1
|
Fan Y, White SR. Review of weighted exponential random graph models frameworks applied to neuroimaging. Stat Med 2024; 43:3881-3898. [PMID: 38932498 DOI: 10.1002/sim.10162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Neuro-imaging data can often be represented as statistical networks, especially for functional magnetic resonance imaging (fMRI) data, where brain regions are defined as nodes and the functional interactions between those regions are taken as edges. Such networks are commonly divided into classes depending on the type of edges, namely binary or weighted. A binary network means edges can either be present or absent. Whereas the edges of a weighted network are associated with weight values, and fMRI networks belong to weighted networks. Statistical methods are often adopted to analyse such networks, among which, the exponential random graph model (ERGM) is an important network analysis approach. Typically ERGMs are applied to binary networks, and weighted networks often need to be binarised by arbitrarily selecting a threshold value to define the presence of the edges, which can lead to non-robustness and loss of valuable edge weight information representing the strength of fMRI interaction in fMRI networks. While it is therefore important to gain deeper insight in adopting ERGM on weighted networks, there only exists a few different ERGM frameworks for weighted networks; some of these are not directly implementable on fMRI networks based on their original proposal. We systematically review, implement, analyse and compare five such frameworks via a simulation study and provide guidelines on each modelling framework as well as conclude the suitability of them on fMRI networks based on a range of criteria. We concluded that Multi-Layered ERGM is currently the most suitable framework.
Collapse
Affiliation(s)
- Yefeng Fan
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Simon R White
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Rangaprakash D, Barry RL, Deshpande G. The confound of hemodynamic response function variability in human resting-state functional MRI studies. Front Neurosci 2023; 17:934138. [PMID: 37521709 PMCID: PMC10375034 DOI: 10.3389/fnins.2023.934138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/07/2023] [Indexed: 08/01/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an indirect measure of neural activity with the hemodynamic response function (HRF) coupling it with unmeasured neural activity. The HRF, modulated by several non-neural factors, is variable across brain regions, individuals and populations. Yet, a majority of human resting-state fMRI connectivity studies continue to assume a non-variable HRF. In this article, with supportive prior evidence, we argue that HRF variability cannot be ignored as it substantially confounds within-subject connectivity estimates and between-subjects connectivity group differences. We also discuss its clinical relevance with connectivity impairments confounded by HRF aberrations in several disorders. We present limited data on HRF differences between women and men, which resulted in a 15.4% median error in functional connectivity estimates in a group-level comparison. We also discuss the implications of HRF variability for fMRI studies in the spinal cord. There is a need for more dialogue within the community on the HRF confound, and we hope that our article is a catalyst in the process.
Collapse
Affiliation(s)
- D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Birmingham, AL, United States
- Key Laboratory for Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Huang SM, Wu CY, Lin YH, Hsieh HH, Yang HC, Chiu SC, Peng SL. Differences in brain activity between normal and diabetic rats under isoflurane anesthesia: a resting-state functional MRI study. BMC Med Imaging 2022; 22:136. [PMID: 35927630 PMCID: PMC9354416 DOI: 10.1186/s12880-022-00867-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altered neural activity based on the fractional amplitude of low-frequency fluctuations (fALFF) has been reported in patients with diabetes. However, whether fALFF can differentiate healthy controls from diabetic animals under anesthesia remains unclear. The study aimed to elucidate the changes in fALFF in a rat model of diabetes under isoflurane anesthesia. METHODS The first group of rats (n = 5) received a single intraperitoneal injection of 70 mg/kg streptozotocin (STZ) to cause the development of diabetes. The second group of rats (n = 7) received a single intraperitoneal injection of the same volume of solvent. Resting-state functional magnetic resonance imaging was used to assess brain activity at 4 weeks after STZ or solvent administration. RESULTS Compared to the healthy control animals, rats with diabetes showed significantly decreased fALFF in various brain regions, including the cingulate cortex, somatosensory cortex, insula, and striatum (all P < 0.05). The decreased fALFF suggests the aberrant neural activities in the diabetic rats. No regions were detected in which the control group had a lower fALFF than that in the diabetes group. CONCLUSIONS The results of this study demonstrated that the fALFF could be used to differentiate healthy controls from diabetic animals, providing meaningful information regarding the neurological pathophysiology of diabetes in animal models.
Collapse
Affiliation(s)
- Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hsin Lin
- Department of Pharmacy, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, Taipei Branch, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan. .,Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Peng SL, Chu LWL, Su FY. Cerebral hemodynamic response to caffeine: effect of dietary caffeine consumption. NMR IN BIOMEDICINE 2022; 35:e4727. [PMID: 35285102 DOI: 10.1002/nbm.4727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Caffeine has a significant effect on cerebrovascular systems, and the dual action of caffeine on both neural and vascular responses leads to concerns for the interpretation of blood oxygenation level-dependent (BOLD) functional MRI. However, potential differences in the brain response to caffeine with regard to consumption habits have not been fully elucidated, as BOLD responses may vary with the dietary caffeine consumption history. The main aim of this study was to characterize the acute effect of caffeine on cerebral hemodynamic responses in participants with different patterns of caffeine consumption habits. Fifteen non-habitual and 11 habitual volunteers were included in this study. The cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to the breath-hold challenge were measured before and after 200 mg caffeine administration. The non-habitual individuals exhibited a pattern of progressive reduction in CBF with time. The CVR was diminished in the caffeinated condition (P < 0.05). In the habitual group, the pattern of CBF decrease was smaller and homogeneous across the brain, and reached steady state rapidly. The CVR was not affected in the presence of caffeine (P > 0.05). Our results demonstrated that the cerebral hemodynamic response to caffeine was subject to the habitual consumption patterns of the participants. The compromised CVR following caffeine administration in the non-habitual group may partially explain the suppressed BOLD response to a visual stimulation in low-caffeine-level users.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Feng-Yi Su
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Chao THH, Zhang WT, Hsu LM, Cerri DH, Wang TW, Shih YYI. Computing hemodynamic response functions from concurrent spectral fiber-photometry and fMRI data. NEUROPHOTONICS 2022; 9:032205. [PMID: 35005057 PMCID: PMC8734587 DOI: 10.1117/1.nph.9.3.032205] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 05/31/2023]
Abstract
Significance: Although emerging evidence suggests that the hemodynamic response function (HRF) can vary by brain region and species, a single, canonical, human-based HRF is widely used in animal studies. Therefore, the development of flexible, accessible, brain-region specific HRF calculation approaches is paramount as hemodynamic animal studies become increasingly popular. Aim: To establish an fMRI-compatible, spectral, fiber-photometry platform for HRF calculation and validation in any rat brain region. Approach: We used our platform to simultaneously measure (a) neuronal activity via genetically encoded calcium indicators (GCaMP6f), (b) local cerebral blood volume (CBV) from intravenous Rhodamine B dye, and (c) whole brain CBV via fMRI with the Feraheme contrast agent. Empirical HRFs were calculated with GCaMP6f and Rhodamine B recordings from rat brain regions during resting-state and task-based paradigms. Results: We calculated empirical HRFs for the rat primary somatosensory, anterior cingulate, prelimbic, retrosplenial, and anterior insular cortical areas. Each HRF was faster and narrower than the canonical HRF and no significant difference was observed between these cortical regions. When used in general linear model analyses of corresponding fMRI data, the empirical HRFs showed better detection performance than the canonical HRF. Conclusions: Our findings demonstrate the viability and utility of fiber-photometry-based HRF calculations. This platform is readily scalable to multiple simultaneous recording sites, and adaptable to study transfer functions between stimulation events, neuronal activity, neurotransmitter release, and hemodynamic responses.
Collapse
Affiliation(s)
- Tzu-Hao H. Chao
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
| | - Wei-Ting Zhang
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
| | - Li-Ming Hsu
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
| | - Domenic H. Cerri
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
| | - Tzu-Wen Wang
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
| | - Yen-Yu I. Shih
- University of North Carolina at Chapel Hill, Center for Animal MRI, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Biomedical Research Imaging Center, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Neurology, Chapel Hill. North Carolina, United States
- University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill. North Carolina, United States
| |
Collapse
|
6
|
Russo G, Helluy X, Behroozi M, Manahan-Vaughan D. Gradual Restraint Habituation for Awake Functional Magnetic Resonance Imaging Combined With a Sparse Imaging Paradigm Reduces Motion Artifacts and Stress Levels in Rodents. Front Neurosci 2022; 15:805679. [PMID: 34992520 PMCID: PMC8724036 DOI: 10.3389/fnins.2021.805679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging, as a non-invasive technique, offers unique opportunities to assess brain function and connectivity under a broad range of applications, ranging from passive sensory stimulation to high-level cognitive abilities, in awake animals. This approach is confounded, however, by the fact that physical restraint and loud unpredictable acoustic noise must inevitably accompany fMRI recordings. These factors induce marked stress in rodents, and stress-related elevations of corticosterone levels are known to alter information processing and cognition in the rodent. Here, we propose a habituation strategy that spans specific stages of adaptation to restraint, MRI noise, and confinement stress in awake rats and circumvents the need for surgical head restraint. This habituation protocol results in stress levels during awake fMRI that do not differ from pre-handling levels and enables stable image acquisition with very low motion artifacts. For this, rats were gradually trained over a period of three weeks and eighteen training sessions. Stress levels were assessed by analysis of fecal corticosterone metabolite levels and breathing rates. We observed significant drops in stress levels to below pre-handling levels at the end of the habituation procedure. During fMRI in awake rats, after the conclusion of habituation and using a non-invasive head-fixation device, breathing was stable and head motion artifacts were minimal. A task-based fMRI experiment, using acoustic stimulation, conducted 2 days after the end of habituation, resulted in precise whole brain mapping of BOLD signals in the brain, with clear delineation of the expected auditory-related structures. The active discrimination by the animals of the acoustic stimuli from the backdrop of scanner noise was corroborated by significant increases in BOLD signals in the thalamus and reticular formation. Taken together, these data show that effective habituation to awake fMRI can be achieved by gradual and incremental acclimatization to the experimental conditions. Subsequent BOLD recordings, even during superimposed acoustic stimulation, reflect low stress-levels, low motion and a corresponding high-quality image acquisition. Furthermore, BOLD signals obtained during fMRI indicate that effective habituation facilitates selective attention to sensory stimuli that can in turn support the discrimination of cognitive processes in the absence of stress confounds.
Collapse
Affiliation(s)
- Gabriele Russo
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany.,Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
7
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
8
|
Kweon H, Jung WB, Im GH, Ryoo J, Lee JH, Do H, Choi Y, Song YH, Jung H, Park H, Qiu LR, Ellegood J, Shim HJ, Yang E, Kim H, Lerch JP, Lee SH, Chung WS, Kim D, Kim SG, Kim E. Excitatory neuronal CHD8 in the regulation of neocortical development and sensory-motor behaviors. Cell Rep 2021; 34:108780. [PMID: 33626347 DOI: 10.1016/j.celrep.2021.108780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.
Collapse
Affiliation(s)
- Hanseul Kweon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Jia Ryoo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joon-Hyuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hogyeong Do
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yeonsoo Choi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - You-Hyang Song
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Haram Park
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Lily R Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Hyun-Ji Shim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada; Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Seung-Hee Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 34141, Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141, Korea.
| |
Collapse
|
9
|
Shih CT, Chiu SC, Peng SL. Caffeine enhances BOLD responses to electrical whisker pad stimulation in rats during alpha-chloralose anaesthesia. Eur J Neurosci 2020; 53:601-610. [PMID: 32926471 DOI: 10.1111/ejn.14968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
By reducing the cerebral blood flow and thereby increasing the resting deoxyhaemoglobin concentration, many human studies have shown that caffeine has a beneficial effect on enhancing the magnitude of blood-oxygenation-level-dependent (BOLD) responses. However, the effect of caffeine on BOLD responses in animals under anaesthesia has not been demonstrated. In this study, we aimed to determine the effect of systemic caffeine administration on BOLD responses in rats under alpha-chloralose. By applying electric whisker pad stimulation to male Sprague-Dawley rats, we performed fMRI measurements before and after the caffeine injection (40 mg/kg, n = 7) or an equivalent volume of saline (n = 6) at 7T. To understand the potential perturbation of animal physiology during stimulation, arterial blood pressure was measured in a separate group of animals (n = 3) outside the scanner. Caffeine significantly decreased baseline BOLD signals (p = .05) due to the increased deoxyhaemoglobin level. Both BOLD responses and t-values in the primary somatosensory cortex were significantly increased (both p < .05). The blood pressure changed insignificantly (p > .05). No significant differences in BOLD responses and t-values were observed in the control condition of saline injection (both p > .05). These findings suggested that, although the cerebral activity was lower under alpha-chloralose anaesthesia, the higher level of deoxygemoglobin at the baseline under the caffeinated condition can benefit the magnitude of BOLD responses in rats. These findings suggest that animal models might serve as potential platforms for further caffeine-related fMRI research studies.
Collapse
Affiliation(s)
- Cheng-Ting Shih
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Peng SL, Yang HC, Chen CM, Shih CT. Short- and long-term reproducibility of BOLD signal change induced by breath-holding at 1.5 and 3 T. NMR IN BIOMEDICINE 2020; 33:e4195. [PMID: 31885110 DOI: 10.1002/nbm.4195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Cerebrovascular reactivity (CVR) can give insight into the cerebrovascular function. CVR can be estimated by measuring a blood-oxygen-level-dependent (BOLD) response combined with breath-holding (BH). The reproducibility of this technique has been addressed and existing studies have focused on short-term reproducibility using a 3 T magnetic resonance imaging (MRI) system. However, little is known about the long-term reproducibility of this procedure and the corresponding reproducibility using a 1.5 T MRI system. Here, we systematically examined the short- and long-term reproducibility of BOLD responses to BH across field strengths. Nine subjects participated in three MRI sessions separated by 30 minutes (sessions 1 and 2: short term) and 68-92 days (sessions 1 and 3, long term) at both 1.5 and 3 T MRI. Our findings revealed that significant differences between field strengths were detected in the activated gray matter volume and BOLD signal change (both P < 0.001), with smaller magnitudes at 1.5 T. However, activation patterns were reproducible, independent of the time interval, brain region or field strength. All interscan coefficient of variation values were below the 33% fiducial limit, and the intraclass correlation coefficient values were above 0.4, which is usually considered the acceptability limit in functional studies. These findings suggest that the response of BOLD signal to BH for assessing CVR is reproducible over time at 1.5 and 3 T. This technique can be considered a tool for monitoring longitudinal changes in patients with cerebrovascular diseases, and its use should be encouraged for clinical 1.5 T MRI systems.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Ting Shih
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Lambers H, Segeroth M, Albers F, Wachsmuth L, van Alst TM, Faber C. A cortical rat hemodynamic response function for improved detection of BOLD activation under common experimental conditions. Neuroimage 2019; 208:116446. [PMID: 31846759 DOI: 10.1016/j.neuroimage.2019.116446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
For a reliable estimation of neuronal activation based on BOLD fMRI measurements an accurate model of the hemodynamic response is essential. Since a large part of basic neuroscience research is based on small animal data, it is necessary to characterize a hemodynamic response function (HRF) which is optimized for small animals. Therefore, we have determined and investigated the HRFs of rats obtained under a variety of experimental conditions in the primary somatosensory cortex. Measurements were performed on animals of different sex and strain, under different anesthetics, with and without ventilation and using different stimulation modalities. All modalities of stimulation used in this study induced neuronal activity in the primary somatosensory cortex or in subcortical regions. Since the HRFs of the BOLD responses in the primary somatosensory cortex showed a close concordance for the different conditions, we were able to determine a cortical rat HRF. This HRF is based on 143 BOLD measurements of 76 rats and can be used for statistical parametric mapping. It showed substantially faster progression than the human HRF, with a maximum after 2.8 ± 0.8 s, and a following undershoot after 6.1 ± 3.7 s. If the rat HRF was used statistical analysis of rat data showed a significantly improved detection performance in the somatosensory cortex in comparison to the commonly used HRF based on measurements in humans.
Collapse
Affiliation(s)
- Henriette Lambers
- Translational Research Imaging Center (TRIC), Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, D-48149, Germany
| | - Martin Segeroth
- Translational Research Imaging Center (TRIC), Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, D-48149, Germany
| | - Franziska Albers
- Translational Research Imaging Center (TRIC), Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, D-48149, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center (TRIC), Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, D-48149, Germany
| | - Timo Mauritz van Alst
- Translational Research Imaging Center (TRIC), Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, D-48149, Germany
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Department of Clinical Radiology, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, D-48149, Germany.
| |
Collapse
|