1
|
Yuan Y, Feng Z, Wang Z. Cluster Neuronal Firing Induced by Uniform Pulses of High-Frequency Stimulation on Axons in Rat Hippocampus. IEEE Trans Biomed Eng 2025; 72:1108-1120. [PMID: 39471114 DOI: 10.1109/tbme.2024.3488014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
OBJECTIVE High-frequency stimulation (HFS) of electrical pulse sequences has been used in various neuromodulation techniques to treat certain disorders. Here, we test the hypothesis that HFS sequences with purely periodic pulses could directly generate non-uniform firing in directly stimulated neurons. METHODS In vivo experiments were conducted in the rat hippocampal CA1 region. A stimulation electrode was placed on the alveus fibers, and a recording electrode array was inserted into the CA1 region upstream of the stimulation site. Antidromic-HFS (A-HFS) of 100 Hz pulses was applied to the alveus to antidromically activate the soma of pyramidal neurons around the recording site. By minimizing the interferences of population spikes, the evoked unit spikes of individual pyramidal neurons were obtained during A-HFS. Additionally, a computational model of pyramidal neuron was used to simulate the neuronal responses to A-HFS, revealing possible mechanisms underlying the different firing patterns. RESULTS Of the total 54 pyramidal neurons recorded during 2-min 100 Hz A-HFS, 38 (70%) neurons fired in a cluster pattern with alternating periods of intensive spikes and silence. The remaining 16 (30%) neurons fired in a non-cluster pattern with regular spikes. Modeling simulations showed that under the situation of HFS-induced intermittent block, conduction failure and generation failure of action potentials along the axons resulted in the cluster and non-cluster firing. CONCLUSION Sustained axonal A-HFS with periodic pulses can induce non-uniform firing in directly stimulated neurons. SIGNIFICANCE This finding provides new evidence for the nonlinear dynamics of neuronal firing, even under uniform stimulation.
Collapse
|
2
|
Hu N, Shi JX, Chen C, Xu HH, Chang ZH, Hu PF, Guo D, Zhang XW, Shao WW, Fan X, Zuo JC, Ming D, Li XH. Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury. Nat Commun 2024; 15:9580. [PMID: 39505863 PMCID: PMC11541701 DOI: 10.1038/s41467-024-53858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The reconstruction of damaged neural circuits is critical for neurological repair after brain injury. Classical brain-computer interfaces (BCIs) allow direct communication between the brain and external controllers to compensate for lost functions. Importantly, there is increasing potential for generalized BCIs to input information into the brains to restore damage, but their effectiveness is limited when a large injured cavity is caused. Notably, it might be overcome by transplantation of brain organoids into the damaged region. Here, we construct innovative BCIs mediated by implantable organoids, coined as organoid-brain-computer interfaces (OBCIs). We assess the prolonged safety and feasibility of the OBCIs, and explore neuroregulatory strategies. OBCI stimulation promotes progressive differentiation of grafts and enhances structural-functional connections within organoids and the host brain, promising to repair the damaged brain via regenerating and regulating, potentially directing neurons to preselected targets and recovering functional neural networks in the future.
Collapse
Affiliation(s)
- Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Peng-Fei Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Wen-Wei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China.
| |
Collapse
|
3
|
Steinhardt CR, Mitchell DE, Cullen KE, Fridman GY. Pulsatile electrical stimulation creates predictable, correctable disruptions in neural firing. Nat Commun 2024; 15:5861. [PMID: 38997274 PMCID: PMC11245474 DOI: 10.1038/s41467-024-49900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Electrical stimulation is a key tool in neuroscience, both in brain mapping studies and in many therapeutic applications such as cochlear, vestibular, and retinal neural implants. Due to safety considerations, stimulation is restricted to short biphasic pulses. Despite decades of research and development, neural implants lead to varying restoration of function in patients. In this study, we use computational modeling to provide an explanation for how pulsatile stimulation affects axonal channels and therefore leads to variability in restoration of neural responses. The phenomenological explanation is transformed into equations that predict induced firing rate as a function of pulse rate, pulse amplitude, and spontaneous firing rate. We show that these equations predict simulated responses to pulsatile stimulation with a variety of parameters as well as several features of experimentally recorded primate vestibular afferent responses to pulsatile stimulation. We then discuss the implications of these effects for improving clinical stimulation paradigms and electrical stimulation-based experiments.
Collapse
Affiliation(s)
- Cynthia R Steinhardt
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
| | - Diana E Mitchell
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gene Y Fridman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Yuan Y, Feng Z, Yang G, Ye X, Wang Z. Suppression of Neuronal Firing Following Antidromic High-Frequency Stimulations on the Neuronal Axons in Rat Hippocampal CA1 Region. Front Neurosci 2022; 16:881426. [PMID: 35757541 PMCID: PMC9226389 DOI: 10.3389/fnins.2022.881426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
High-frequency stimulation (HFS) of electrical pulses has been used to treat certain neurological diseases in brain with commonly utilized effects within stimulation periods. Post-stimulation effects after the end of HFS may also have functions but are lack of attention. To investigate the post-stimulation effects of HFS, we performed experiments in the rat hippocampal CA1 region in vivo. Sequences of 1-min antidromic-HFS (A-HFS) were applied at the alveus fibers. To evaluate the excitability of the neurons, separated orthodromic-tests (O-test) of paired pulses were applied at the Schaffer collaterals in the period of baseline, during late period of A-HFS, and following A-HFS. The evoked potentials of A-HFS pulses and O-test pulses were recorded at the stratum pyramidale and the stratum radiatum of CA1 region by an electrode array. The results showed that the antidromic population spikes (APS) evoked by the A-HFS pulses persisted through the entire 1-min period of 100 Hz A-HFS, though the APS amplitudes decreased significantly from the initial value of 9.9 ± 3.3 mV to the end value of 1.6 ± 0.60 mV. However, following the cessation of A-HFS, a silent period without neuronal firing appeared before the firing gradually recovered to the baseline level. The mean lengths of both silent period and recovery period of pyramidal cells (21.9 ± 22.9 and 172.8 ± 91.6 s) were significantly longer than those of interneurons (11.2 ± 8.9 and 45.6 ± 35.9 s). Furthermore, the orthodromic population spikes (OPS) and the field excitatory postsynaptic potentials (fEPSP) evoked by O-tests at ∼15 s following A-HFS decreased significantly, indicating the excitability of pyramidal cells decreased. In addition, when the pulse frequency of A-HFS was increased to 200, 400, and 800 Hz, the suppression of neuronal activity following A-HFS decreased rather than increased. These results indicated that the neurons with axons directly under HFS can generate a post-stimulation suppression of their excitability that may be due to an antidromic invasion of axonal A-HFS to somata and dendrites. The finding provides new clues to utilize post-stimulation effects generated in the intervals to design intermittent stimulations, such as closed-loop or adaptive stimulations.
Collapse
Affiliation(s)
- Yue Yuan
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| | - Gangsheng Yang
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| | - Xiangyu Ye
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| | - Zhaoxiang Wang
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Chen C, He Y, Mao H, Zhu L, Wang X, Zhu Y, Zhu Y, Shi Y, Wan C, Wan Q. A Photoelectric Spiking Neuron for Visual Depth Perception. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201895. [PMID: 35305270 DOI: 10.1002/adma.202201895] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The biological visual system encodes optical information into spikes and processes them by the neural network, which enables the perception with high throughput of visual processing with ultralow energy budget. This has inspired a wide spectrum of devices to imitate such neural process, while precise mimicking such procedure is still highly required. Here, a highly bio-realistic photoelectric spiking neuron for visual depth perception is presented. The firing spikes generated by the TaOX memristive spiking encoders have a biologically similar frequency range of 1-200 Hz and sub-micro watts power. Such spiking encoder is integrated with a photodetector and a network of neuromorphic transistors, for information collection and recognition tasks, respectively. The distance-dependent response and eye fatigue of biological visual systems have been mimicked based on such photoelectric spiking neuron. The simulated depth perception shows a recognition improvement by adapting to sights at different distances. The results can advance the technologies in bioinspired or robotic systems that may be endowed with depth perception and power efficiency at the same time.
Collapse
Affiliation(s)
- Chunsheng Chen
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yongli He
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Huiwu Mao
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Li Zhu
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiangjing Wang
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ying Zhu
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yixin Zhu
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yi Shi
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Changjin Wan
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Qing Wan
- School of Electronic Science & Engineering, and Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
6
|
Ma Z, Wei L, Du X, Hou S, Chen F, Jiao Q, Liu A, Liu S, Wang J, Shen H. Two-photon calcium imaging of neuronal and astrocytic responses: the influence of electrical stimulus parameters and calcium signaling mechanisms. J Neural Eng 2021; 18. [PMID: 34130271 DOI: 10.1088/1741-2552/ac0b50] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
Objective. Electrical brain stimulation has been used to ameliorate symptoms associated with neurologic and psychiatric disorders. The astrocytic activation and its interaction with neurons may contribute to the therapeutic effects of electrical stimulation. However, how the astrocytic activity is affected by electrical stimulation and its calcium signaling mechanisms remain largely unknown. This study is to explore the influence of electrical stimulus parameters on cellular calcium responses and corresponding calcium signaling mechanisms, with a focus on the heretofore largely overlooked astrocytes.Approach. Usingin vivotwo-photon microscopy in mouse somatosensory cortex, the calcium activity in neurons and astrocytes were recorded.Main results. The cathodal stimulation evoked larger responses in both neurons and astrocytes than anodal stimulation. Both neuronal and astrocytic response profiles exhibited the unimodal frequency dependency, the astrocytes prefer higher frequency stimulation than neurons. Astrocytes need longer pulse width and higher current intensity than neurons to activate. Compared to neurons, the astrocytes were not capable of keeping sustained calcium elevation during prolonged electrical stimulation. The neuronal Ca2+influx involves postsynaptic effects and direct depolarization. The Ca2+surge of astrocytes has a neuronal origin, the noradrenergic and glutamatergic signaling act synergistically to induce astrocytic activity.Significance. The astrocytic activity can be regulated by manipulating stimulus parameters and its calcium activation should be fully considered when interpreting the mechanisms of action of electrical neuromodulation. This study brings considerable benefits in the application of electrical stimulation and provides useful insights into cortical signal transduction, which contributes to the understanding of mechanisms underlying the therapeutic efficacy of electrical stimulation for neurorehabilitation applications.
Collapse
Affiliation(s)
- Zengguang Ma
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Liangpeng Wei
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Xiaolang Du
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shaowei Hou
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Feng Chen
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Qingyan Jiao
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Aili Liu
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Shujing Liu
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Junsong Wang
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.,Research Institute of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
7
|
Wang Z, Feng Z, Yuan Y, Zheng L. Suppressing synchronous firing of epileptiform activity by high-frequency stimulation of afferent fibers in rat hippocampus. CNS Neurosci Ther 2020; 27:352-362. [PMID: 33325622 PMCID: PMC7871785 DOI: 10.1111/cns.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/14/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Aims Deep brain stimulation (DBS) is a promising technology for treating epilepsy. However, the efficacy and underlying mechanisms of the high‐frequency stimulation (HFS) utilized by DBS to suppress epilepsy remain uncertain. Previous studies have shown that HFS can desynchronize the firing of neurons. In this study, we investigated whether the desynchronization effects of HFS can suppress epileptiform events. Methods HFS trains with seconds of duration (short) and a minute of duration (long) were applied at the afferent fibers (ie, Schaffer collaterals) of the hippocampal CA1 region in anesthetized rats in vivo. The amplitude and the rate of population spikes (PS) appeared in the downstream of stimulation were calculated to evaluate the intensity of synchronized firing of neuronal populations between short and long HFS groups. A test of paired‐pulse depression (PPD) was used to assess the alteration of inhibitory neuronal circuits. Results The sustained stimulation of a 60‐s long HFS suppressed the afterdischarges that were induced by a 5‐s short HFS to impair the local inhibitions. During the sustained HFS, the mean PS amplitude reduced significantly and the burst firing decreased, while the amount of neuronal firing did not change significantly. The paired‐pulse tests showed that with a similar baseline level of small PS2/PS1 ratio indicating a strong PPD, the 5‐s HFS increased the PS2/PS1 ratio to a value that was significantly greater than the corresponding ratio during sustained HFS, indicating that the PPD impaired by a short HFS may be restored by a sustained HFS. Conclusions The sustained HFS can desynchronize the population firing of epileptiform activity and accelerate a recovery of inhibitions to create a balance between the excitation and the inhibition of local neuronal circuits. The study provides new clues for further understanding the mechanism of DBS and for advancing the clinical application of DBS in treating epilepsy.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yue Yuan
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Lvpiao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Zheng L, Feng Z, Hu H, Wang Z, Yuan Y, Wei X. The Appearance Order of Varying Intervals Introduces Extra Modulation Effects on Neuronal Firing Through Non-linear Dynamics of Sodium Channels During High-Frequency Stimulations. Front Neurosci 2020; 14:397. [PMID: 32528237 PMCID: PMC7263357 DOI: 10.3389/fnins.2020.00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Electrical pulse stimulation in the brain has shown success in treating several brain disorders with constant pulse frequency or constant inter-pulse interval (IPI). Varying IPI may offer a variety of novel stimulation paradigms and may extend the clinical applications. However, a lack of understanding of neuronal responses to varying IPI limits its informed applications. In this study, to investigate the effects of varying IPI, we performed both rat experiments and computational modeling by applying high-frequency stimulation (HFS) to efferent axon fibers of hippocampal pyramidal cells. Antidromically evoked population spikes (PSs) were used to evaluate the neuronal responses to pulse stimulations with different IPI patterns including constant IPI, gradually varying IPI, and randomly varying IPI. All the varying IPI sequences were uniformly distributed in the same interval range of 10 to 5 ms (i.e., 100 to 200 Hz). The experimental results showed that the mean correlation coefficient of PS amplitudes to the lengths of preceding IPI during HFS with random IPI (0.72 ± 0.04, n = 7 rats) was significantly smaller than the corresponding correlation coefficient during HFS with gradual IPI (0.92 ± 0.03, n = 7 rats, P < 0.001, t-test). The PS amplitudes induced by the random IPI covered a wider range, over twice as much as that induced by the gradual IPI, indicating additional effects induced by merely changing the appearance order of IPI. The computational modeling reproduced these experimental results and provided insights into these modulatory effects through the mechanism of non-linear dynamics of sodium channels and potassium accumulation in the narrow peri-axonal space. The simulation results showed that the HFS-induced increase of extracellular potassium ([K+] o ) elevated the membrane potential of axons, delayed the recovery course of sodium channels that were repeatedly activated and inactivated during HFS, and resulted in intermittent neuronal firing. Because of non-linear membrane dynamics, random IPI recruited more neurons to fire together following specific sub-sequences of pulses than gradual IPI, thereby widening the range of PS amplitudes. In conclusion, the study demonstrated novel HFS effects of neuronal modulation induced by merely changing the appearance order of the same group of IPI of pulses, which may inform the development of new stimulation patterns to meet different demands for treating various brain diseases.
Collapse
Affiliation(s)
- Lvpiao Zheng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hanhan Hu
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhaoxiang Wang
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yue Yuan
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xuefeng Wei
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, United States
| |
Collapse
|
9
|
Wang Z, Feng Z, Hu H, Yuan Y. Sinusoidal stimulation on afferent fibers can selectively activate different types of neurons in rat hippocampus. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6880-6883. [PMID: 31947421 DOI: 10.1109/embc.2019.8856305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Deep brain stimulation (DBS) is a promising therapy for treating various brain disorders. Although narrow electrical pulses have been commonly used by DBS, sinusoidal waveforms have also been investigated to improve the effects of DBS therapy and to save electrical energy. However, the effect of sinusoidal stimulation on neurons is unclear yet. To investigate the modulation of sinusoidal stimulation on different types of neurons in networks, sinusoidal stimulations (50 Hz) with lower-intensity and higher-intensity were applied to the afferent axons (Schaffer collaterals) in rat hippocampal CA1 region. The firing of inhibitory interneurons and excitatory pyramidal cells (the principal neurons of CA1) during the stimulations were detected and were compared with their baseline firing before stimulations. Results showed that sinusoidal stimulation with a lower-intensity (~30 μA) can selectively activate the interneurons thereby suppressing the firing of pyramidal cells in the downstream post-synaptic region. However, sinusoidal stimulation with a higher-intensity (~60 μA) can increase the firing of both types of neurons significantly. Presumably, the two different effects of inhibition and excitation on the principal neurons by different stimulation intensities could be caused by the fact that the firing threshold of interneurons is lower than that of pyramidal cells. The results provide important clues for selective modulation of neuronal activity by brain stimulations thereby developing different stimulation paradigms to treat various brain disorders.
Collapse
|
10
|
Zheng L, Feng Z, Guo Z, Huang L. Simulation Study of Intermittent Responses of Neuronal Populations to Axonal High-Frequency Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:3001-3004. [PMID: 31946520 DOI: 10.1109/embc.2019.8857753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep brain stimulation (DBS) have shown a promising future for treating various brain disorders. Studies have indicated that the high frequency stimulation (HFS) used in DBS could cause a partial block in axons thereby attenuating the responses of axon fibers to the pulses of HFS. The attenuated response of axons might play a desynchronization role in modulating activity of neuronal populations. To investigate the detail behavior of individual axons under HFS, we created a computational model of neuronal populations including 1250 neurons. Each neuron consisted of a myelinated axon, an axonal initial segment, a soma and dendrites. A 10-s HFS sequence with 100 Hz pulses was applied to the axon layer by a bipolar stimulation electrode. The membrane potentials and the extracellular potassium concentration [K+]o at axons and at somata during the stimulation were investigated. The results showed that the simulation model with a mechanism of potassium accumulation could reproduce the attenuated responses of neuronal populations to persistent axonal HFS in rat experiments. The elevation of [K+]o during HFS resulted in an increase of basic membrane potentials and then generated a depolarization block in the axonal membrane thereby attenuating the responses of neuronal populations. The depolarization block in axons included both complete block (~26%) and intermittent block (~74%), which generated desynchronized firing among axons in fibers and travelled to the cell bodies to induce desynchronized firing in somata. The simulation results may provide important information for revealing the modulation mechanisms of axonal HFS in the therapy of brain stimulation.
Collapse
|
11
|
Michelson NJ, Eles JR, Vazquez AL, Ludwig KA, Kozai TDY. Calcium activation of cortical neurons by continuous electrical stimulation: Frequency dependence, temporal fidelity, and activation density. J Neurosci Res 2019; 97:620-638. [PMID: 30585651 PMCID: PMC6469875 DOI: 10.1002/jnr.24370] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 01/18/2023]
Abstract
Electrical stimulation of the brain has become a mainstay of fundamental neuroscience research and an increasingly prevalent clinical therapy. Despite decades of use in basic neuroscience research and the growing prevalence of neuromodulation therapies, gaps in knowledge regarding activation or inactivation of neural elements over time have limited its ability to adequately interpret evoked downstream responses or fine-tune stimulation parameters to focus on desired responses. In this work, in vivo two-photon microscopy was used to image neuronal calcium activity in layer 2/3 neurons of somatosensory cortex (S1) in male C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J mice during 30 s of continuous electrical stimulation at varying frequencies. We show frequency-dependent differences in spatial and temporal somatic responses during continuous stimulation. Our results elucidate conflicting results from prior studies reporting either dense spherical activation of somas biased toward those near the electrode, or sparse activation of somas at a distance via axons near the electrode. These findings indicate that the neural element specific temporal response local to the stimulating electrode changes as a function of applied charge density and frequency. These temporal responses need to be considered to properly interpret downstream circuit responses or determining mechanisms of action in basic science experiments or clinical therapeutic applications.
Collapse
Affiliation(s)
- Nicholas J. Michelson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, CA
| | - James R. Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alberto L. Vazquez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison
- Department of Neurological Surgery, University of Wisconsin Madison
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|