1
|
de Kloet ER. Glucocorticoid feedback paradox: a homage to Mary Dallman. Stress 2023; 26:2247090. [PMID: 37589046 DOI: 10.1080/10253890.2023.2247090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
As the end product of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone coordinate circadian activities, stress-coping, and adaptation to change. For this purpose, the hormone promotes energy metabolism and controls defense reactions in the body and brain. This life-sustaining action exerted by glucocorticoids occurs in concert with the autonomic nervous and immune systems, transmitters, growth factors/cytokines, and neuropeptides. The current contribution will focus on the glucocorticoid feedback paradox in the HPA-axis: the phenomenon that stress responsivity remains resilient if preceded by stress-induced secretion of glucocorticoid hormone, but not if this hormone is previously administered. Furthermore, in animal studies, the mixed progesterone/glucocorticoid antagonist RU486 or mifepristone switches to an apparent partial agonist upon repeated administration. To address these enigmas several interesting phenomena are highlighted. These include the conditional nature of the excitation/inhibition balance in feedback regulation, the role of glucose as a determinant of stress responsivity, and the potential of glucocorticoids in resetting the stress response system. The analysis of the feedback paradox provides also a golden opportunity to review the progress in understanding the role of glucocorticoid hormone in resilience and vulnerability during stress, the science that was burned deeply in Mary Dallman's emotions.
Collapse
Affiliation(s)
- Edo Ronald de Kloet
- Department of Clinical Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Iqbal J, Bibi M, Huang GD, Xue YX, Khatttak JZK, Yang M, Jia XJ. Differential regulation of hippocampal transcriptome by circulating estrogen. Funct Integr Genomics 2023; 23:309. [PMID: 37735249 DOI: 10.1007/s10142-023-01234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Estrogen (E2) modulates the synaptic structure and plasticity in the hippocampus. Previous studies showed that E2 fluctuations during various phases of the menstrual cycle produce subtle neurosynaptic changes that impact women's behavior, emotion, and cognitive functions. In this study, we explored the transcriptome of the hippocampus via RNA-seq (RNA-sequencing) between proestrus (PE) and diestrus (DE) stages in young female rats to determine the effect of E2 of PE and DE stages on hippocampal gene expression. We identified 238 genes (at 1.5-fold-change selection criteria, FDR adjusted p-value < 0.05) as differentially expressed genes (DEGs) that responded to E2 between PE and DE stages. Functional analysis based on Gene Ontology (GO) revealed that a higher E2 level corresponded to an increase in gene transcription among most of the DEGs, suggesting biological mechanisms operating differentially in the hippocampus of female rats between PE and DE stages in the estrus cycle; while analysis with Kyoto Encyclopedia of Genes and Genomes database (KEGG) found that the DEGs involving neuroactive ligand-receptor interaction, antigen processing, cell adhesion molecules, and presentation were upregulated in PE stage, whereas DEGs in pathways relating to bile secretion, coagulation cascades, osteoclast differentiation, cysteine and methionine metabolism were upregulated in DE stage of the estrus cycle. The high-fold expression of DEGs was confirmed by a follow-up quantitative real-time PCR. Our findings in this current study have provided fundamental information for further dissection of neuro-molecular mechanisms in the hippocampus in response to E2 fluctuation and its relationship with disorders.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Maryam Bibi
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | | | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Youssef MMM, Hamada HT, Lai ESK, Kiyama Y, El-Tabbal M, Kiyonari H, Nakano K, Kuhn B, Yamamoto T. TOB is an effector of the hippocampus-mediated acute stress response. Transl Psychiatry 2022; 12:302. [PMID: 35906220 PMCID: PMC9338090 DOI: 10.1038/s41398-022-02078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Stress affects behavior and involves critical dynamic changes at multiple levels ranging from molecular pathways to neural circuits and behavior. Abnormalities at any of these levels lead to decreased stress resilience and pathological behavior. However, temporal modulation of molecular pathways underlying stress response remains poorly understood. Transducer of ErbB2.1, known as TOB, is involved in different physiological functions, including cellular stress and immediate response to stimulation. In this study, we investigated the role of TOB in psychological stress machinery at molecular, neural circuit, and behavioral levels. Interestingly, TOB protein levels increased after mice were exposed to acute stress. At the neural circuit level, functional magnetic resonance imaging (fMRI) suggested that intra-hippocampal and hippocampal-prefrontal connectivity were dysregulated in Tob knockout (Tob-KO) mice. Electrophysiological recordings in hippocampal slices showed increased postsynaptic AMPAR-mediated neurotransmission, accompanied by decreased GABA neurotransmission and subsequently altered Excitatory/Inhibitory balance after Tob deletion. At the behavioral level, Tob-KO mice show abnormal, hippocampus-dependent, contextual fear conditioning and extinction, and depression-like behaviors. On the other hand, increased anxiety observed in Tob-KO mice is hippocampus-independent. At the molecular level, we observed changes in factors involved in stress response like decreased stress-induced LCN2 expression and ERK phosphorylation, as well as increased MKP-1 expression. This study introduces TOB as an important modulator in the hippocampal stress signaling machinery. In summary, we reveal a molecular pathway and neural circuit mechanism by which Tob deletion contributes to expression of pathological stress-related behavior.
Collapse
Affiliation(s)
- Mohieldin M M Youssef
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Esther Suk King Lai
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuji Kiyama
- Laboratory of Biochemistry and Molecular Biology, Graduate school of medical and dental sciences, Kagoshima University, Kagoshima, Japan
| | - Mohamed El-Tabbal
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kohei Nakano
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
4
|
Amaya JM, Suidgeest E, Sahut-Barnola I, Dumontet T, Montanier N, Pagès G, Keller C, van der Weerd L, Pereira AM, Martinez A, Meijer OC. Effects of Long-Term Endogenous Corticosteroid Exposure on Brain Volume and Glial Cells in the AdKO Mouse. Front Neurosci 2021; 15:604103. [PMID: 33642975 PMCID: PMC7902940 DOI: 10.3389/fnins.2021.604103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/06/2021] [Indexed: 01/26/2023] Open
Abstract
Chronic exposure to high circulating levels of glucocorticoids has detrimental effects on health, including metabolic abnormalities, as exemplified in Cushing’s syndrome (CS). Magnetic resonance imaging (MRI) studies have found volumetric changes in gray and white matter of the brain in CS patients during the course of active disease, but also in remission. In order to explore this further, we performed MRI-based brain volumetric analyses in the AdKO mouse model for CS, which presents its key traits. AdKO mice had reduced relative volumes in several brain regions, including the corpus callosum and cortical areas. The medial amygdala, bed nucleus of the stria terminalis, and hypothalamus were increased in relative volume. Furthermore, we found a lower immunoreactivity of myelin basic protein (MBP, an oligodendrocyte marker) in several brain regions but a paradoxically increased MBP signal in the male cingulate cortex. We also observed a decrease in the expression of glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes) and ionized calcium-binding adapter molecule 1 (IBA1, a marker for activated microglia) in the cingulate regions of the anterior corpus callosum and the hippocampus. We conclude that long-term hypercorticosteronemia induced brain region-specific changes that might include aberrant myelination and a degree of white matter damage, as both repair (GFAP) and immune (IBA1) responses are decreased. These findings suggest a cause for the changes observed in the brains of human patients and serve as a background for further exploration of their subcellular and molecular mechanisms.
Collapse
Affiliation(s)
- Jorge Miguel Amaya
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Isabelle Sahut-Barnola
- Génétique Reproduction et Développement, Université Clermont-Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Typhanie Dumontet
- Génétique Reproduction et Développement, Université Clermont-Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Nathanaëlle Montanier
- Génétique Reproduction et Développement, Université Clermont-Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Guilhem Pagès
- INRAE, AgroResonance, QuaPA UR370, Saint-Genès-Champanelle, France
| | - Cécile Keller
- INRAE, AgroResonance, QuaPA UR370, Saint-Genès-Champanelle, France
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Human Genetics Department, Leiden University Medical Center, Leiden, Netherlands
| | - Alberto M Pereira
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Antoine Martinez
- INRAE, AgroResonance, QuaPA UR370, Saint-Genès-Champanelle, France
| | - Onno C Meijer
- Department of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Taroza S, Rastenytė D, Burkauskas J, Podlipskytė A, Kažukauskienė N, Patamsytė V, Mickuvienė N. Deiodinases, organic anion transporter polypeptide polymorphisms and symptoms of anxiety and depression after ischemic stroke. J Stroke Cerebrovasc Dis 2020; 29:105040. [PMID: 32807452 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emotional disturbances, such as anxiety and depression are common after acute ischemic stroke (AIS). Individual variation in emotional outcome is strongly influenced by genetic factors. One of pituitary axis, is the hypothalamic-pituitary-thyroid axis, a critical regulator of post-stroke recovery, suggesting that allelic variants in thyroid hormone (TH) signaling regulation can influence stroke outcome. AIM To determine associations between AIS emotional outcome and allelic variants of the TH metabolizing enzymes 1-3 type deiodinase (DIO1-3) and the membrane transporting organic anion polypeptide 1C1 (OATP1C1). METHODS Eligible AIS patients from Lithuania (n=168) were genotyped for ten DIO1-3 and OATP1C1 single nucleotide polymorphisms (SNP): DIO1 rs12095080-A/G, rs11206244-C/T, and rs2235544-A/C; DIO2 rs225014-T/C and rs225015-G/A; DIO3 rs945006-T/G; OATP1C1 rs974453-G/A, rs10444412-T/C, rs10770704-C/T, and rs1515777-A/G. Emotional outcome was evaluated using the Hospital Anxiety and Depression Scale at discharge from the neurology department after experienced index AIS. RESULTS After adjustment for potential confounders, the major allelic (wild-type) DIO1-rs12095080 genotype (AA) was associated with higher odds ratio of anxiety symptoms (OR = 5.16; 95% CI: 1.04-25.58; p = 0.045), conversely, DIO1-rs11206244 wild-type genotype (CC) and wild-type OATP1C1-rs1515777 allele containing the genotypes (AA + AG) were associated with lower odds ratio of symptoms of anxiety (OR = 0.37; 95% CI: 0.14-0.96; p = 0.041 and OR = 0.30; 95% CI: 0.12-0.76; p = 0.011, respectively). Wild-type OATP1C1-rs974453 genotype (GG) was associated with higher odds ratio of symptoms of depression (OR = 2.73; 95% CI: 1.04-7.12; p = 0.041). CONCLUSION Allelic variants in thyroid axis genes may predict emotional outcomes of AIS.
Collapse
Affiliation(s)
- Saulius Taroza
- Laboratory of Behavioural Medicine (Palanga), Neuroscience Institute, Lithuanian University of Health Sciences, Lithuania.
| | - Daiva Rastenytė
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Julius Burkauskas
- Laboratory of Behavioural Medicine (Palanga), Neuroscience Institute, Lithuanian University of Health Sciences, Lithuania.
| | - Aurelija Podlipskytė
- Laboratory of Behavioural Medicine (Palanga), Neuroscience Institute, Lithuanian University of Health Sciences, Lithuania.
| | - Nijolė Kažukauskienė
- Laboratory of Behavioural Medicine (Palanga), Neuroscience Institute, Lithuanian University of Health Sciences, Lithuania.
| | - Vaiva Patamsytė
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Narseta Mickuvienė
- Laboratory of Behavioural Medicine (Palanga), Neuroscience Institute, Lithuanian University of Health Sciences, Lithuania.
| |
Collapse
|
6
|
Vega-Torres JD, Azadian M, Rios-Orsini RA, Reyes-Rivera AL, Ontiveros-Angel P, Figueroa JD. Adolescent Vulnerability to Heightened Emotional Reactivity and Anxiety After Brief Exposure to an Obesogenic Diet. Front Neurosci 2020; 14:562. [PMID: 32694970 PMCID: PMC7338851 DOI: 10.3389/fnins.2020.00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that diet-induced obesity disrupts corticolimbic circuits underlying emotional regulation. Studies directed at understanding how obesity alters brain and behavior are easily confounded by a myriad of complications related to obesity. This study investigated the early neurobiological stress response triggered by an obesogenic diet. Furthermore, this study directly determined the combined impact of a short-term obesogenic diet and adolescence on critical behavioral and molecular substrates implicated in emotion regulation and stress. METHODS Adolescent (postnatal day 31) or adult (postnatal day 81) Lewis rats were fed for 1 week with an experimental Western-like high-saturated fat diet (WD, 41% kcal from fat) or a matched control diet (CD, 13% kcal from fat). We used the acoustic fear-potentiated startle (FPS) paradigm to determine the effects of the WD on cued fear conditioning and fear extinction. We used c-Fos mapping to determine the functional influence of the diet and stress on corticolimbic circuits. RESULTS We report that 1-week WD consumption was sufficient to induce fear extinction deficits in adolescent rats, but not in adult rats. We identify fear-induced alterations in corticolimbic neuronal activation and demonstrate increased prefrontal cortex CRHR1 messenger RNA (mRNA) levels in the rats that consumed the WD. CONCLUSION Our findings demonstrate that short-term consumption of an obesogenic diet during adolescence heightens behavioral and molecular vulnerabilities associated with risk for anxiety and stress-related disorders. Given that fear extinction promotes resilience and that fear extinction principles are the foundation of psychological treatments for posttraumatic stress disorder (PTSD), understanding how obesogenic environments interact with the adolescent period to affect the acquisition and expression of fear extinction memories is of tremendous clinical relevance.
Collapse
Affiliation(s)
- Julio D. Vega-Torres
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Matine Azadian
- Stanford University School of Medicine, Stanford, CA, United States
| | | | | | - Perla Ontiveros-Angel
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Johnny D. Figueroa
- Physiology Division, Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
7
|
Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019; 1455:59-80. [PMID: 31271235 PMCID: PMC6899945 DOI: 10.1111/nyas.14179] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life‐sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food‐seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional‐affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
de Kloet ER, de Kloet SF, de Kloet CS, de Kloet AD. Top-down and bottom-up control of stress-coping. J Neuroendocrinol 2019; 31:e12675. [PMID: 30578574 PMCID: PMC6519262 DOI: 10.1111/jne.12675] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
In this 30th anniversary issue review, we focus on the glucocorticoid modulation of limbic-prefrontocortical circuitry during stress-coping. This action of the stress hormone is mediated by mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) that are co-expressed abundantly in these higher brain regions. Via both receptor types, the glucocorticoids demonstrate, in various contexts, rapid nongenomic and slower genomic actions that coordinate consecutive stages of information processing. MR-mediated action optimises stress-coping, whereas, in a complementary fashion, the memory storage of the selected coping strategy is promoted via GR. We highlight the involvement of adipose tissue in the allocation of energy resources to central regulation of stress reactions, point to still poorly understood neuronal ensembles in the prefrontal cortex that underlie cognitive flexibility critical for effective coping, and evaluate the role of cortisol as a pleiotropic regulator in vulnerability to, and treatment of, trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- Edo R. de Kloet
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Sybren F. de Kloet
- Department of Integrative NeurophysiologyCenter for Neurogenomics and Cognitive ResearchVU‐University of AmsterdamAmsterdamThe Netherlands
| | | | - Annette D. de Kloet
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleFlorida
| |
Collapse
|