- Neuroscience Research Center, USA; Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Margaret Beatka
- Neuroscience Research Center, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cecilia J Hillard
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
24
|
Stielper ZF, Fucich EA, Middleton JW, Hillard CJ, Edwards S, Molina PE, Gilpin NW. Traumatic Brain Injury and Alcohol Drinking Alter Basolateral Amygdala Endocannabinoids in Female Rats. J Neurotrauma 2020; 38:422-434. [PMID: 32838651 DOI: 10.1089/neu.2020.7175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) affects approximately 3 million Americans yearly and increases vulnerability to developing psychiatric comorbidities. Alcohol use disorder (AUD) is the most prevalent psychiatric diagnosis preceding injury and TBI may increase subsequent alcohol use. The basolateral amygdala (BLA) is a limbic structure commonly affected by TBI that is implicated in anxiety and AUD. Endocannabinoids (eCBs) regulate synaptic activity in the BLA, and BLA eCB modulation alters anxiety-like behavior and stress reactivity. Previous work from our laboratories showed that systemic eCB degradation inhibition ameliorates TBI-induced increases in anxiety-like behavior and motivation to respond for alcohol in male rats. Here, we used a lateral fluid percussion model to test moderate TBI effects on anxiety-like behavior, alcohol drinking, and eCB levels and cell signaling in BLA, as well as the effect of alcohol drinking on anxiety-like behavior and the BLA eCB system, in female rats. Our results show that TBI does not promote escalation of operant alcohol self-administration or increase anxiety-like behavior in female rats. In the BLA, TBI and alcohol drinking alter tissue amounts of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide; AEA) 1 h post-injury, and 2-AG levels remain low 11 days post-injury. Eleven days after injury, BLA pyramidal neurons were hyperexcitable, but measures of synaptic transmission and eCB signaling were unchanged. These data show that TBI impacts BLA 2-AG tissue levels, that this effect is modified by alcohol drinking, and also that TBI increases BLA cell excitability.
Collapse
Affiliation(s)
- Zachary F Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Elizabeth A Fucich
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Neuroscience Program, Tulane University, New Orleans, Louisiana, USA
| | - Jason W Middleton
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Southeast Louisiana VA Healthcare System, New Orleans, Louisiana, USA
| |
Collapse
|
25
|
Marcus DJ, Bedse G, Gaulden AD, Ryan JD, Kondev V, Winters ND, Rosas-Vidal LE, Altemus M, Mackie K, Lee FS, Delpire E, Patel S. Endocannabinoid Signaling Collapse Mediates Stress-Induced Amygdalo-Cortical Strengthening. Neuron 2020; 105:1062-1076.e6. [PMID: 31948734 DOI: 10.1016/j.neuron.2019.12.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 11/27/2022]
Abstract
Functional coupling between the amygdala and the dorsomedial prefrontal cortex (dmPFC) has been implicated in the generation of negative affective states; however, the mechanisms by which stress increases amygdala-dmPFC synaptic strength and generates anxiety-like behaviors are not well understood. Here, we show that the mouse basolateral amygdala (BLA)-prelimbic prefrontal cortex (plPFC) circuit is engaged by stress and activation of this pathway in anxiogenic. Furthermore, we demonstrate that acute stress exposure leads to a lasting increase in synaptic strength within a reciprocal BLA-plPFC-BLA subcircuit. Importantly, we identify 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling as a key mechanism limiting glutamate release at BLA-plPFC synapses and the functional collapse of multimodal 2-AG signaling as a molecular mechanism leading to persistent circuit-specific synaptic strengthening and anxiety-like behaviors after stress exposure. These data suggest that circuit-specific impairment in 2-AG signaling could facilitate functional coupling between the BLA and plPFC and the translation of environmental stress to affective pathology.
Collapse
Affiliation(s)
- David J Marcus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew D Gaulden
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James D Ryan
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Veronika Kondev
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Nathan D Winters
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Luis E Rosas-Vidal
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Megan Altemus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA; Departments of Pharmacology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Center for Addiction Research, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Hammoud MZ, Peters C, Hatfield JRB, Gorka SM, Phan KL, Milad MR, Rabinak CA. Influence of Δ9-tetrahydrocannabinol on long-term neural correlates of threat extinction memory retention in humans. Neuropsychopharmacology 2019; 44:1769-1777. [PMID: 31096264 PMCID: PMC6784991 DOI: 10.1038/s41386-019-0416-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 11/10/2022]
Abstract
The neural mechanisms and durability of Δ9-tetrahydrocannabinol (THC) impact on threat processing in humans are not fully understood. Herein, we used functional MRI and psychophysiological tools to examine the influence of THC on the mechanisms of conditioned threat extinction learning, and the effects of THC on extinction memory retention when assessed 1 day and 1 week from learning. Healthy participants underwent threat conditioning on day 1. On day 2, participants were randomized to take one pill of THC or placebo (PBO) 2-h before threat extinction learning. Extinction memory retention was assessed 1 day and 1 week after extinction learning. We found that THC administration increased amygdala and ventromedial prefrontal cortex (vmPFC) activation during early extinction learning with no significant impact on skin conductance responses (SCR). When extinction memory retention was tested 24 h after learning, the THC group exhibited lower SCRs to the extinguished cue with no significant extinction-induced activations within the extinction network. When extinction memory retention was tested 1 week after learning, the THC group exhibited significantly decreased responses to the extinguished cues within the vmPFC and amygdala, but significantly increased functional coupling between the vmPFC, hippocampus, and dorsal anterior cingulate cortex during this extinction retention test. Our results are the first to report a long-term impact of one dose of THC on the functional activation of the threat extinction network and unveil a significant change in functional connectivity emerging after a week from engagement. We highlight the need for further investigating the long-term impact of THC on threat and anxiety circuitry.
Collapse
Affiliation(s)
- Mira Z. Hammoud
- 0000 0001 2175 0319grid.185648.6Department of Psychiatry, University of Illinois at Chicago, Chicago, USA
| | - Craig Peters
- 0000 0001 1456 7807grid.254444.7Department of Pharmacy Practice and Department of Psychiatry & Behavioral Neuroscience, Wayne State University, Detroit, USA
| | - Joshua R. B. Hatfield
- 0000 0001 1456 7807grid.254444.7Department of Pharmacy Practice and Department of Psychiatry & Behavioral Neuroscience, Wayne State University, Detroit, USA
| | - Stephanie M. Gorka
- 0000 0001 2175 0319grid.185648.6Department of Psychiatry, University of Illinois at Chicago, Chicago, USA
| | - K. Luan Phan
- 0000 0001 2175 0319grid.185648.6Department of Psychiatry, University of Illinois at Chicago, Chicago, USA ,0000 0001 2175 0319grid.185648.6Department of Psychology, University of Illinois at Chicago, Chicago, USA ,grid.280892.9Mental Health Service Line, Jesse Brown VA Medical Center, Chicago, USA
| | - Mohammed R. Milad
- 0000 0001 2175 0319grid.185648.6Department of Psychiatry, University of Illinois at Chicago, Chicago, USA
| | - Christine A. Rabinak
- 0000 0001 1456 7807grid.254444.7Department of Pharmacy Practice and Department of Psychiatry & Behavioral Neuroscience, Wayne State University, Detroit, USA
| |
Collapse
|
27
|
Deisl C, Fine M, Moe OW, Hilgemann DW. Hypertrophy of human embryonic stem cell-derived cardiomyocytes supported by positive feedback between Ca 2+ and diacylglycerol signals. Pflugers Arch 2019; 471:1143-1157. [PMID: 31250095 PMCID: PMC6614165 DOI: 10.1007/s00424-019-02293-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cell-derived cardiomyocytes develop pronounced hypertrophy in response to angiotensin-2, endothelin-1, and a selected mix of three fatty acids. All three of these responses are accompanied by increases in both basal cytoplasmic Ca2+ and diacylglycerol, quantified with the Ca2+ sensor Fluo-4 and a FRET-based diacylglycerol sensor expressed in these cardiomyocytes. The heart glycoside, ouabain (30 nM), and a recently developed inhibitor of diacylglycerol lipases, DO34 (1 μM), cause similar hypertrophy responses, and both responses are accompanied by equivalent increases of basal Ca2+ and diacylglycerol. These results together suggest that basal Ca2+ and diacylglycerol form a positive feedback signaling loop that promotes execution of cardiac growth programs in these human myocytes. Given that basal Ca2+ in myocytes depends strongly on the Na+ gradient, we also tested whether nanomolar ouabain concentrations might stimulate Na+/K+ pumps, as described by others, and thereby prevent hypertrophy. However, stimulatory effects of nanomolar ouabain (1.5 nM) were not verified on Na+/K+ pump currents in stem cell-derived myocytes, nor did nanomolar ouabain block hypertrophy induced by endothelin-1. Thus, low-dose ouabain is not a "protective" intervention under the conditions of these experiments in this human myocyte model. To summarize, the major aim of this study has been to characterize the progression of hypertrophy in human embryonic stem cell-derived cardiac myocytes in dependence on diacylglycerol and Na+ gradient changes, developing a case that positive feedback coupling between these mechanisms plays an important role in the initiation of hypertrophy programs.
Collapse
Affiliation(s)
- Christine Deisl
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| | - Michael Fine
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Orson W Moe
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Donald W Hilgemann
- Departments of Physiology and Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| |
Collapse
|
28
|
Morena M, Hill MN. Buzzkill: the consequences of depleting anandamide in the hippocampus. Neuropsychopharmacology 2019; 44:1347-1348. [PMID: 30824852 PMCID: PMC6784981 DOI: 10.1038/s41386-019-0357-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Morena
- 0000 0004 1936 7697grid.22072.35Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Matthew N. Hill
- 0000 0004 1936 7697grid.22072.35Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada
| |
Collapse
|
29
|
Diacylglycerol Lipase-Alpha Regulates Hippocampal-Dependent Learning and Memory Processes in Mice. J Neurosci 2019; 39:5949-5965. [PMID: 31127001 DOI: 10.1523/jneurosci.1353-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022] Open
Abstract
Diacylglycerol lipase-α (DAGL-α), the principal biosynthetic enzyme of the endogenous cannabinoid 2-arachidonylglycerol (2-AG) on neurons, plays a key role in CB1 receptor-mediated synaptic plasticity and hippocampal neurogenesis, but its contribution to global hippocampal-mediated processes remains unknown. Thus, the present study examines the role that DAGL-α plays on LTP in hippocampus, as well as in hippocampal-dependent spatial learning and memory tasks, and on the production of endocannabinoid and related lipids through the use of complementary pharmacologic and genetic approaches to disrupt this enzyme in male mice. Here we show that DAGL-α gene deletion or pharmacological inhibition disrupts LTP in CA1 of the hippocampus but elicits varying magnitudes of behavioral learning and memory deficits in mice. In particular, DAGL-α-/- mice display profound impairments in the Object Location assay and Morris Water Maze (MWM) acquisition engaging in nonspatial search strategies. In contrast, WT mice administered the DAGL-α inhibitor DO34 show delays in MWM acquisition and reversal learning, but no deficits in expression, extinction, forgetting, or perseveration processes in this task, as well as no impairment in Object Location. The deficits in synaptic plasticity and MWM performance occur in concert with decreased 2-AG and its major lipid metabolite (arachidonic acid), but increases of a 2-AG diacylglycerol precursor in hippocampus, PFC, striatum, and cerebellum. These novel behavioral and electrophysiological results implicate a direct and perhaps selective role of DAGL-α in the integration of new spatial information.SIGNIFICANCE STATEMENT Here we show that genetic deletion or pharmacologic inhibition of diacylglycerol lipase-α (DAGL-α) impairs hippocampal CA1 LTP, differentially disrupts spatial learning and memory performance in Morris water maze (MWM) and Object Location tasks, and alters brain levels of endocannabinoids and related lipids. Whereas DAGL-α-/- mice exhibit profound phenotypic spatial memory deficits, a DAGL inhibitor selectively impairs the integration of new information in MWM acquisition and reversal tasks, but not memory processes of expression, extinction, forgetting, or perseveration, and does not affect performance in the Objection Location task. The findings that constitutive or short-term DAGL-α disruption impairs learning and memory at electrophysiological and selective in vivo levels implicate this enzyme as playing a key role in the integration of new spatial information.
Collapse
|
30
|
Shin M, Buckner A, Prince J, Bullock TNJ, Hsu KL. Diacylglycerol Lipase-β Is Required for TNF-α Response but Not CD8 + T Cell Priming Capacity of Dendritic Cells. Cell Chem Biol 2019; 26:1036-1041.e3. [PMID: 31105063 DOI: 10.1016/j.chembiol.2019.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Diacylglycerol lipase-β (DAGLβ) hydrolyzes arachidonic acid (AA)-esterified diacylglycerols to produce 2-arachidonoylglycerol (2-AG) and downstream prostanoids that mediate inflammatory responses of macrophages. Here, we utilized DAGL-tailored activity-based protein profiling and genetic disruption models to discover that DAGLβ regulates inflammatory lipid and protein signaling pathways in primary dendritic cells (DCs). DCs serve as an important link between innate and adaptive immune pathways by relaying innate signals and antigen to drive T cell clonal expansion and prime antigen-specific immunity. We discovered that disruption of DAGLβ in DCs lowers cellular 2-AG and AA that is accompanied by reductions in lipopolysaccharide (LPS) stimulated tumor necrosis factor α secretion. Cell-based vaccination studies revealed that DC maturation ex vivo and immunogenicity in vivo was surprisingly unaffected by DAGLβ inactivation. Collectively, we identify DAGLβ pathways as a means for attenuating DC inflammatory signaling while sparing critical adaptive immune functions and further expand the utility of targeting lipid pathways for immunomodulation.
Collapse
Affiliation(s)
- Myungsun Shin
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319 Charlottesville, VA 22904, USA
| | - Andrew Buckner
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jessica Prince
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319 Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
31
|
Lisboa SF, Vila-Verde C, Rosa J, Uliana DL, Stern CAJ, Bertoglio LJ, Resstel LB, Guimaraes FS. Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology (Berl) 2019; 236:201-226. [PMID: 30604182 DOI: 10.1007/s00213-018-5127-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aversive learning and memory are essential to cope with dangerous and stressful stimuli present in an ever-changing environment. When this process is dysfunctional, however, it is associated with posttraumatic stress disorder (PTSD). The endocannabinoid (eCB) system has been implicated in synaptic plasticity associated with physiological and pathological aversive learning and memory. OBJECTIVE AND METHODS The objective of this study was to review and discuss evidence on how and where in the brain genetic or pharmacological interventions targeting the eCB system would attenuate aversive/traumatic memories through extinction facilitation in laboratory animals and humans. The effect size of the experimental intervention under investigation was also calculated. RESULTS Currently available data indicate that direct or indirect activation of cannabinoid type-1 (CB1) receptor facilitates the extinction of aversive/traumatic memories. Activating CB1 receptors around the formation of aversive/traumatic memories or their reminders can potentiate their subsequent extinction. In most cases, the effect size has been large (Cohen's d ≥ 1.0). The brain areas responsible for the abovementioned effects include the medial prefrontal cortex, amygdala, and/or hippocampus. The potential role of cannabinoid type-2 (CB2) receptors in extinction learning is now under investigation. CONCLUSION Drugs augmenting the brain eCB activity can temper the impact of aversive/traumatic experiences by diverse mechanisms depending on the moment of their administration. Considering the pivotal role the extinction process plays in PTSD, the therapeutic potential of these drugs is evident. The sparse number of clinical trials testing these compounds in stress-related disorders is a gap in the literature that needs to be addressed.
Collapse
Affiliation(s)
- Sabrina F Lisboa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | - C Vila-Verde
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - J Rosa
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - D L Uliana
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - C A J Stern
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - L J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - L B Resstel
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - F S Guimaraes
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Av Bandeirantes 3900, Monte Alegre, 14049900, Ribeirão Preto, São Paulo, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Medical School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|