1
|
Zhang Y, Lu F, Mao R, Jin L. Giggle incontinence and facial emotion recognition deficits: a rare condition with a new insight into management. Neurocase 2025:1-5. [PMID: 40195678 DOI: 10.1080/13554794.2025.2489927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Giggling incontinence(GI), although uncommon, can have a profound effect on a patient's quality of life, especially in adolescent females. A case study involving a 4-year-old girl who developed urinary incontinence symptoms following a traumatic brain injury from a motor vehicle accident and subsequent loss of her parents highlights the challenges in managing this condition after 4 months. Despite conventional treatments such as pelvic floor exercises and cognitive therapy, the patient's symptoms persisted. Unexpectedly, during facial expression recognition training, the guardian reported a notable improvement in the patient's symptoms. Following 45 days of specialized training in facial expression recognition, the patient experienced a complete resolution of GI symptoms. The initial objective of the intervention was to mitigate impairments in facial expression recognition, a social deficit that can have deleterious effects on development. However, the observed correlation between GI symptoms and regulation of brain areas was evident, compounded by the patient's concomitant frontoparietal brain injury and parental loss, which may have contributed to both GI symptoms and facial expression recognition impairments. This case report provides new insights into the intervention of GI symptoms and common emotional expression recognition disorders in the mental health field.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Rehabilitation Therapy Department, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fang Lu
- Department of Rehabilitation Therapy Department, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ruitao Mao
- Department of Rehabilitation Therapy Department, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lihua Jin
- Department of Rehabilitation Medicine Department, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Lepiarczyk E, Maździarz M, Paukszto Ł, Bossowska A, Majewski M, Kaleczyc J, Łopieńska-Biernat E, Jaśkiewicz Ł, Skowrońska A, Skowroński MT, Majewska M. Transcriptomic Characterization of the Porcine Urinary Bladder Trigone Following Intravesical Administration of Resiniferatoxin: Insights from High-Throughput Sequencing. Toxins (Basel) 2025; 17:127. [PMID: 40137900 PMCID: PMC11946646 DOI: 10.3390/toxins17030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Resiniferatoxin (RTX), a potent capsaicin analog, is being investigated as a therapeutic agent for neurogenic conditions, particularly those affecting bladder control. However, the transcriptomic effects of RTX on the urinary bladder remain largely unexplored. This study aimed to characterize the transcriptomic changes in the porcine urinary bladder trigone region removed seven days post-treatment with intravesical RTX administration (500 nmol per animal in 60 mL of 5% aqueous solution of ethyl alcohol). High-throughput sequencing identified 126 differentially expressed genes (DEGs; 66 downregulated, 60 upregulated), 5 differentially expressed long non-coding RNAs (DELs), and 22 other RNAs, collectively involved in 175 gene ontology (GO) processes. Additionally, differential alternative splicing events (DASes) and single nucleotide variants (SNVs) were detected. RTX significantly modulated signaling pathways related to nerve growth and myelination. Changes in genes associated with synaptic plasticity and neuromodulation were observed, particularly within serotoninergic and cholinergic signaling. RTX altered the expression of immune-related genes, particularly those involved in chemokine signaling and immune regulation. Notably, altered gene expression patterns suggest a potential anti-cancer role for RTX. These findings provide new insights into RTX's therapeutic effects beyond TRPV1 receptor interactions, filling a critical gap in our understanding of its molecular impact on bladder tissue.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.M.); (Ł.P.)
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.M.); (Ł.P.)
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mariusz Majewski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Łukasz Jaśkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Agnieszka Skowrońska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.B.); (M.M.); (Ł.J.); (A.S.); (M.M.)
| |
Collapse
|
3
|
Sinha S, Cruz F, Cuenca EM, Przydacz M, Kheir GB, Kanai AJ, Van Huele A, Gajewski JB, Tarcan T, Lazar JM, Weiss JP, Tyagi P, Abrams P, Wein A. Is It Possible to Regenerate the Underactive Detrusor? Part 1. Molecular and Stem Cell Therapies Targeting the Urinary Bladder and Neural Axis - ICI-RS 2024. Neurourol Urodyn 2025; 44:577-584. [PMID: 39370871 DOI: 10.1002/nau.25597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Detrusor muscle weakness is commonly noted on urodynamics in patients with refractory voiding difficulty. No approved therapies have been proven to augment the strength of a detrusor voiding contraction. METHODS This subject was discussed by a think-tank at the International Consultation on Incontinence- Research Society (ICI-RS) meeting held in Bristol, June 2024. The discussions of the think-tank are being published in two parts. This first part discusses molecular and stem cell therapies targeting the urinary bladder and the neural axis. RESULTS Senescence of the urothelium and extracellular ATP acting through P2X3 receptors might be important in detrusor underactivity. Several molecules such as parasympathomimetics, acotiamide, ASP8302, neurokinin-2 agonists have been explored but none has shown unequivocal clinical benefit. Different stem cell therapy approaches have been used, chiefly in neurogenic dysfunction, with some studies showing benefit. Molecular targets for the neural axis have included TRPV-4, Bombesin, and serotoninergic receptors and TAC-302 which induces neurite growth. CONCLUSIONS Several options are currently being pursued in the search for an elusive molecular or stem cell option for enhancing the power of the detrusor muscle. These encompass a wide range of approaches that target each aspect of the contraction mechanism including the urothelium of bladder and urethra, myocyte, and neural pathways. While none of these have shown unequivocal clinical utility, some appear promising. Lessons from other fields of medicine might prove instructive. CLINICAL TRIAL REGISTRATION Not necessary. Not a clinical trial.
Collapse
Affiliation(s)
- Sanjay Sinha
- Department of Urology, Apollo Hospital, Hyderabad, India
| | - Francisco Cruz
- Departamento de Urologia, Hospital de S. João, Faculdade de Medicina do Porto, Porto, Portugal
| | | | | | | | - Anthony J Kanai
- Department of Medicine and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Jerzy B Gajewski
- Department of Urology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tufan Tarcan
- Departments of Urology, Marmara University School of Medicine and Koç University School of Medicine, Istanbul, Turkey
| | - Jason M Lazar
- Department of Cardiology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jeffrey P Weiss
- Department of Urology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Abrams
- Department of Urology, University of Bristol, Bristol, UK
| | - Alan Wein
- Desai-Seth Institute of Urology, University of Miami, Miami, Florida, USA
| |
Collapse
|
4
|
Du YZ, Hu HJ, Yang JQ, Yuan Q, Huang R, Dong QX, Guo B, Cao Y, Guo J. The relationship between increased regional body fat and overactive bladder: a population-based study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:226. [PMID: 39719652 DOI: 10.1186/s41043-024-00725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The link between regional body fat distribution and overactive bladder (OAB) in prior epidemiological research has been uncertain. Our objective is to assess the relationship between increased regional body fat and the prevalence of OAB. METHODS Within this analysis, 8,084 individuals aged 20 years and older were selected from NHANES surveys conducted from 2011 to 2018. The evaluation of OAB symptoms utilized the overactive bladder symptom score (OABSS). Fat mass (FM) across various regions was quantified employing dual-energy X-ray absorptiometry, which assessed total FM, trunk FM, arm FM, and leg FM. The fat mass index (FMI) was calculated as the ratio of fat mass (kg) to the square of height (meters). Data weighting was performed in accordance with analysis guidelines. A linear logistic regression model was employed to assess the correlation between regional FMI and the occurrence of OAB. Stratified analyses were also conducted. RESULTS The study found significant associations between total FMI and limb FMI with OAB. After adjusting for all variables in the analysis, higher total FMI (OR = 1.07, 95% CI = 1.02-1.12) was linked to an increased risk of OAB. Trunk FMI (OR = 1.12, 95% CI = 1.03-1.22), arm FMI (OR = 1.59, 95% CI = 1.20-2.10), and leg FMI (OR = 1.12, 95% CI = 1.01-1.25) demonstrated significant correlations with OAB. The weighted associations between total FMI and limb FMI with OAB incidence showed no significant differences among most subgroups. CONCLUSIONS The data indicates a correlation between higher regional FMI and increased OAB risk across different populations.
Collapse
Affiliation(s)
- Yuan-Zhuo Du
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Hong-Ji Hu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Jia-Qing Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Qian Yuan
- Nursing Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rong Huang
- Nursing Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qian-Xi Dong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Biao Guo
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China
| | - Ying Cao
- Nursing Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Ju Guo
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Key Laboratory of Urinary System Diseases of Jiangxi Province, Nanchang, China.
| |
Collapse
|
5
|
Suzuki H, Tsujimura H, Kitahara T, Taoda K, Ogura Y, Fujita E. Verification of a system utilizing heartbeat-induced acoustic pulse waves for estimating the time at which bladder urine increases to a level requiring drainage among individuals with spinal cord injury. Biomed Eng Online 2024; 23:126. [PMID: 39702352 DOI: 10.1186/s12938-024-01317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) often leads to the loss of urinary sensation, making urination difficult. In a previous experiment involving six healthy participants, we measured heartbeat-induced acoustic pulse waves (HAPWs) at the mid-back, calculated time-series power spectra of heart rate gradients at three ultralow/very low frequencies, distinguished and formulated waveform characteristics (one characteristic for each power spectrum, nearly uniform across participants) at times of increased urine in the bladder and heightened urges to urinate, and developed an algorithm with five of these power spectra to identify when urination is needed by extracting the waveform portion (continuous timepoints) where all of the characteristics were consistent with the formulated characteristics. The objective of this study was to verify the validity of the algorithm fed with data from measured HAPW of participants with SCI and to adapt the algorithm for these individuals. METHODS In ten participants with SCI, we measured HAPWs continuously and urine volume intermittently, and obtained scores related to urinary sensation. A Boolean output at each data point was obtained by the algorithm fed with the calculated power spectra from each participant's HAPW. Notable times included when the output was positive or when the need to urinate (= ( +)) was judged from the urine volume and urinary sensation scores. The outputs at these notable times were examined with the need to urinate and determined to be true/false. The accuracy of the algorithm was evaluated by the number of true/false-positive/negative points via the F-score with a binary classification model. We attempted to adapt the algorithm for participants with SCI. RESULTS The outputs at 13 notable times were examined, yielding seven true-positive, one false-positive, and five false-negative times, with an F-score of 0.70. The algorithm was modified by replacing three thresholds that determine the extraction condition for the slope in the power spectral waveform with new values that included all 12 true-positive points. CONCLUSIONS Without changing the use of ultralow/very low frequencies or significantly modifying the extraction conditions, the modified algorithm did not miss any true urination times or identify false urination times in ten participants with SCI.
Collapse
Affiliation(s)
- Hitomi Suzuki
- Division of Occupational and Environmental Health, Department of Social Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
- Department of Nursing, Faculty of Health and Medical Science, Kyoto University Advanced Science, 18 Yamanouchi Gotanda-cho, Ukyo-ku, Kyoto, 615-8577, Japan
| | - Hiroji Tsujimura
- Division of Occupational and Environmental Health, Department of Social Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Teruyo Kitahara
- Division of Occupational and Environmental Health, Department of Social Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| | - Kazushi Taoda
- Department of Physical Therapy, BIWAKO Professional University of Rehabilitation, 967 Kitasaka-Cho, Higashiomi, Shiga, 527-0145, Japan
| | - Yumi Ogura
- Delta Tooling Co., LTD, 1-2-10, Yanoshinmachi, Aki-Ku, Hiroshima, 736-0084, Japan
| | - Etsunori Fujita
- Delta Tooling Co., LTD, 1-2-10, Yanoshinmachi, Aki-Ku, Hiroshima, 736-0084, Japan
| |
Collapse
|
6
|
Krhut J, Kobberø H, Kanaan R, Fode M, Poulsen M, Zvara P. The mechanism of action of neuromodulation in the treatment of overactive bladder. Nat Rev Urol 2024:10.1038/s41585-024-00967-8. [PMID: 39653756 DOI: 10.1038/s41585-024-00967-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/12/2024]
Abstract
Neuromodulation has been used in the treatment of various pelvic organ dysfunctions for almost 40 years and several placebo-controlled studies have confirmed its clinical effect. Many neuromodulation methods using different devices and stimulation parameters, targeting different neural structures have been introduced, but only a limited number have been adopted into routine clinical use. A substantial volume of basic research and clinical studies addressing specific effects of neuromodulation in the treatment of overactive bladder (OAB) have been published to date; however, their mechanistic implications have not been comprehensively summarized. Thus, our understanding of the mechanism of action of neuromodulation in OAB treatment is mainly based on postulated theories. Results from animal experiments suggest that different neuromodulation methods used to treat OAB share the same basic principles. The most likely explanation for the effect of neuromodulation in OAB therapy is the suppression of bladder afferent signalling, promotion of spinal guarding reflexes and modulation of non-specific supraspinal regulatory circuits.
Collapse
Affiliation(s)
- Jan Krhut
- Department of Urology, University Hospital, Ostrava, Czech Republic
- Department of Surgical Studies, Ostrava University, Ostrava, Czech Republic
| | - Hanne Kobberø
- Research Unit of Urology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Department of Urology, Odense University Hospital, Odense, Denmark.
| | - Reine Kanaan
- Research Unit of Urology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel Fode
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Copenhagen University Hospital - Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Mads Poulsen
- Department of Urology, Esbjerg and Grindsted Hospital, University Hospital of Southern Denmark, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter Zvara
- Research Unit of Urology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Urology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
7
|
Ferreira A, Sousa Chambel S, Avelino A, Nascimento D, Silva N, Duarte Cruz C. Urinary dysfunction after spinal cord injury: Comparing outcomes after thoracic spinal transection and contusion in the rat. Neuroscience 2024; 557:100-115. [PMID: 39142624 DOI: 10.1016/j.neuroscience.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Spinal cord injury (SCI) above the lumbosacral spinal cord induces loss of voluntary control over micturition. Spinal cord transection (SCT) was the gold standard method to reproduce SCI in rodents, but its translational value is arguable and other experimental SCI methods need to be better investigated, including spinal cord contusion (SCC). At present, it is not fully investigated if urinary impairments arising after transection and contusion are comparable. To explore this, we studied bladder-reflex activity and lower urinary tract (LUT) and spinal cord innervation after SCT and different severities of SCC. Severe-contusion animals presented a longer spinal shock period and the tendency for higher residual volumes, followed by SCT and mild-contusion animals. Urodynamics showed that SCT animals presented higher basal and peak bladder pressures. Immunostaining against growth-associated protein-43 (GAP43) and calcitonin gene-related peptide (CGRP) at the lumbosacral spinal cord demonstrated that afferent sprouting is dependent on the injury model, reflecting the severity of the lesion, with a higher expression in SCT animals. In LUT organs, the expression of GAP43, CGRP cholinergic (vesicular acetylcholine transporter (VAChT)) and noradrenergic (tyrosine hydroxylase (TH)) markers was reduced after SCI in the LUT and lumbosacral cord, but only the lumbosacral expression of VAChT was dependent on the injury model. Overall, our findings demonstrate that changes in LUT innervation and function after contusion and transection are similar but result from distinct neuroplastic processes at the lumbosacral spinal cord. This may impact the development of new therapeutic options for urinary impairment arising after spinal cord insult.
Collapse
Affiliation(s)
- Ana Ferreira
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Sílvia Sousa Chambel
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - António Avelino
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Diogo Nascimento
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal
| | - Nuno Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal; ICVS/3B's Associate Laboratory, PT Government Associated Laboratory, Braga, Guimarães 4806-909, Portugal
| | - Célia Duarte Cruz
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine of Porto, University of Porto, Portugal; Pain Neurobiology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Skjevling L, Goll R, Hanssen HM, Johnsen PH. Faecal microbiota transplantation (FMT) in Norwegian outpatients with mild to severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): protocol for a 12-month randomised double-blind placebo-controlled trial. BMJ Open 2024; 14:e073275. [PMID: 38858151 PMCID: PMC11168185 DOI: 10.1136/bmjopen-2023-073275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/11/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION The observed alteration of the intestinal microbiota in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the effect of transferring a healthy gut flora from a faecal donor using a faecal microbiota transplantation (FMT) will be explored in this trial. METHODS AND ANALYSIS This is a protocol for a randomised, double-blind, placebo-controlled, parallel-group, single-centre trial, with 12 months follow-up. 80 participants will be included and randomised (1:1:2) to either donor FMT (from two different donors) or placebo (autologous FMT). Participants will be included by the International Clinical Criteria for ME/CFS. The clinical measures of ME/CFS and disease activity include Modified DePaul Questionnaire, Fatigue Severity Scale (FSS), Hospital Anxiety and Depression Scale (HADS), 36-Item Short Form Health Survey (SF-36), ROMA IV criteria, Food Frequency Questionnaire, Repeatable Battery for the Assessment of Neuropsychological Status, heart rate variability testing and reports on the use of antibiotics and food supplements, as well as biobanking of blood, urine and faeces.The primary endpoint is proportion with treatment success in FSS score in donor versus autologous FMT group 3 months after treatment. Treatment success is defined as an FSS improvement of more than 1.2 points from baseline at 3 months after treatment. Adverse events will be registered throughout the study. ETHICS AND DISSEMINATION The Regional Committee for Medical Research Ethics Northern Norway has approved the study. The study has commenced in May 2019. Findings will be disseminated in international peer-reviewed journal(s), submitted to relevant conferences, and trial participants will be informed via phone calls. TRIAL REGISTRATION NUMBER NCT03691987.
Collapse
Affiliation(s)
- Linn Skjevling
- UiT The Arctic University of Norway, Tromso, Troms, Norway
- Medical Department, University Hospital of North Norway, Harstad, Troms, Norway
| | - Rasmus Goll
- UiT The Arctic University of Norway, Tromso, Troms, Norway
- Department of Gastroenterology, University Hospital of North Norway, Tromso, Troms, Norway
| | - Hege Marie Hanssen
- UiT The Arctic University of Norway, Tromso, Troms, Norway
- Medical Department, University Hospital of North Norway, Harstad, Troms, Norway
| | - Peter Holger Johnsen
- UiT The Arctic University of Norway, Tromso, Troms, Norway
- Medical Department, University Hospital of North Norway, Harstad, Troms, Norway
| |
Collapse
|
9
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
10
|
Nagai M, Hoshide S, Kario K. Evening home blood pressure and pulse rate: age-specific associations with nocturia severity. J Hum Hypertens 2023; 37:913-918. [PMID: 36693950 DOI: 10.1038/s41371-023-00803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
Previous studies have reported a significant relationship between hypertension and nocturia. However, the underlying pathophysiology associated with pulse rate (PR) remains unclear. In the Japan Morning Surge-Home Blood Pressure Study, a self-administered nocturia questionnaire and evening home blood pressure (BP) and PR measurements (taken on a mean of 11.2 days) were performed on 4310 patients with one or more cardiovascular risk factors (mean: 64.9 years old; 47% male). According to the number of nighttime voids, the study population was divided into three groups (no voids: n = 2382; 1 void: n = 847; ≥2 voids per night: n = 1082). In the multinomial logistic regression analysis adjusted for confounders, diuretic use (OR, 1.23; 95%CI, 1.01-1.50; p < 0.05) was significantly associated with one nocturnal void, whereas evening home systolic BP (SBP) (OR per 1 SD, 1.14; 95%CI, 1.05-1.24; p < 0.01) and evening home PR (OR per 1 SD, 1.12; 95%CI: 1.02-1.24; p < 0.05) were significantly associated with multiple nocturnal voids. In the younger group (<65 years), only evening home PR was significantly related to multiple nighttime voids (p < 0.01), whereas in the older group (≥65 years), only evening home SBP was significantly related to multiple nighttime voids (p = 0.02). In this study, both higher evening home PR and higher evening home SBP were associated with multiple nighttime voids, with the former playing a greater role in the younger participants, and the latter more often associating the older group. An age-stratified approach to reduce the burden of BP or PR might be important to improve sleep quality.
Collapse
Affiliation(s)
- Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan.
| |
Collapse
|
11
|
Thorne J, Hellewell S, Cowen G, Fitzgerald M. Neuroimaging to enhance understanding of cardiovascular autonomic changes associated with mild traumatic brain injury: a scoping review. Brain Inj 2023; 37:1187-1204. [PMID: 37203154 DOI: 10.1080/02699052.2023.2211352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cardiovascular changes, such as altered heart rate and blood pressure, have been identified in some individuals following mild traumatic brain injury (mTBI) and may be related to disturbances of the autonomic nervous system and cerebral blood flow. METHODS We conducted a scoping review according to PRISMA-ScR guidelines across six databases (Medline, CINAHL, Web of Science, PsychInfo, SportDiscus and Google Scholar) to explore literature examining both cardiovascular parameters and neuroimaging modalities following mTBI, with the aim of better understanding the pathophysiological basis of cardiovascular autonomic changes associated with mTBI. RESULTS Twenty-nine studies were included and two main research approaches emerged from data synthesis. Firstly, more than half the studies used transcranial Doppler ultrasound and found evidence of cerebral blood flow impairments that persisted beyond symptom resolution. Secondly, studies utilizing advanced MRI identified microstructural injury within brain regions responsible for cardiac autonomic function, providing preliminary evidence that cardiovascular autonomic changes are a consequence of injury to these areas. CONCLUSION Neuroimaging modalities hold considerable potential to aid understanding of the complex relationship between cardiovascular changes and brain pathophysiology associated with mTBI. However, it is difficult to draw definitive conclusions from the available data due to variability in study methodology and terminology.
Collapse
Affiliation(s)
- Jacinta Thorne
- School of Allied Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Sarah Hellewell
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Gill Cowen
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Melinda Fitzgerald
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| |
Collapse
|
12
|
Oliveira MAP, Raymundo TS, Pereira TD, de Souza RJ, Lima FV, De Wilde RL, Brollo LC. Robotic Surgery for Bladder Endometriosis: A Systematic Review and Approach. J Clin Med 2023; 12:5416. [PMID: 37629459 PMCID: PMC10455656 DOI: 10.3390/jcm12165416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Women with bladder endometriosis often present with more advanced stages of endometriosis. Robotic surgery has emerged as a promising approach to the management of bladder endometriosis. This systematic review aims to analyze the current literature on robotic surgery for bladder endometriosis and describe our systematic approach to surgical treatment. METHODS This review followed the PRISMA guidelines, which ensured a comprehensive and transparent approach to selecting and evaluating relevant studies. We conducted a thorough literature search to identify studies that investigated the use of robotic surgery for bladder endometriosis. Relevant databases were searched, and inclusion and exclusion criteria were applied to select eligible studies. Data extraction and analysis were performed to assess the outcomes and effectiveness of robotic surgery for the treatment of bladder endometriosis. RESULTS We did not find any randomized clinical trials with the use of robotics in the treatment of bladder endometriosis. We found only two retrospective studies comparing robotic surgery with laparoscopy, and another retrospective study comparing robotic surgery, laparoscopy, and laparotomy in the treatment of bladder endometriosis. All the other 12 studies were solely case reports. Despite the lack of robust evidence in the literature, the studies demonstrated that robotic surgery is feasible and is associated with reduced postoperative pain, shorter hospital stays, and faster recovery. CONCLUSIONS The utilization of robotic technology is a promising option for the surgical management of bladder endometriosis. We advocate a surgical systematic approach for the robotic treatment of bladder endometriosis. Robotic technology, with its 3D vision, instrumental degrees of freedom, and precision, particularly in suturing, may provide potential benefits over traditional laparoscopy.
Collapse
Affiliation(s)
- Marco Aurelio Pinho Oliveira
- Department of Gynecology, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (T.S.R.); (T.D.P.); (R.J.d.S.); (L.C.B.)
| | - Thiers Soares Raymundo
- Department of Gynecology, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (T.S.R.); (T.D.P.); (R.J.d.S.); (L.C.B.)
- Department of Gynecology, Cardoso Fontes Federal Hospital, Rio de Janeiro 22745-130, Brazil
| | - Thiago Dantas Pereira
- Department of Gynecology, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (T.S.R.); (T.D.P.); (R.J.d.S.); (L.C.B.)
| | - Ricardo José de Souza
- Department of Gynecology, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (T.S.R.); (T.D.P.); (R.J.d.S.); (L.C.B.)
| | - Felipe Vaz Lima
- Department of Urology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, Brazil;
| | - Rudy Leon De Wilde
- Department of Gynecology, University Hospital for Gynecology, Pius Hospital, 26121 Oldenburg, Germany;
| | - Leila Cristina Brollo
- Department of Gynecology, State University of Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (T.S.R.); (T.D.P.); (R.J.d.S.); (L.C.B.)
| |
Collapse
|
13
|
Nayok SB, Sreeraj VS, Shivakumar V, Venkatasubramanian G. A Primer on Interoception and its Importance in Psychiatry. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:252-261. [PMID: 37119217 PMCID: PMC10157017 DOI: 10.9758/cpn.2023.21.2.252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 05/01/2023]
Abstract
Interoception is the perception of signals from inside the body. It plays a significant role in the nervous, cardiovascular, respiratory, gastrointestinal, genitourinary, and endocrine systems. It is also closely related to the autonomic nervous system and inflammatory pathways and plays a significant role in our optimal functioning. Recently, interoception has gained more attention in neuropsychiatric research. Anatomical and physiological aspects of interoception like relevant brain areas, the role of the vagus nerve, and the autonomic nervous system are gradually being understood. Different facets of interoception like interoceptive attention, detection, magnitude, discrimination, accuracy, awareness, and appraisal have been proposed and their assessments and importance are being evaluated. Further, interoception is often dysregulated or abnormal in psychiatric disorders. It has been implicated in the psychopathology, etiopathogenesis, clinical features and treatment of mood, anxiety, psychotic, personality and addiction-related disorders. This narrative review attempts to provide a nuanced understanding of the pathway(s), components, functions, assessments, and problems of interoception and will help us to detect its disturbances and evaluate its impact on psychiatric disorders, leading to a better perspective and management. This will also advance interoception-related research.
Collapse
Affiliation(s)
- Swarna Buddha Nayok
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Vanteemar S. Sreeraj
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Ganesan Venkatasubramanian
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
14
|
Krhut J, Tintěra J, Rejchrt M, Skugarevská B, Zachoval R, Zvara P, Blok BFM. Differences between brain responses to peroneal electrical transcutaneous neuromodulation and transcutaneous tibial nerve stimulation, two treatments for overactive bladder. Neurourol Urodyn 2023. [PMID: 37144657 DOI: 10.1002/nau.25197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES To compare brain responses to peroneal electrical transcutaneous neuromodulation (peroneal eTNM®) and transcutaneous tibial nerve stimulation (TTNS), two methods for treating overactive bladder (OAB), using functional magnetic resonance imaging (fMRI). The present study was not designed to compare their clinical efficacy. MATERIALS AND METHODS This study included 32 healthy adult female volunteers (average age 38.3 years (range 22-73)). Brain MRI using 3 T scanner was performed during three 8-min blocks of alternating sequences. During each 8-min block, the protocol alternated between sham stimulation (30 s) and rest (30 s) for 8 repeats; then peroneal eTNM® stimulation (30 s) and rest (30 s) for 8 repeats; then, TTNS stimulation (30 s) and rest (30 s) for 8 repeats. Statistical analysis was performed at the individual level with a threshold of p = 0.05, family-wise error (FWE)-corrected. The resulting individual statistical maps were analyzed in group statistics using a one-sample t-test, p = 0.05 threshold, false discovery rate (FDR)-corrected. RESULTS During peroneal eTNM®, TTNS, and sham stimulations, we recorded activation in the brainstem, bilateral posterior insula, bilateral precentral gyrus, bilateral postcentral gyrus, left transverse temporal gyrus, and right supramarginal gyrus. During both peroneal eTNM® and TTNS stimulations, but not sham stimulations, we recorded activation in the left cerebellum, right transverse temporal gyrus, right middle frontal gyrus, and right inferior frontal gyrus. Exclusively during peroneal eTNM® stimulation, we observed activation in the right cerebellum, right thalamus, bilateral basal ganglia, bilateral cingulate gyrus, right anterior insula, right central operculum, bilateral supplementary motor cortex, bilateral superior temporal gyrus, and left inferior frontal gyrus. CONCLUSIONS Peroneal eTNM®, but not TTNS, induces the activation of brain structures that were previously implicated in neural control of the of bladder filling and play an important role in the ability to cope with urgency. The therapeutic effect of peroneal eTNM® could be exerted, at least in part, at the supraspinal level of neural control.
Collapse
Affiliation(s)
- Jan Krhut
- Department of Urology, University Hospital, Ostrava, Czech Republic
- Department of Surgical Studies, Ostrava University, Ostrava, Czech Republic
| | - Jaroslav Tintěra
- Department of Radiodiagnostics and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Rejchrt
- Department of Urology, 2nd Faculty of Medicine of Charles University and Motol University Hospital, Prague, Czech Republic
| | - Barbora Skugarevská
- Department of Urology, University Hospital, Ostrava, Czech Republic
- Department of Surgical Studies, Ostrava University, Ostrava, Czech Republic
| | - Roman Zachoval
- Department of Urology, 1st Faculty of Medicine of Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Peter Zvara
- Department of Clinical Research, Biomedical Laboratory and Research Unit of Urology, University of Southern Denmark, Odense, Denmark
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Bertil F M Blok
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Umene R, Nakamura Y, Wu CH, Muta K, Nishino T, Inoue T. Induction of tetraspanin 13 contributes to the synergistic anti-inflammatory effects of parasympathetic and sympathetic stimulation in macrophages. Biochem Biophys Res Commun 2023; 665:187-194. [PMID: 37163939 DOI: 10.1016/j.bbrc.2023.04.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
The autonomic nervous system plays an important role in the regulation of peripheral inflammation. Sympathetic nervous activation stimulates inflammatory gene expression and cytokines, whereas parasympathetic nervous activation suppresses the production of inflammatory cytokines by immune cells. However, most studies on the relationship between the autonomic nervous system and immune processes have analyzed a single branch of the autonomic nerves in isolation. Therefore, this study aimed to examine the effects of sympathetic and parasympathetic stimulation on macrophages, which are controlled by autonomic regulation. Macrophages were stimulated with lipopolysaccharide (LPS) to induce TNF-α. Then, the effects of β2 adrenergic receptor and α7 nicotinic acetylcholine receptor activation on TNF-α production were assessed using concentration-dependent assays. RNA-seq data were also used to identify genes whose expression was enhanced by parasympathetic and sympathetic stimulation. The simultaneous activation of β2 adrenergic receptors and α7 nicotinic acetylcholine receptors suppressed LPS-induced TNF-α production in a concentration-dependent manner. Moreover, simultaneous activation of these receptors had synergistic anti-inflammatory effects and induced Tspan13 expression, thereby contributing to anti-inflammatory mechanisms in macrophages. Our study revealed the synergistic anti-inflammatory effects of the parasympathetic and sympathetic stimulation of macrophages. Our results suggest that targeting both sympathetic and parasympathetic signaling is a promising therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Ryusuke Umene
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kumiko Muta
- Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoya Nishino
- Department of Nephrology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
16
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
17
|
Faraji J, Gustafson C, Bettenson D, Negoro H, Yong VW, Metz GAS. Bladder dysfunction in experimental autoimmune encephalomyelitis reflects clinical severity: A pilot study. J Neuroimmunol 2022; 372:577973. [PMID: 36209613 DOI: 10.1016/j.jneuroim.2022.577973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is commonly associated with bladder dysfunction resulting in a progressive loss of voluntary control for urination over time. Here, we used the voided stain on paper (VSOP) method to investigate bladder function in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Using the VSOP test, we show that bladder dysfunction reflects pro-inflammatory processes of EAE and severity of clinical EAE symptoms, as characterized by increased urine voided volume per micturition (UVVM) on post-induction day 7 and decreased UVVM on post-induction day 14. The UVVM was closely related to a clinical disease index of EAE symptoms and plasma granulocyte-macrophage colony-stimulating factor (GM-CSF) cytokine levels. UVVM was also sensitive to early life stress caused by animal transportation, which diminished UVVM at the peak of symptoms on post-induction day 14 in EAE mice. The results indicate that symptoms and progression of EAE can be reliably measured by VSOP as a non-motor function assessment.
Collapse
Affiliation(s)
- Jamshid Faraji
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| | - Connor Gustafson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Dennis Bettenson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hiromitsu Negoro
- Department of Urology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada; Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
18
|
Westwell-Roper C, Best JR, Naqqash Z, Afshar K, MacNeily AE, Stewart SE. Bowel and Bladder Dysfunction Is Associated with Psychiatric Comorbidities and Functional Impairment in Pediatric Obsessive-Compulsive Disorder. J Child Adolesc Psychopharmacol 2022; 32:358-365. [PMID: 35404114 DOI: 10.1089/cap.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: Neuropsychiatric disorders are common in children with bowel and bladder dysfunction (BBD), a syndrome associated with urinary frequency, urgency, holding, incontinence, and constipation. We evaluated BBD symptom severity in children and youth attending a tertiary care obsessive-compulsive disorder (OCD) clinic. Methods: Consecutive patients attending initial OCD assessments between 2016 and 2020 were invited to participate in a registry study. Diagnosis of OCD and comorbidities was established by structured clinical interview. OCD severity and impact were assessed with the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) and the Child Obsessive Compulsive Impact Scale (COIS-R; self-report), respectively. BBD symptoms were quantified with the Vancouver Symptom Score (VSS), a validated self-report measure. Results: One hundred twelve participants completed the VSS (mean age 13.5 ± 3.3, range 7-20). Based on a cutoff score of 11 corresponding to pediatric urologist-diagnosed BBD, 30.4% of participants screened positive, including more females than males (39.3% vs. 21.4%; p = 0.04). Daytime urinary incontinence was present in a greater proportion of participants with OCD forbidden thoughts (34.8% vs. 8.2%, p = 0.002), major depressive disorder (MDD; 38.5% vs. 6.8%, p = 0.001), and somatization disorder (60% vs. 9%, p = 0.001) compared with those without. A regression model including CY-BOCS, COIS-R, psychiatric comorbidities, medications, age, and gender explained 52.2% of the variance in VSS; COIS-R, tic disorder, and MDD were significant predictors. Conclusion: BBD symptoms are common and associated with high OCD-related impairment and psychiatric comorbidities. Standardized assessment may facilitate identification of BBD symptoms in this population and is critical to mitigating long-term physical and mental health impacts. Further studies are required to assess the relationship between BBD and OCD treatment outcomes.
Collapse
Affiliation(s)
- Clara Westwell-Roper
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Psychiatry and Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - John R Best
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Psychiatry and Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Zainab Naqqash
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Psychiatry and Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Kourosh Afshar
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Division of Pediatric Urology, BC Children's Hospital, Vancouver, Canada
| | - Andrew E MacNeily
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada.,Division of Pediatric Urology, BC Children's Hospital, Vancouver, Canada
| | - S Evelyn Stewart
- Provincial OCD Program, BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Psychiatry and Faculty of Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Mental Health and Substance Use Research Institute, Vancouver, Canada
| |
Collapse
|
19
|
Scalia B, Caine A, Pittaway R, Cherubini GB. Feline temporal lobe epilepsy: seven cases of hippocampal and piriform lobe necrosis in England and literature review. J Feline Med Surg 2022; 24:596-608. [PMID: 34355984 PMCID: PMC11104249 DOI: 10.1177/1098612x211035049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CASE SERIES SUMMARY Seven cases of feline hippocampal and piriform lobe necrosis (FHN) are described, with particular emphasis on clinical, radiographic and histopathological correlations. FHN is an uncommon acute epileptic condition resembling human autoimmune limbic encephalitis and temporal lobe epilepsy. Seizures are typically focal and feature uni- or bilateral orofacial or head twitching, hypersalivation, lip smacking, mydriasis, vocalisation and motionless staring, with inter-ictal behavioural changes such as unprovoked aggression and rapid running. Emerging evidence supports an autoimmune aetiology, although disruption of hippocampal architecture secondary to brain neoplasia has also been recognised. Most commonly, however, the underlying cause remains unknown. Diagnosis is achieved clinically and with brain MRI; electroencephalography and voltage-gated potassium channel-complex autoantibodies are currently the subject of research. Affected cats are frequently refractory to conventional antiepileptic treatment. RELEVANCE AND NOVEL INFORMATION Following a review of the literature, including potential complicating factors and comparisons with human medicine, the hippocampus and piriform lobe are proposed as the neuroanatomical localisation for focal seizures with orofacial involvement in cats, regardless of aetiology.
Collapse
Affiliation(s)
| | - Abby Caine
- Dick White Referrals, Six Mile Bottom, UK
| | | | | |
Collapse
|
20
|
Sexual dimorphic impacts of systemic vincristine on lower urinary tract function. Sci Rep 2022; 12:5113. [PMID: 35332157 PMCID: PMC8948262 DOI: 10.1038/s41598-022-08585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Vincristine (VCR) is one of the most common chemotherapy agents used in pediatric oncology. Despite the well-known VCR-induced peripheral neuropathy, potential impacts of VCR on lower urinary tract (LUT) function remain poorly defined. We investigated the effects of systemic VCR exposure in childhood on LUT function by using juvenile mice treated with VCR (4 mg/kg) or saline and evaluated at 5 weeks later. VCR induced a decreased urinary frequency with increased functional bladder capacity and non-void contractions. There were no changes in detrusor contractility between the groups. VCR exposure caused sexual dimorphic changes; in females, increased intravesical pressure at micturition and downregulations of a major player in bladder afferent firing, Htr3b, in the bladders, and Cav1.2 in the lumbosacral dorsal root ganglia (Ls-DRG), while male mice displayed increases in bladder compliance and detrusor activity, upregulations of IL-2, Trpa1 and Itga1 in the bladders and neuroinflammation-related genes, P2×4, P2×7, IL-2 and CD68 in the Ls-DRG. These results suggest that that systemic VCR exposure caused sensory neuropathy via sex-dimorphic mechanisms, leading to altered LUT function. These changes might clinically present as gender-specific signs or symptoms of LUT dysfunction, and follow-up urological assessment may be of benefit for pediatric cancer patients treated with VCR.
Collapse
|
21
|
Tuttle TG, Lujan HL, Tykocki NR, DiCarlo SE, Roccabianca S. Remodeling of extracellular matrix in the urinary bladder of paraplegic rats results in increased compliance and delayed fiber recruitment 16 weeks after spinal cord injury. Acta Biomater 2022; 141:280-289. [PMID: 35032719 PMCID: PMC8898290 DOI: 10.1016/j.actbio.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023]
Abstract
The ability of the urinary bladder to maintain low intravesical pressures while storing urine is key in ensuring proper organ function and highlights the key role that tissue mechanics plays in the lower urinary tract. Loss of supraspinal neuronal connections to the bladder after spinal cord injury can lead to remodeling of the structure of the bladder wall, which may alter its mechanical characteristics. In this study, we investigate if the morphology and mechanical properties of the bladder extracellular matrix are altered in rats 16 weeks after spinal cord injury as compared to animals who underwent sham surgery. We measured and quantified the changes in bladder geometry and mechanical behavior using histological analysis, tensile testing, and constitutive modeling. Our results suggest bladder compliance is increased in paraplegic animals 16 weeks post-injury. Furthermore, constitutive modeling showed that increased distensibility was driven by an increase in collagen fiber waviness, which altered the distribution of fiber recruitment during loading. STATEMENT OF SIGNIFICANCE: The ability of the urinary bladder to store urine under low pressure is key in ensuring proper organ function. This highlights the important role that mechanics plays in the lower urinary tract. Loss of control of neurologic connection to the bladder from spinal cord injury can lead to changes of the structure of the bladder wall, resulting in altered mechanical characteristics. We found that the bladder wall's microstructure in rats 16 weeks after spinal cord injury is more compliant than in healthy animals. This is significant since it is the longest time post-injury analyzed, to date. Understanding the extreme remodeling capabilities of the bladder in pathological conditions is key to inform new possible therapies.
Collapse
Affiliation(s)
- Tyler G Tuttle
- Michigan State University, Department of Mechanical Engineering, 428 S. Shaw Lane, Rm 2555, East Lansing, MI 48824, United States
| | - Heidi L Lujan
- Michigan State University, Department of Physiology, 567 Wilson Rd., Rm 2201, East Lansing, MI 48824, United States
| | - Nathan R Tykocki
- Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue St., B436 Life Science Building, East Lansing, MI 48824, United States
| | - Stephen E DiCarlo
- Michigan State University, Department of Physiology, 567 Wilson Rd., Rm 2201, East Lansing, MI 48824, United States
| | - Sara Roccabianca
- Michigan State University, Department of Mechanical Engineering, 428 S. Shaw Lane, Rm 2555, East Lansing, MI 48824, United States.
| |
Collapse
|
22
|
Heart rate variability dynamics in women with urinary incontinence: a systematic review. Int Urogynecol J 2022; 33:1145-1155. [PMID: 34985534 DOI: 10.1007/s00192-021-05060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Sympathetic and parasympathetic pathways of the autonomic nervous system (ANS) regulate the lower urinary tract. The aim of the present study was to synthesize the evidence regarding ANS regulation in women with urinary incontinence (UI) evaluated through heart rate variability (HRV). METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Five databases were researched in April 2021 (PubMed, CINHAL, Scopus, Web of Science and Cochrane Library) and included cross-sectional studies in full-length publications in the English language. Studies assessed the HRV during bladder filling (group A) and after voiding (group B). The Joanna Briggs Institute (JBI) checklist was applied for methodological quality assessment purposes. RESULTS A total of 920 articles were identified and 5 studies were included. Most studies analyzed the HRV by linear indexes. Studies from group A (n = 2) presented fair methodological quality; one study from group B (n = 3) showed fair methodological quality (Im et al. Korean J Urol. 51:183, 2010) whereas the others presented high methodological quality. One study from group A found an increase in both modulations between women with overactive bladder (OAB) versus women with stress UI, whereas a decrease was reported between incontinent and continent women. Studies from group B showed a decreased sympathetic and parasympathetic modulation in AOB with detrusor overactivity (DO), whereas one study found an increase in both modulations in women with OAB compared with stress UI. CONCLUSION Parasympathetic and sympathetic modulation increased during bladder filling and rest in UI with OAB associated or not with DO. Both modulations decreased during bladder filling in incontinent women and during rest in OAB.
Collapse
|
23
|
Craig CF, Filippone RT, Stavely R, Bornstein JC, Apostolopoulos V, Nurgali K. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation 2022; 19:4. [PMID: 34983592 PMCID: PMC8729103 DOI: 10.1186/s12974-021-02354-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) suffer from depression at higher rates than the general population. An etiological trigger of depressive symptoms is theorised to be inflammation within the central nervous system. It is believed that heightened intestinal inflammation and dysfunction of the enteric nervous system (ENS) contribute to impaired intestinal permeability, which facilitates the translocation of intestinal enterotoxins into the blood circulation. Consequently, these may compromise the immunological and physiological functioning of distant non-intestinal tissues such as the brain. In vivo models of colitis provide evidence of increased blood–brain barrier permeability and enhanced central nervous system (CNS) immune activity triggered by intestinal enterotoxins and blood-borne inflammatory mediators. Understanding the immunological, physiological, and structural changes associated with IBD and neuroinflammation may aid in the development of more tailored and suitable pharmaceutical treatment for IBD-associated depression.
Collapse
Affiliation(s)
- Colin F Craig
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhiannon T Filippone
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Joel C Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia. .,Institute for Health and Sport, Victoria University, Level 4 Research Labs, Western Centre for Health Research and Education, Sunshine Hospital, 176 Furlong Road, St Albans, VIC, 3021, Australia.
| |
Collapse
|
24
|
Dorey TW, Walter M, Krassioukov AV. Reduced Reflex Autonomic Responses Following Intradetrusor OnabotulinumtoxinA Injections: A Pre-/Post-study in Individuals With Cervical and Upper Thoracic Spinal Cord Injury. Front Physiol 2021; 12:796277. [PMID: 35069256 PMCID: PMC8769099 DOI: 10.3389/fphys.2021.796277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Urodynamic studies (UDS) can provoke autonomic dysreflexia (AD) in individuals with spinal cord injury (SCI) at and above the sixth thoracic spinal segment potentially leading to profound vagally mediated heart rate (HR) reductions. In this study,1 we test the hypothesis that intradetrusor onabotulinumtoxinA injections will improve HR and its variability (HRV) responses to UDS in individuals with cervical and thoracic SCI. A total of 19 participants with chronic SCI (5 women, mean age 42.5 ± 7.9 years) with confirmed neurogenic detrusor overactivity underwent UDS before (i.e., baseline) and 1 month after intradetrusor onabotulinumtoxinA (200 U) injections (post-treatment). Continuous electrocardiography and blood pressure (BP) recordings were used to assess RR-interval, time, and frequency domain metrics of HRV (a surrogate marker of autonomic nervous system activity), and AD pre- and post-treatment. UDS pre-treatment resulted in increased RR-interval as well as time and frequency domain metrics of HRV. Vagally mediated increases in high-frequency (HF) power during UDS were larger in participants with cervical compared to upper thoracic SCI. Post-treatment, UDS had no effect on RR-interval and significantly reduced instances of bradycardia. Furthermore, intradetrusor onabotulinumtoxinA injections significantly reduced time domain metrics of HRV and HF power responses to UDS across all participants. Changes in HRV during UDS could be a potential indicator of improved autonomic cardiovascular function following interventions such as intradetrusor onabotulinumtoxinA injections.
Collapse
Affiliation(s)
- Tristan W. Dorey
- Libin Cardiovascular Institute, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Matthias Walter, Andrei V. Krassioukov,
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- G.F. Strong Rehabilitation Centre, Vancouver, BC, Canada
- *Correspondence: Matthias Walter, Andrei V. Krassioukov,
| |
Collapse
|
25
|
Yin T, He Z, Ma P, Sun R, Xie K, Liu T, Chen L, Chen J, Hou L, Teng Y, Guo Y, Tian Z, Xiong J, Wang F, Li S, Yang S, Zeng F. Aberrant functional brain network dynamics in patients with functional constipation. Hum Brain Mapp 2021; 42:5985-5999. [PMID: 34533251 PMCID: PMC8596972 DOI: 10.1002/hbm.25663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
The aberrant static functional connectivity of brain network has been widely investigated in patients with functional constipation (FCon). However, the dynamics of brain functional connectivity in FCon patients remained unknown. This study aimed to detect the brain dynamics of functional connectivity states and network topological organizations of FCon patients and investigate the correlations of the aberrant brain dynamics with symptom severity. Eighty-three FCon patients and 80 healthy subjects (HS) were included in data analysis. The spatial group independent component analysis, sliding-window approach, k-means clustering, and graph-theoretic analysis were applied to investigate the dynamic temporal properties and coupling patterns of functional connectivity states, as well as the time-variation of network topological organizations in FCon patients. Four reoccurring functional connectivity states were identified in k-means clustering analysis. Compared to HS, FCon patients manifested the lower occurrence rate and mean dwell time in the state with a complex connection between default mode network and cognitive control network, as well as the aberrant anterior insula-cortical coupling patterns in this state, which were significantly correlated with the symptom severity. The graph-theoretic analysis demonstrated that FCon patients had higher sample entropy at the nodal efficiency of anterior insula than HS. The current findings provided dynamic perspectives for understanding the brain connectome of FCon and laid the foundation for the potential treatment of FCon based on brain connectomics.
Collapse
Affiliation(s)
- Tao Yin
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Zhaoxuan He
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Key Laboratory of Sichuan Province for Acupuncture and ChronobiologyChengduSichuanChina
| | - Peihong Ma
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Ruirui Sun
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Kunnan Xie
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Tianyu Liu
- School of SportChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Li Chen
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Jingwen Chen
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Likai Hou
- Sichuan Bayi Rehabilitation CenterChengduSichuanChina
| | - Yuke Teng
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Yuyi Guo
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Zilei Tian
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Jing Xiong
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Fumin Wang
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Shenghong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources/Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Sha Yang
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Key Laboratory of Sichuan Province for Acupuncture and ChronobiologyChengduSichuanChina
| | - Fang Zeng
- Acupuncture and Tuina School/The 3rd Teaching HospitalChengdu University of Traditional Chinese MedicineChengduSichuanChina
- Acupuncture and Brain Science Research CenterChengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
26
|
Regional Targeting of Bladder and Urethra Afferents in the Lumbosacral Spinal Cord of Male and Female Rats: A Multiscale Analysis. eNeuro 2021; 8:ENEURO.0364-21.2021. [PMID: 34772694 PMCID: PMC8690816 DOI: 10.1523/eneuro.0364-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor circuits of the lumbosacral spinal cord are required for lower urinary tract (LUT) regulation as well as being engaged in pelvic pain states. To date, no molecular markers have been identified to enable specific visualization of LUT afferents, which are embedded within spinal cord segments that also subserve somatic functions. Moreover, previous studies have not fully investigated the patterning within or across spinal segments, compared afferent innervation of the bladder and urethra, or explored possible structural sex differences in these pathways. We have addressed these questions in adult Sprague Dawley rats, using intramural microinjection of the tract tracer, B subunit of cholera toxin (CTB). Afferent distribution was analyzed within individual sections and 3D reconstructions from sections across four spinal cord segments (L5-S2), and in cleared intact spinal cord viewed with light sheet microscopy. Simultaneous mapping of preganglionic neurons showed their location throughout S1 but restricted to the caudal half of L6. Afferents from both LUT regions extended from L5 to S2, even where preganglionic motor pathways were absent. In L6 and S1, most afferents were associated with the sacral preganglionic nucleus (SPN) and sacral dorsal commissural nucleus (SDCom), with very few in the superficial laminae of the dorsal horn. Spinal innervation patterns by bladder and urethra afferents were remarkably similar, likewise the patterning in male and female rats. In conclusion, microscale to macroscale mapping has identified distinct features of LUT afferent projections to the lumbosacral cord and provided a new anatomic approach for future studies on plasticity, injury responses, and modeling of these pathways.
Collapse
|
27
|
Rogowski A, Krowicka-Wasyl M, Chotkowska E, Kluz T, Wróbel A, Berent D, Mierzejewski P, Sienkiewicz-Jarosz H, Wichniak A, Wojnar M, Samochowiec J, Kilis-Pstrusinska K, Bienkowski P. Psychiatric History and Overactive Bladder Symptom Severity in Ambulatory Urogynecological Patients. J Clin Med 2021; 10:jcm10173988. [PMID: 34501436 PMCID: PMC8432447 DOI: 10.3390/jcm10173988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction and hypothesis: A link between psychiatric comorbidities and overactive bladder symptomatology has been suggested by preclinical and clinical studies. Given this, we hypothesized that a psychiatric history and current treatment with psychotropic medications could be related to the severity of overactive bladder and incontinence symptoms in patients referred to a tertiary care urogynecological center. Methods: One hundred and twenty-seven female patients diagnosed with an overactive bladder were screened for a lifetime history of psychiatric disorders and the type and number of psychotropic medications currently taken. The overall severity of overactive bladder symptoms was assessed using the Indevus Urgency Severity Scale. The severity and impact of urinary incontinence on the quality of life were quantified with the International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form. Urinary incontinence was further quantified with the aid of the Urinary Distress Inventory-6. The patients were screened for stress urinary incontinence using the Stamey Incontinence Score. Results: A psychiatric history, as well as current use of at least two psychotropic medications, was associated with increased severity of overactive bladder symptoms. A history of depression and current treatment with any selective serotonin reuptake inhibitor was associated with increased severity of stress urinary incontinence symptoms. Current treatment with other psychotropic medications, including sedative-hypnotics and drugs with anticholinergic properties was not related to the severity of overactive bladder and incontinence symptoms.
Collapse
Affiliation(s)
- Artur Rogowski
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
- Department of Obstetrics and Gynecology, Mother and Child Institute, 01-211 Warsaw, Poland; (M.K.-W.); (E.C.)
- Correspondence: ; Tel.: +48-604-060-090
| | - Maria Krowicka-Wasyl
- Department of Obstetrics and Gynecology, Mother and Child Institute, 01-211 Warsaw, Poland; (M.K.-W.); (E.C.)
| | - Ewa Chotkowska
- Department of Obstetrics and Gynecology, Mother and Child Institute, 01-211 Warsaw, Poland; (M.K.-W.); (E.C.)
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszów, Poland;
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Dominika Berent
- Regional Psychiatric Hospital Drewnica, 05-091 Zabki, Poland;
| | - Paweł Mierzejewski
- Departments of Pharmacology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland;
| | | | - Adam Wichniak
- Department of Psychiatry III, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland;
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.W.); (P.B.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | | | - Przemyslaw Bienkowski
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.W.); (P.B.)
| |
Collapse
|
28
|
Quaghebeur J, Petros P, Wyndaele JJ, De Wachter S. The innervation of the bladder, the pelvic floor, and emotion: A review. Auton Neurosci 2021; 235:102868. [PMID: 34391125 DOI: 10.1016/j.autneu.2021.102868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/26/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
The innervation of the pelvic region is complex and includes extensive neurologic pathways. The higher centres' organisation determining the pelvic floor and organs' function remains a challenge understanding the physiological and pain mechanisms. Psychological and emotional factors have a profound influence on the pelvic floor and organ dysfunction such as LUTS. LUTS are associated with stress, depression, and anxiety. Neuroception is a subconscious neuronal system for detecting threats and safety and might explain the permanent disturbance of higher brain centres maintaining functional urological and gastrointestinal disorders and sphincter dysfunction.
Collapse
Affiliation(s)
- Jörgen Quaghebeur
- Department of Urology, University of Antwerp, Edegem, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium.
| | - Peter Petros
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, Australia
| | | | - Stefan De Wachter
- Department of Urology, University of Antwerp, Edegem, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| |
Collapse
|
29
|
Neurophysiological control of urinary bladder storage and voiding-functional changes through development and pathology. Pediatr Nephrol 2021; 36:1041-1052. [PMID: 32415328 DOI: 10.1007/s00467-020-04594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
The effective storage of urine and its expulsion relies upon the coordinated activity of parasympathetic, sympathetic, and somatic innervations to the lower urinary tract (LUT). At birth, all mammalian neonates lack the ability to voluntary regulate bladder storage or voiding. The ability to control urinary bladder activity is established as connections to the central nervous system (CNS) form through development. The neural regulation of the LUT has been predominantly investigated in adult animal models where comparatively less is known about the neonatal and postnatal neurophysiological development that facilitate urinary continence. Furthermore, congenital neurological or anatomical defects can adversely affect both storage and voiding functions through postnatal development and into adulthood, leading to secondary conditions including vesicoureteral reflux, chronic urinary tract infections, and end-stage renal disease. Therefore, the aim of the review is to provide the current knowledge available on neurophysiological regulation of the LUT through pre- to postnatal development of human and animal models and the consequences of congenital anomalies that can affect LUT neural function.
Collapse
|
30
|
Leon-Ariza DS, Leon-Ariza JS, Gualdron MA, Bayona-Prieto J, Leon-Sarmiento FE. Territorial and Extraterritorial Trigeminocardiac Reflex: A Review for the Neurosurgeon and a Type IV Reflex Vignette. Cureus 2020; 12:e11646. [PMID: 33376657 PMCID: PMC7755611 DOI: 10.7759/cureus.11646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The trigeminocardiac reflex (TCR) is a complex and, sometimes, fatal event triggered by overstimulation of the trigeminal nerve (TN) and its territorial and spinal cord branches. We reviewed and compiled for the neurosurgeon key aspects of the TCR that include a novel and straightforward classification, as well as morphophysiology, pathophysiology, neuromonitoring and neuromodulation features. Further, we present intraoperative data from a patient who developed extraterritorial, or type IV, TCR while undergoing a cervical surgery. TCR complexity, severity and unwanted outcomes indicate that this event should not be underestimated or overlooked in the surgical room. Timely TCR recognition in surgical settings is valuable for applying effective intraoperative management to prevent catastrophic outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Fidias E Leon-Sarmiento
- Environmental Health, Florida International University, Miami, USA.,Neurology, Baptist Health South Florida, Miami Neuroscience Institute, Miami, USA.,Internal Medicine, National University, Bogota, COL
| |
Collapse
|
31
|
Mawla I, Schrepf A, Ichesco E, Harte SE, Klumpp DJ, Griffith JW, Strachan E, Yang CC, Lai H, Andriole G, Magnotta VA, Kreder K, Clauw DJ, Harris RE, Clemens JQ, Landis JR, Mullins C, Rodriguez LV, Mayer EA, Kutch JJ. Natural bladder filling alters resting brain function at multiple spatial scales: a proof-of-concept MAPP Network Neuroimaging Study. Sci Rep 2020; 10:19901. [PMID: 33199816 PMCID: PMC7669903 DOI: 10.1038/s41598-020-76857-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/29/2020] [Indexed: 01/23/2023] Open
Abstract
Neural circuitry regulating urine storage in humans has been largely inferred from fMRI during urodynamic studies driven by catheter infusion of fluid into the bladder. However, urodynamic testing may be confounded by artificially filling the bladder repeatedly at a high rate and examining associated time-locked changes in fMRI signals. Here we describe and test a more ecologically-valid paradigm to study the brain response to bladder filling by (1) filling the bladder naturally with oral water ingestion, (2) examining resting state fMRI (rs-fMRI) which is more natural since it is not linked with a specific stimulus, and (3) relating rs-fMRI measures to self-report (urinary urge) and physiologic measures (voided volume). To establish appropriate controls and analyses for future clinical studies, here we analyze data collected from healthy individuals (N = 62) as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network. Participants orally ingested approximately 350 mL of water, and had a 10 min “fuller bladder” rs-fMRI scan approximately 1 h later. A second 10 min “empty bladder” rs-fMRI scan was conducted immediately following micturition. We examined multiple spatial scales of brain function, including local activity, circuits, and networks. We found changes in brain function distributed across micturition loci (e.g., subregions of the salience, sensorimotor, and default networks) that were significantly related to the stimulus (volume) and response (urinary urge). Based on our results, this paradigm can be applied in the future to study the neurobiological underpinnings of urologic conditions.
Collapse
Affiliation(s)
- Ishtiaq Mawla
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Schrepf
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Eric Ichesco
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Steven E Harte
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA
| | - David J Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James W Griffith
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric Strachan
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Claire C Yang
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Henry Lai
- Department of Anesthesiology, Washington University, St. Louis, MO, USA.,Division of Urologic Surgery, Department of Surgery, Washington University, St. Louis, MO, USA
| | - Gerald Andriole
- Division of Urologic Surgery, Department of Surgery, Washington University, St. Louis, MO, USA
| | | | - Karl Kreder
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Daniel J Clauw
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Richard E Harris
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, USA
| | | | - J Richard Landis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chris Mullins
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Larissa V Rodriguez
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Jason J Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E. Alcazar Street, CHP 155, Los Angeles, CA, 90033, USA.
| |
Collapse
|
32
|
Efficacy of Deep Brain Stimulation on the Improvement of the Bladder Functions in Traumatic Brain Injured Rats. Brain Sci 2020; 10:brainsci10110850. [PMID: 33198259 PMCID: PMC7698168 DOI: 10.3390/brainsci10110850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: Traumatic brain injuries (TBIs) are a prime public health challenge with a high incidence of mortality, and also reflect severe economic impacts. One of their severe symptoms is bladder dysfunction. Conventional therapeutic methods are not effective in managing bladder dysfunction. Henceforth, a research endeavor was attempted to explore a new therapeutic approach for bladder dysfunction through deep brain stimulation (DBS) procedures in a TBI animal model. Methods: TBI in this animal model was induced by the weight-drop method. All rats with an induced TBI were housed for 4 weeks to allow severe bladder dysfunction to develop. Subsequently, an initial urodynamic measurement, the simultaneous recording of cystometric (CMG) and external urethral sphincter electromyography (EUS-EMG) activity was conducted to evaluate bladder function. Further, standard DBS procedures with varying electrical stimulation parameters were executed in the target area of the pedunculopontine tegmental nucleus (PPTg). Simultaneously, urodynamic measurements were re-established to compare the effects of DBS interventions on bladder functions. Results: From the variable combinations of electrical stimulation, DBS at 50 Hz and 2.0 V, significantly reverted the voiding efficiency from 39% to 69% in TBI rats. Furthermore, MRI studies revealed the precise localization of the DBS electrode in the target area. Conclusions: The results we obtained showed an insightful understanding of PPTg-DBS and its therapeutic applications in alleviating bladder dysfunction in rats with a TBI. Hence, the present study suggests that PPTg-DBS is an effective therapeutic strategy for treating bladder dysfunction.
Collapse
|
33
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
34
|
Clinical risk factors for post-stroke urinary incontinence during rehabilitation. Int J Rehabil Res 2020; 43:310-315. [DOI: 10.1097/mrr.0000000000000424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Congenital Linkage of Lacrimation with Micturition: A Wiring Defect or Just a Spillover? Indian Pediatr 2020. [DOI: 10.1007/s13312-020-1797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Yuan Y, Ali MK, Mathewson KJ, Sharma K, Faiyaz M, Tan W, Parsons SP, Zhang KK, Milkova N, Liu L, Ratcliffe E, Armstrong D, Schmidt LA, Chen JH, Huizinga JD. Associations Between Colonic Motor Patterns and Autonomic Nervous System Activity Assessed by High-Resolution Manometry and Concurrent Heart Rate Variability. Front Neurosci 2020; 13:1447. [PMID: 32038145 PMCID: PMC6989554 DOI: 10.3389/fnins.2019.01447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Abnormal colonic motility may be associated with dysfunction of the autonomic nervous system (ANS). Our aim was to evaluate if associations between colonic motor patterns and autonomic neural activity could be demonstrated by assessing changes in heart rate variability (HRV) in healthy volunteers. A total of 145 colonic motor patterns were assessed in 11 healthy volunteers by High-Resolution Colonic Manometry (HRCM) using an 84-channel water-perfused catheter. Motor patterns were evoked by balloon distention, a meal and luminal bisacodyl. The electrocardiogram (ECG) and cardiac impedance were assessed during colonic manometry. Respiratory sinus arrhythmia (RSA) and root mean square of successive differences of beat-to-beat intervals (RMSSD) served as measures of parasympathetic reactivity while the Baevsky's Stress Index (SI) and the pre-ejection period (PEP) were used as measures of sympathetic reactivity. Taking all motor patterns into account, our data show that colonic motor patterns are accompanied by increased parasympathetic activity and decreased sympathetic activity that may occur without eliciting a significant change in heart rate. Motor Complexes (more than one motor pattern occurring in close proximity), High-Amplitude Propagating Pressure Waves followed by Simultaneous Pressure Waves (HAPW-SPWs) and HAPWs without SPWs are all associated with an increase in RSA and a decrease in SI. Hence RSA and SI may best reflect autonomic activity in the colon during these motor patterns as compared to RMSSD and PEP. SI and PEP do not measure identical sympathetic reactivity. The SPW, which is a very low amplitude pressure wave, did not significantly change the autonomic measures employed here. In conclusion, colonic motor patterns are associated with activity in the ANS which is reflected in autonomic measures of heart rate variability. These autonomic measures may serve as proxies for autonomic neural dysfunction in patients with colonic dysmotility.
Collapse
Affiliation(s)
- Yuhong Yuan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - M Khawar Ali
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Karen J Mathewson
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Kartik Sharma
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Mahi Faiyaz
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Wei Tan
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sean P Parsons
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Kailai K Zhang
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Natalija Milkova
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Lijun Liu
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elyanne Ratcliffe
- Department of Pediatrics, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - David Armstrong
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Louis A Schmidt
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Ji-Hong Chen
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jan D Huizinga
- Department of Medicine, Division of Gastroenterology, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|